| تعداد نشریات | 61 |
| تعداد شمارهها | 2,213 |
| تعداد مقالات | 18,002 |
| تعداد مشاهده مقاله | 55,460,105 |
| تعداد دریافت فایل اصل مقاله | 28,952,132 |
توسعه روش طبقهبندی دیتاستهای نامتوازن با استفاده از الگوریتمهای تکاملی چندهدفه | ||
| مطالعات مدیریت صنعتی | ||
| مقاله 6، دوره 17، شماره 55، دی 1398، صفحه 161-183 اصل مقاله (1.09 M) | ||
| نوع مقاله: مقاله پژوهشی | ||
| شناسه دیجیتال (DOI): 10.22054/jims.2019.31226.2036 | ||
| نویسندگان | ||
| امیر دانشور* 1؛ مهدی همایون فر2؛ الهام اخوان3 | ||
| 1مدیریت صنعتی، دانشکده مدیریت، واحد الکترونیکی، دانشگاه آزاد اسلامی، تهران، ایران | ||
| 2گروه مدیریت صنعتی، دانشکده مدیریت و حسابداری، واحد رشت، دانشگاه آزاد اسلامی، رشت، ایران | ||
| 3گروه مدیریت صنعتی، دانشکده مدیریت، واحد الکترونیکی، دانشگاه آزاد اسلامی، تهران، ایران | ||
| چکیده | ||
| طبقهبندی دادهها از مباحث اساسی علم مدیریت است که از رویکردهای مختلفی مورد بررسی قرار گرفته است. روشهای هوش مصنوعی از مهمترین روشهای طبقهبندی هستند که اغلب آنها تابع دقت کل را در ارزیابی عملکرد مد نظر قرار میدهند. از آنجاییکه در دیتاستهای نامتوازن، این تابع، هزینه خطاهای پیشبینی را یکسان در نظر میگیرد، در این پژوهش علاوه بر تابع دقت کل، از تابع حساسیت نیز به منظور افزایش دقت در هر یک از کلاسهای از پیشتعریفشده، استفاده شده است. بهعلاوه، بدلیل پیچیدگی فرآیند کسب اطلاعات از تصمیمگیرنده، از الگوریتم فرا ابتکاری NSGA II جهت استنتاج مقادیر پارامترها، (بردار وزن و سطوح برش بین کلاسها) استفاده گردیده است. در هر تکرار، الگوریتم با استفاده از بردار وزن برآورد شده و دیتاستها، امتیاز هر آلترناتیو را با تابع Sum Product محاسبه نموده و در مقایسه با سطوح برش تخمینی، آن آلترناتیو را به یکی از دستهها تخصیص میدهد. سپس با استفاده از توابع برازش، دسته تخمینی و دسته واقعی را مقایسه نموده و این فرایند تا بهینهسازی پارامترها ادامه مییابد. مقایسه نتایج الگوریتمهای NSGA II و NRGA، نشاندهنده کارایی بالای الگوریتم ارائه شده است. | ||
| کلیدواژهها | ||
| الگوریتم ژنتیک با رتبهبندی نامغلوب (NSGA II)؛ طبقهبندی چند کلاسه؛ دیتاستهای نامتوازن؛ الگوریتم NRGA | ||
| مراجع | ||
|
دانشور، ا.، زندیه، م.، ناظمی، ج. (1394). یک روش تکاملی برای طبقهبندی اعتباری مبتنی بر رویکرد تجمیع زدایی ترجیحات. مطالعات مدیریت صنعتی، شماره 39، صفحات 1-34. زرین صدف، م.، دانشور، ا. (1395). روش کارای یادگیری ترجیحات مبتنی بر مدل ELECTRE TRI بهمنظور طبقهبندی چندمعیارۀ موجودی. مدیریت صنعتی، دوره 8، شماره 2، صفحات 191-216. عظیمی، پ.، گلدار، ف.، مهدیزاده، ا. (1394). ارائه مدلی ترکیبی برای انتخاب تامین کنندگان مبتنی بر رویکرد خوشهبندی و حل آن با استفاده از الگوریتمهای NRGA و NSGA-II. مطالعات مدیریت صنعتی، شماره 36، صفحات 115-142. محتشمی، ع. (1393). یک روش تلفیقی جدید جهت تخصیص افزونگی در سیستمهای تولیدی با استفاده از NSGA-II و MOPSO اصلاح شده. مطالعات مدیریت صنعتی، شماره 3، صفحات 97-124. Abdou, H. A. (2009). Genetic programming for credit scoring: The case of Egyptian public sector banks. Expert Systems with Applications, 36 (9), 11402–11417.
Al Jadaan, O., Rajamani, L., Rao, C. R. (2008). Non-Dominated Ranked Genetic Algorithm for Solving Multi-Objrctive Optimisation Problems: NRGA. Journal of Theoretical and Applied Information Technology, 60-67. Barandela, R., Sanchez, J. S., Garcia, V., Rangel, E. (2003). Strategies for learning in class imbalance problems. Pattern Recognition, 36, 849–851.
Carbonero-Ruz, M., Martínez-Estudillo, F. J., Fernández-Navarro, F., Becerra-Alonso, D., Martínez-Estudillo, A. C. (2017). A two dimensional accuracy-based measure for classification performance. Information Sciences, 382, 60-80.
Chen, M. C., Chen, L. S., Hsu, C. C., Zeng, W. R. (2008). An information granulation based data mining approach for classifying imbalanced data. Information Sciences, 178 (16), 3214-3227.
Deb, K., Pratap, A., Agarwal, S., Meyarivan, T. A. M. T. (2002). A Fast and Elitist Multi-objective Genetic Algorithm: NSGA-II Kalyanmoy. IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION, 6 (2), 182-197.
Hollander, M., Wolfe, D.A. (1973). Non-parametric Statistical Methods. John Wiley & Sons.
Kaabi, H., Jabeur, K., Enneifar, L. (2015). Learning criteria weights with TOPSIS method and continuous VNS for multi-criteria inventory classification. Electronic Notes in Discrete Mathematics, 47, 197-204. Karimi, N., Zandieh, M., Karamooz, H. R., (2010). Bi-objective group scheduling in hybrid flexible flow shop: A multi-phase approach. Expert Systems with Applications, 37, 4024-4032. Michalewiez, Z., (1995). A survey of constraint handling techniques in evolutionary computation methods. Evolutionary programming IV, MIT Press, Cambridge, MA, 98-108.
Marqués, A. I., García, V., Sánchez, J. S. (2012). Exploring the behavior of base classifiers in credit scoring ensembles. Expert Systems with Applications, 39, 10244-10250.
Mukerjee, A., Biswas, R., Deb, K. Mathur, A. (2002). Multi-objectiveevolutionary algorithms for the risk-return trade-off inbank loan management. International Transactions in Operational Researchو 9(5), 583-597.
Provost, F., Fawcett, T. (1997). Analysis and visualization of classifier performance: Comparison under imprecise class and cost distributions. Proceeding of the Third International Conference on Knowledge Discovery and DataMining (KDD-97). Newport beach, CA, 43-48. Gutiérrez, P. A., Hervás-Martínez, C., Martínez-Estudillo, F. J., Carbonerob, M. (2012). A two-stage evolutionary algorithm based on sensitivity and accuracy for multi-class problems. Information Sciences, 197, 20-37.
Nikam, S. S. (2015). A Comparative Study of Classification Techniques in Data Mining Algorithms. Computer Science and Technology, 8 (1), 13-19.
Rout, N., Mishra, D., Mallick, M. K. )2018). Handling Imbalanced Data: A Survey. International Proceedings on Advances in Soft Computing, Intelligent Systems and Applications, 431-443.
Srinivas, N., Deb, K. (2000). Multi-Objective function optimization using non-dominated sorting genetic algorithms. Evolutionary Computation, 2 (3), 221-248.
Schott, J. R. (1995). Fault tolerant design using single and multi-criteria genetic algorithms optimization. Master thesis, Department of Aeronautics and Astronautics, Massachusetts Institute of Technology, Cambridge. You, Z. H., Lei, Y. K., Zhu, L., Xia, J., Wang, B. (2013). Prediction of protein-protein interactions from amino acid sequences with ensemble extreme learning machines and principal components analysis. BMC Bioinformatics, 14 (8), xx-xx. Zitzler, E. (1999). Evolutionary Algorithms for Multi-objective Optimization: Methodsand Applications. Ph. D Dissertation, Swiss Federal Institute of Technology (ETH). Zhou, Z. H., Liu, X. Y. (2006). Training cost-sensitive neural networks with methods addressing the class imbalance problem. IEEE Transactions on Knowledge and Data Engineering, 18, 63–77.
| ||
|
آمار تعداد مشاهده مقاله: 1,669 تعداد دریافت فایل اصل مقاله: 1,276 |
||