| تعداد نشریات | 61 |
| تعداد شمارهها | 2,213 |
| تعداد مقالات | 18,002 |
| تعداد مشاهده مقاله | 55,457,162 |
| تعداد دریافت فایل اصل مقاله | 28,951,749 |
A Simple Gibbs Sampler for Learning Bayesian Network Structure | ||
| Journal of Data Science and Modeling | ||
| دوره 1، شماره 2، شهریور 2023، صفحه 87-97 اصل مقاله (386.48 K) | ||
| نوع مقاله: Research Manuscript | ||
| شناسه دیجیتال (DOI): 10.22054/jcsm.2021.55657.1022 | ||
| نویسنده | ||
| Vahid Rezaei Tabar* | ||
| Department of Statistics, Faculty of Statistics, Mathematics and Computer Sciences, Allameh Tabataba'i University, Tehran, Iran | ||
| چکیده | ||
| The aim of this paper is to learn a Bayesian network structure for discrete variables. For this purpose, we introduce a Gibbs sampler method. Each sample represents a Bayesian network. Thus, in the process of Gibbs sampling, we obtain a set of Bayesian networks. For achieving a single graph that represents the best graph fitted on data, we use the mode of burn-in graphs. This means that the most frequent edges of burn-in graphs are considered to indicate the best single graph. The results on the well-known Bayesian networks show that our method has higher accuracy in the task of learning a Bayesian network structure. | ||
| کلیدواژهها | ||
| Bayesian Network؛ Gibbs sampling؛ Burn-in graphs | ||
|
آمار تعداد مشاهده مقاله: 460 تعداد دریافت فایل اصل مقاله: 1,029 |
||