| تعداد نشریات | 61 |
| تعداد شمارهها | 2,224 |
| تعداد مقالات | 18,166 |
| تعداد مشاهده مقاله | 55,938,178 |
| تعداد دریافت فایل اصل مقاله | 29,010,791 |
Estimation of the hazard rate function in the presence of measurement errors | ||
| Journal of Mathematics and Modeling in Finance | ||
| دوره 3، شماره 1، آذر 2023، صفحه 49-66 | ||
| نوع مقاله: Research Article | ||
| شناسه دیجیتال (DOI): 10.22054/jmmf.2023.72868.1084 | ||
| نویسندگان | ||
| Parviz Nasiri* 1؛ Roghaieh Kheirazar1؛ Abbas Rasouli2؛ Ali Shadrokh1 | ||
| 1University of Payam Noor, Tehran, Iran | ||
| 2Department of Statistics, Faculty of Sciences, University of Zanjan, Zanjan, Iran | ||
| چکیده | ||
| In this article, according to the importance of the hazard rate function criterion in the evaluation of statistical distributions, its estimation methods are presented. Here, we suggest estimators for the hazard rate function. First, we use the standard deconvolution kernel density estimator and suggest a plug-in estimator. In the following we investigate asymptotic behavior of our estimator. For another estimator, we construct the new estimation the hazard rate function according plug-in and CDF. Finally, we consider the performance of the suggested estimators by simulation. Mean square error of estimators λˆ(t, p), λˆ(t) and λˆ c(t) present in tables 1 till 6. | ||
| کلیدواژهها | ||
| Hazard Rate Function؛ Additive Measurement Errors؛ Standard Deconvolution Kernel Density estimator؛ Mean Square Error؛ Local Polynomial Estimator | ||
| مراجع | ||
|
[1] D. Bagkavos, Local linear hazard rate estimation and bandwidth selection, Annals of the Institute of Statistical Mathematics, 63 (2011), pp. 1019-1046. [2] D. Bagkavos, P. N. Patil, Local polynomial fitting in failure rate estimation, IEEE Transactions on Reliability, 56 (2008), pp. 126-163. [3] R. J. Carroll, P. Hall, Optimal rates of convergence for deconvolving a density, Journal of American Statistics Association, 83 (1988), pp. 1184-1186. [4] I. Dattner, A. Goldenshluger, A. Juditsky, On deconvolution of distribution functions, The Annals of Statisitcs, 39 (2011), pp. 2477-2501. [5] A. Delaigle, J. Fan, R. J. Carroll, A Design-Adaptive Local Polynomial Estimator for the Errors-in-Variables Problem, Journal of the American Statistical Association, 104 (2009), pp. 348-359. [6] J. Fan, I. Gijbels, Local Polynomial Modeling and Its Applications, Chapman and Hall, London, 1996. [7] J. Fan, Y. K. Truong, Nonparametric regression with errors in variables, The Annals of Statistics, 21 (1993), pp. 1900-1925. [8] E. Mammen, J. P. Nielsen, A general approach to the predictability issue in survival analyses, Biometrika, 94 (1998), pp. 873-892. [9] A. Meister, Deconvolution Problems in Nonparametric Statistics, Springer, Berlin, Germany, 2009. [10] H. G. Muller, J. L. Wang, W. B. Capra ¨ , From lifetables to hazard rates: The transformation approach, Biometrika, 84 (1997), pp. 881-892. [11] J. P. Nielsen, Marker dependent hazard estimation from local linear estimation, Scandinavian Actuarial Journal, 2 (1998), pp. 113-124. [12] J. P. Nielsen, C. G. Tanggaard, Boundary and bias correction in kernel hazard estimation, Scandinavian Journal of Statistics, 28 (2001), pp. 675-698. [13] J. P. Nielsen, C. Tanggaard, C. Jones, Local linear density estimation for filtered survival data, Statistics, 42 (2009), pp. 167-186. [14] G. Pulcini, Modeling the failure data of a repairable equipment with bathtub type failure intensity, Reliability Engineering and System Safety, 71 (2001), pp. 209-218. [15] B, Rai, N. Singh, Customer-rush near warranty expiration limit and nonparametric hazard rate estimation from known mileage accumulation rates, IEEE Transactions on Reliability, 55 (2006), pp. 480-489. [16] L. A, Stefanski, R. J. Carroll, Deconvoluting Kernel Density Estimators, Statistics: A Journal of Theoretical and Applied Statistics, 21 (1990), pp. 169-184. [17] M. P. Wand, Data-based choice of histogram bin width, The American Statistician, 51 (1997), pp. 59-64. [18] J. L. Wang, H. G. Muller, W. B. Capra , Analysis of oldest-old mortality: Lifetables revisited, Annals of Statitics, 28 (1998), pp. 126-163. | ||
|
آمار تعداد مشاهده مقاله: 889 تعداد دریافت فایل اصل مقاله: 104 |
||