| تعداد نشریات | 61 |
| تعداد شمارهها | 2,201 |
| تعداد مقالات | 17,933 |
| تعداد مشاهده مقاله | 54,992,020 |
| تعداد دریافت فایل اصل مقاله | 28,779,831 |
Deep learning for option pricing under Heston and Bates models | ||
| Journal of Mathematics and Modeling in Finance | ||
| دوره 3، شماره 1، آذر 2023، صفحه 67-82 اصل مقاله (1.45 M) | ||
| نوع مقاله: Research Article | ||
| شناسه دیجیتال (DOI): 10.22054/jmmf.2023.73263.1085 | ||
| نویسندگان | ||
| Ali Bolfake1؛ Seyed Nourollah Mousavi* 2؛ Sima Mashayekhi2 | ||
| 1Department of mathematics, Faculty of Sciences, Arak University, arak, iran | ||
| 2Department of Mathematics, Faculty of Sciences, Arak University, Arak, Iran | ||
| چکیده | ||
| This paper proposes a new approach to pricing European options using deep learning techniques under the Heston and Bates models of random fluctuations. The deep learning network is trained with eight input hyper-parameters and three hidden layers, and evaluated using mean squared error, correlation coefficient, coefficient of determination, and computation time. The generation of data was accomplished through the use of Monte Carlo simulation, employing variance reduction techniques. The results demonstrate that deep learning is an accurate and efficient tool for option pricing, particularly under challenging pricing models like Heston and Bates, which lack a closed-form solution. These findings highlight the potential of deep learning as a valuable tool for option pricing in financial markets. | ||
| کلیدواژهها | ||
| Option pricing؛ Heston model؛ Bates model؛ Deep learning؛ Monte Carlo simulation؛ Variance reduction technique | ||
| مراجع | ||
|
[1] M. Abadi, P. Barham, J. Chen, Z. Chen, A. Davis, J. Dean, M. Devin, S. Ghemawat, G. Irving, M. Isard, et al., Tensorflow: A system for large-scale machine learning, In OSDI, 2016. [2] D. S. Bates, Jumps and stochastic volatility: Exchange rate processes implicit in deutsche mark options, Review of financial studies, 9(1)(1996), pp. 69107. [3] F. Black and M. Scholes, The pricing of options and corporate liabilities, Journal of political economy, 81(3)(1973), pp. 637654. [4] R. Cont, Empirical properties of asset returns: stylized facts and statistical issues, Quantitative Finance, 1(2)(2001), pp. 223236. [5] R. Cont, J. d. Fonseca, and V. Durrleman, Stochastic models of implied volatility surfaces, Economic Notes, 31(2)(2002), pp. 361377. [6] R. Culkin and S. R. Das, Machine learning in finance: the case of deep learning for option pricing, Journal of Investment Management, 15(4)(2017), pp. 92100. [7] M. F. Dixon, I. Halperin, and P. Bilokon, Machine learning in Finance, volume 1170, Springer, 2020. [8] C. Dugas, Y. Bengio, F. Belisle, C. Nadeau, and R. Garcia, Incorporating second-order functional knowledge for better option pricing, Advances in neural information processing systems, 13(2001). [9] J. Gatheral, The volatility surface: A practitioners guide, John Wiley & Sons, 2006. [10] P. Glasserman, Monte Carlo methods in financial engineering, Springer, 2004. [11] I. Goodfellow, Y. Bengio, and A. Courville, Deep Learning, MIT Press, 2016. [12] J. Heaton, N. G. Polson, and J. H. Witte, Deep learning in finance, arXiv preprint arXiv:1602.06561, 2016. [13] S. L. Heston, A closed-form solution for options with stochastic volatility with applications to bond and currency options, Review of financial studies, 6(2)(1993), pp. :327343. [14] J. C. Hull, Options, Futures and Other Derivatives, Pearson Education India, 2003. [15] C.-F. Ivascu, Option pricing using machine learning, Expert Systems with Applications, 163(2021), pp. 113799. [16] A. Jamnia, M. R. Sasouli, E. Heidouzahi, and M. Dahmarde Ghaleno, Application of deep-learning-based models for prediction of stock price in the Iranian stock market, Journal of Mathematics and Modeling in Finance, 2(1)(2022), pp. 151166. [17] Z. Jiang, D. Xu, and J. Liang, A deep reinforcement learning framework for the financial portfolio management problem, arXiv preprint arXiv:1706.10059, 2017. [18] A. Ke and A. Yang, Option pricing with deep learning, Department of Computer Science, Standford University, In CS230: Deep learning, 8 (2019), pp. 18. [19] G. Klambauer, T. Unterthiner, A. Mayr, and S. Hochreiter, Self-normalizing neural networks, In Advances in Neural Information Processing Systems, (2017)pp. 971980. [20] S. Liu, A. Borovykh, L. Grzelak, and C. Oosterlee, A neural network-based framework for financial model calibration, Journal of Mathematics in Industry 9(2019), pp. 1-28. [21] R. Lord, R. Koekkoek, and D. Van Dijk, A comparison of biased simulation schemes for stochastic volatility models, Quantitative Finance, 10(2)(2010), pp. 177194. [22] B. B. Mandelbrot, The variation of certain speculative prices, Springer New York, 1997. [23] V. Nair and G. E. Hinton, Rectified linear units improve restricted boltzmann machines, In Proceedings of the 27th international conference on machine learning (ICML-10)(2010), pp. 807-814. [24] K. Pakizeh, A. Malek, M. Karimzadeh Khosroshahi, and H. Hamidi Razi, Assessing machine learning performance in cryptocurrency market price prediction, Journal of Mathematics and Modeling in Finance, 2(1)(2022), pp. 132. [25] L. Qian, J. Zhao, and Y. Ma, Option pricing based on GA-BP neural network, Procedia Computer Science, 199(2022), pp.13401354. [26] J. Ruf and W. Wang, Neural networks for option pricing and hedging: a literature review, arXiv preprint arXiv:1911.05620, 2019. | ||
|
آمار تعداد مشاهده مقاله: 1,226 تعداد دریافت فایل اصل مقاله: 1,213 |
||