| تعداد نشریات | 61 |
| تعداد شمارهها | 2,224 |
| تعداد مقالات | 18,166 |
| تعداد مشاهده مقاله | 55,938,119 |
| تعداد دریافت فایل اصل مقاله | 29,010,773 |
موانع پیاده سازی تکنولوژی بلاکچین در لجستیک بشردوستانه در شرایط عدم قطعیت | ||
| مطالعات مدیریت کسب و کار هوشمند | ||
| مقاله 5، دوره 13، شماره 47، فروردین 1403، صفحه 153-184 اصل مقاله (1.49 M) | ||
| نوع مقاله: مقاله پژوهشی | ||
| شناسه دیجیتال (DOI): 10.22054/ims.2023.72916.2304 | ||
| نویسندگان | ||
| علی معمارپور غیاثی1؛ مرتضی عباسی* 2؛ مرتضی پیری3؛ پیمان اخوان4 | ||
| 1دانشجوی دکتری، گروه مهندسی صنایع، دانشکده مدیریت و مهندسی صنایع، دانشگاه صنعتی مالک اشتر، تهران، ایران | ||
| 2استادیار، گروه مهندسی صنایع، دانشکده مدیریت و مهندسی صنایع، دانشگاه صنعتی مالک اشتر، تهران، ایران نویسنده مسئول: mabbasi@mut.ac.ir | ||
| 3استادیار، گروه مهندسی صنایع، دانشکده مدیریت و مهندسی صنایع، دانشگاه صنعتی مالک اشتر، تهران، ایران | ||
| 4استاد، گروه مهندسی صنایع، دانشگاه صنعتی قم، قم، ایران | ||
| چکیده | ||
| در عصر دیجیتال، فناوری بلاک چین به عنوان نوآوری عملیاتی شناخته شده است که به سرعت در حال پیوستن به زمینه زنجیره تامین و لجستیک بشردوستانه است. از این رو، تکنولوژی بلاکچین این پتانسیل را دارد که زمینه کمک های بشردوستانه را به طور اساسی تغییر دهد، اما هنوز تحقیقات نسبتاً کمی با هدف بهبود درک موانع مختلف پذیرش بلاک چین در لجستیک بشردوستانه منتشر شده است. هدف این تحقیق ارائه یک چارچوب یکپارچه جهت ارزیابی موانع پذیرش بلاک چین در زمینه لجستیک بشردوستانه است. برای تجزیه و تحلیل موانع از رویکرد یکپارچه روش FMEA مبتنی بر Z-ARAS در سه فاز استفاده شده است. در فاز اول این رویکرد بر اساس ادبیات، 10 مانع پذیرش بلاک چین در لجستیک بشردوستانه بر اساس روش FMEA شناسایی شده و عوامل تعیین کننده RPN مقدار دهی می شوند. در فاز دوم، با بهره گیری از نظرات خبرگان، وزن های عوامل سه گانه محاسبه می شوند. سپس در فاز سوم، با توجه به خروجی های فاز های قبل، موانع با استفاده از روش پیشنهادی Z-ARAS با در نظر گرفتن عدم قطعیت و قابلیت اطمینان اولویت بندی می شوند. رویکرد پیشنهادی این تحقیق در ارزیابی موانع پیاده سازی بلاک چین در لجستیک بشردوستانه پیاده سازی گردید و بر اساس نتایج، مشکلات یکپارچه سازی، ریسک حملات سایبری و ریسک های فناوری به عنوان موانع مهم و بحرانی شناسایی شده اند. نتایج حاصل از رویکرد پیشنهادی نشانگر قابلیت و برتری آن در مقایسه با سایر روش ها نظیر FMEA و آراس فازی بوده است. | ||
| کلیدواژهها | ||
| بلاکچین؛ لجستیک بشر دوستانه؛ FMEA؛ تصمیم گیری چند معیاره؛ تئوری اعداد Z | ||
| مراجع | ||
|
Akhavan, P., & Namvar, M. (2021). The mediating role of blockchain technology in improvement of knowledge sharing for supply chain management. Management Decision.
Akhavan, P., & Philsoophian, M. (2022). Improving of Supply Chain Collaboration and Performance by Using Block Chain Technology as a Mediating Role and Resilience as a Moderating Variable. Journal of the Knowledge Economy, 1-22.
Ar, I. M., Erol, I., Peker, I., Ozdemir, A. I., Medeni, T. D., & Medeni, I. T. (2020). Evaluating the feasibility of blockchain in logistics operations: A decision framework. Expert Systems with applications, 158, 113543.
Azizi, N., Malekzadeh, H., Akhavan, P., Haass, O., Saremi, S., & Mirjalili, S. (2021). IoT–blockchain: Harnessing the power of internet of thing and blockchain for smart supply chain. Sensors, 21(18), 6048.
Babich, V., & Hilary, G. (2020). OM Forum—Distributed ledgers and operations: What operations management researchers should know about blockchain technology. Manufacturing & Service Operations Management, 22(2), 223-240.
Baharmand, H., & Comes, T. (2019). Leveraging partnerships with logistics service providers in humanitarian supply chains by blockchain-based smart contracts. IFAC-PapersOnLine, 52(13), 12-17.
Baharmand, H., Maghsoudi, A., & Coppi, G. (2021). Exploring the application of blockchain to humanitarian supply chains: insights from Humanitarian Supply Blockchain pilot project. International Journal of Operations & Production Management.
Baharmand, H., Saeed, N., Comes, T., & Lauras, M. (2021). Developing a framework for designing humanitarian blockchain projects. Computers in Industry, 131, 103487.
Bashir, I. (2017). Mastering blockchain: Packt Publishing Ltd.
Böhme, R. (2013). Internet protocol adoption: Learning from Bitcoin. Paper presented at the IAB Workshop on Internet Technology Adoption and Transition (ITAT).
Böhme, R., Christin, N., Edelman, B., & Moore, T. (2015). Bitcoin: Economics, technology, and governance. Journal of economic Perspectives, 29(2), 213-238.
Brezo, F., & Bringas, P. G. (2012). Issues and risks associated with cryptocurrencies such as Bitcoin.
Carpitella, S., Certa, A., Izquierdo, J., & La Fata, C. M. (2018). A combined multi-criteria approach to support FMECA analyses: A real-world case. Reliability Engineering & System Safety, 169, 394-402.
Cole, R., Stevenson, M., & Aitken, J. (2019). Blockchain technology: implications for operations and supply chain management. Supply Chain Management: An International Journal.
Demir, E., Bilgin, M. H., Karabulut, G., & Doker, A. C. (2020). The relationship between cryptocurrencies and COVID-19 pandemic. Eurasian Economic Review, 10(3), 349-360.
Dubey, R., Gunasekaran, A., Bryde, D. J., Dwivedi, Y. K., & Papadopoulos, T. (2020). Blockchain technology for enhancing swift-trust, collaboration and resilience within a humanitarian supply chain setting. International Journal of Production Research, 58(11), 3381-3398.
Gencer, A. E. (2017). On scalability of blockchain technologies. Cornell University,
Gervais, A., Karame, G. O., Wüst, K., Glykantzis, V., Ritzdorf, H., & Capkun, S. (2016). On the security and performance of proof of work blockchains. Paper presented at the Proceedings of the 2016 ACM SIGSAC conference on computer and communications security.
Gheibdoust, H., Gilaninia, S., & Taleghani, M. (2023). Identification and Prioritization of the Factors Influencing Service Quality in the Hotel Industry by SWARA and ARAS Methods During the COVID-19 Pandemic. Journal of Quality Assurance in Hospitality & Tourism, 1-23.
Ghiaci, A. M., & Ghoushchi, S. J. (2023). Assessment of barriers to IoT-enabled circular economy using an extended decision-making-based FMEA model under uncertain environment. Internet of Things, 100719.
Ghoushchi, S. J., Bonab, S. R., Ghiaci, A. M., Haseli, G., Tomaskova, H., & Hajiaghaei-Keshteli, M. (2021). Landfill Site Selection for Medical Waste Using an Integrated SWARA-WASPAS Framework Based on Spherical Fuzzy Set. Sustainability, 13(24), 13950.
Ghoushchi, S. J., Jalalat, S. M., Bonab, S. R., Ghiaci, A. M., Haseli, G., & Tomaskova, H. (2022). Evaluation of wind turbine failure modes using the developed SWARA-CoCoSo methods based on the spherical fuzzy environment. IEEE Access, 10, 86750-86764.
Ghoushchi, S. J., Yousefi, S., & Khazaeili, M. (2019). An extended FMEA approach based on the Z-MOORA and fuzzy BWM for prioritization of failures. Applied Soft Computing, 81, 105505.
Glaser, F., Zimmermann, K., Haferkorn, M., Weber, M. C., & Siering, M. (2014). Bitcoin-asset or currency? revealing users' hidden intentions. Revealing Users' Hidden Intentions (April 15, 2014). ECIS.
Gurtu, A., & Johny, J. (2019). Potential of blockchain technology in supply chain management: a literature review. International Journal of Physical Distribution & Logistics Management.
Hald, K. S., & Kinra, A. (2019). How the blockchain enables and constrains supply chain performance. International Journal of Physical Distribution & Logistics Management.
Ivanov, D., & Dolgui, A. (2020). Viability of intertwined supply networks: extending the supply chain resilience angles towards survivability. A position paper motivated by COVID-19 outbreak. International Journal of Production Research, 58(10), 2904-2915.
Ivanov, D., & Dolgui, A. (2021). A digital supply chain twin for managing the disruption risks and resilience in the era of Industry 4.0. Production Planning & Control, 32(9), 775-788.
Jafarzadeh Ghoushchi, S., Bonab, S. R., & Ghiaci, A. M. (2023). A decision-making framework for COVID-19 infodemic management strategies evaluation in spherical fuzzy environment. Stochastic environmental research and risk assessment, 1-14.
Jafarzadeh Ghoushchi, S., Memarpour Ghiaci, A., Rahnamay Bonab, S., & Ranjbarzadeh, R. (2022). Barriers to circular economy implementation in designing of sustainable medical waste management systems using a new extended decision-making and FMEA models. Environmental Science and Pollution Research, 1-19.
Jafarzadeh Ghoushchi, S., Shaffiee Haghshenas, S., Memarpour Ghiaci, A., Guido, G., & Vitale, A. (2022). Road safety assessment and risks prioritization using an integrated SWARA and MARCOS approach under spherical fuzzy environment. Neural Computing and Applications, 1-19.
Khadke, U., & Parkhi, S. (2020). Implementation of blockchain in the humanitarian supply chainbenefits and blockades. Psychology and Education Journal, 57(9), 5098-5105.
Khan, M., Imtiaz, S., Parvaiz, G. S., Hussain, A., & Bae, J. (2021). Integration of internet-of-things with blockchain technology to enhance humanitarian logistics performance. IEEE Access, 9, 25422-25436.
Kolios, A. J., Umofia, A., & Shafiee, M. (2017). Failure mode and effects analysis using a fuzzy-TOPSIS method: a case study of subsea control module. International Journal of Multicriteria Decision Making, 7(1), 29-53.
Krombholz, K., Judmayer, A., Gusenbauer, M., & Weippl, E. (2016). The other side of the coin: User experiences with bitcoin security and privacy. Paper presented at the International conference on financial cryptography and data security.
Li, X., Li, H., Sun, B., & Wang, F. (2018). Assessing information security risk for an evolving smart city based on fuzzy and grey FMEA. Journal of Intelligent & Fuzzy Systems, 34(4), 2491-2501.
Lo, H.-W., & Liou, J. J. (2018). A novel multiple-criteria decision-making-based FMEA model for risk assessment. Applied Soft Computing, 73, 684-696.
Memarpour Ghiaci, A., Garg, H., & Jafarzadeh Ghoushchi, S. (2022). Improving emergency departments during COVID-19 pandemic: a simulation and MCDM approach with MARCOS methodology in an uncertain environment. Computational and Applied Mathematics, 41(8), 1-23.
Patil, A., Shardeo, V., Dwivedi, A., & Madaan, J. (2020). An integrated approach to model the blockchain implementation barriers in humanitarian supply chain. Journal of Global Operations and Strategic Sourcing.
Queiroz, M. M., Telles, R., & Bonilla, S. H. (2019). Blockchain and supply chain management integration: a systematic review of the literature. Supply Chain Management: An International Journal.
Rahimi, A., Akhavan, P., Philsofian, M., & Darabi, A. (2022). Investigating the Effect of using Blockchain Technology on Collaborative Interactions and Performance Improvement in the Defense Industry Supply Chain. Journal of Industrial Management Perspective, 12(1, Spring 2022), 109-134.
Sahebi, I. G., Masoomi, B., & Ghorbani, S. (2020). Expert oriented approach for analyzing the blockchain adoption barriers in humanitarian supply chain. Technology in Society, 63, 101427.
Sayyadi Tooranloo, H., & Ayatollah, A. S. (2017). Pathology the internet banking service quality using failure mode and effect analysis in interval-valued intuitionistic fuzzy environment. International Journal of Fuzzy Systems, 19(1), 109-123.
Schatsky, D., Arora, A., & Dongre, A. (2018). Blockchain and the five vectors of progress. Recuperado de https://www2. deloitte. com/us/en/insights/focus/signals-for-strategists/value-of-blockchain-applications-interoperability. html.
Seebacher, S., & Maleshkova, M. (2018). A model-driven approach for the description of blockchain business networks. Paper presented at the Proceedings of the 51st Hawaii international conference on system sciences.
Seyedsayamdost, E., & Vanderwal, P. (2020). From good governance to governance for good: blockchain for social impact. Journal of International Development, 32(6), 943-960.
Treiblmaier, H. (2021). Blockchain and crisis management. In: 2nd international conference on knowledge management, Blockchain and Economy.
Urquhart, A. (2016). The inefficiency of Bitcoin. Economics Letters, 148, 80-82.
Van Alstyne, M. (2014). Why Bitcoin has value. Communications of the ACM, 57(5), 30-32.
Waller, M. A., Van Hoek, R., Davletshin, M., & Fugate, B. (2019). Integrating blockchain into supply chain management: a toolkit for practical implementation: Kogan Page Publishers.
Wang, Y., Han, J. H., & Beynon-Davies, P. (2018). Understanding blockchain technology for future supply chains: a systematic literature review and research agenda. Supply Chain Management: An International Journal.
Wiatt, R. G. (2019). From the mainframe to the blockchain. Strategic Finance, 100(7), 26-35.
Wong, L.-W., Tan, G. W.-H., Lee, V.-H., Ooi, K.-B., & Sohal, A. (2020). Unearthing the determinants of Blockchain adoption in supply chain management. International Journal of Production Research, 58(7), 2100-2123.
Zavadskas, E. K., & Turskis, Z. (2010). A new additive ratio assessment (ARAS) method in multicriteria decision‐making. Technological and economic development of economy, 16(2), 159-172.
Zohar, A. (2015). Bitcoin: under the hood. Communications of the ACM, 58(9), 104-113.
| ||
|
آمار تعداد مشاهده مقاله: 1,162 تعداد دریافت فایل اصل مقاله: 796 |
||