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Abstract:
This study explores the application of dynamic systems for modeling and
valuing catastrophe bonds to establish a more intelligent and adaptive ap-
proach to determining their volatility parameter. These financial instru-
ments hold significant importance for insurance companies in safeguarding
against the risk of insolvency stemming from the escalating frequency and
severity of natural disasters worldwide. Employing mathematical princi-
ples, this research formulated a pricing partial differential equation and
introduced a dynamic system for its resolution. The damage model was
assumed to follow a stochastic process, and a radial basis neural network
was utilized to estimate the volatility parameter of this stochastic process
by leveraging historical data. The study scrutinized the pricing framework
of catastrophe bonds related to floods and storms in China, ultimately
demonstrating that the proposed methodology proved effective and com-
putationally efficient when contrasted with alternative approaches.
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1 Introduction

Dynamic systems have various applications in various fields and can analyze nu-

merous phenomena. By employing the characteristics of a particular phenomenon,

a dynamic system can be established to study its behavior. Although not all as-

pects of a phenomenon can be transformed into dynamic systems, an approximation
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can be made to meet the learning needs partially. However, it is only possible to

find an ideal model for some phenomena using dynamic systems or other branches

of study. This paper explores one of the practical aspects of dynamic systems,

particularly their finance application. Financial crises have been analyzed using

multi-factor dynamic systems by Castellacci, and Choi [4], which have been used

as a negative shock to economic equilibrium that disrupts the balance. Cheriyan

and Kleywegt [5] used dynamic systems to investigate market bubbles and found

that investors may predict and decide upon price bubbles in seemingly sensible

ways. Choi and Douady [7] studied the effect of increasing leverage on economics

using dynamic systems and bifurcation. In addition, Choi [6] examined the sta-

bility of an economic structure divided into two unequal subdivisions. This paper

discusses another application of dynamic systems: the pricing of catastrophe bonds

(CAT bonds).

Sometimes, wind movements can be powerful enough to create fast airwaves,

known as storms. These storms can cause trees and structures to collapse, re-

sulting in large-scale destruction and financial losses. Table 1, extracted from

https://www.iii.org/fact-statistic/facts-statistics-hurricanes, lists ten expensive

storms in the United States.

Table 1: 10 Costly storms in the United States

Rank Year Hurricane Dollars when occurred ×103$ In 2020 dollars ×103$

1 2005 Hurricane Katrina 65,000 85,570

2 2012 Hurricane Sandy 30,000 33,530

3 2017 Hurricane Harvey 30,000 31,590

4 2017 Hurricane Irma 29,900 31,320

5 2017 Hurricane Maria 29,670 31,100

6 1992 Hurricane Andrew 16,000 29,360

7 2008 Hurricane Ike 18,200 21,510

8 2005 Hurricane Wilma 10,670 13,840

9 2018 Hurricane Michael 13,250 13,550

10 2004 Hurricane Ivan 8,720 11,870

There have been numerous studies on natural disaster risk management in re-

cent years. For instance, Scally [8] proposed different suitable locations for shelter

by assessing the risk of tropical storms in Rarotonga, and Mai et al. [14] used a

novel approach to create a fundamental interaction between the endogenous char-

acteristics of a flood-prone society. However, in a natural disaster, the question of

compensating for financial losses arises. Insurance is one way to cover the risk of

such losses. As an influential player in a country’s economy, examining the factors

that can impact the insurance industry is essential. Sometimes the damage caused

by natural disasters is so severe that insurance cannot reimburse the entire cost.

Therefore, insurance companies use reinsurance to prevent bankruptcy. However,

in some cases, the damages caused by natural disasters are so significant that even

reinsurance cannot cover them. To address this, the insurance industry has de-
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veloped CAT bonds to cover the risks arising from such catastrophes. This study

focuses on modeling and pricing CAT bonds.

While many studies have been conducted on modeling CAT bonds, this study

specifically focuses on China’s CAT bond market, which has seen significant growth

in recent years due to increased storm damage. The Unger [21] modeling method

is used, which considers the damage model as a jump-diffusion stochastic process.

However, it may not be appropriate to use the jump-diffusion model in the context

of storm and flood damage in China, and thus, this study considers a non-jump

model. Previous research, such as Gang Ma and Qun Ma [13], presented a formula

for securities based on a non-homogeneous Poisson process, and Burnecki and Giuri-

cich [3] modeled and calculated CAT bonds by considering the approximating tail

probabilities in the general compound renewal process framework. The proposed

model can provide valuable insights into the design of preventive CAT bonds for

China, which is highly vulnerable to storm damage.

The contribution of this research is listed as follows:

• Introducing a novel method for solving the Black-Scholes PDE: The Black-

Scholes partial differential equation (PDE) is a widely used model in finance

for pricing options. This research introduces a new method for solving this

PDE, which can improve the accuracy and efficiency of option pricing.

• Solving the Black-Scholes PDE with minimal running time compared to two

prevalent approaches in this area: This new method also shows improved

performance compared to two widely used approaches for solving the Black-

Scholes PDE, which can potentially save time and resources for financial

institutions.

• Facilitates implementation in programming: This method is designed to be

easily implemented in programming, making it accessible and practical for

financial industry applications.

• Using the method in many financial industries for the first pricing of financial

derivatives based on the Black-Scholes PDE before joining the supply-demand

market: By applying this method to price financial derivatives based on the

Black-Scholes PDE, this research provides a valuable tool for financial indus-

tries to assess the risk of these derivatives before they enter the market.

• Damage volatility parameter estimation using neural network: Besides the

Black-Scholes PDE, this research also uses neural networks to estimate the

volatility parameter for modeling CAT bonds for flood and typhoon damage

in China, which can improve the accuracy of these models.

• Using actual data to model CAT bonds for flood and typhoon damage in

China: This research also contributes to the understanding and modeling of

CAT bonds specifically for flood and typhoon damage in China, which can
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potentially help the insurance industry in China to manage better the risks

associated with these natural disasters.

The rest of this research is described as follows. The next section presents a

PDE-based price model using mathematical concepts. In section 3, we solve the

PDE using dynamic systems and examine its efficiency by the call and put option.

Finally, Section 4 presents the price graph of CAT bonds of China’s storm and

flood using accurate data using Python software.

2 CAT bonds

CAT bond is one of the most important securities in insurance and has found a

special place due to the current weather conditions. As mentioned in the previous

section, these bonds are designed to prevent bankruptcy according to compensation

for natural disasters. In this section, the components related to these bonds are

stated, so to understand their mechanism better, the following graph is presented:

InsuranceInsured

SPV

Market

Investor

Compensation

Premium
+ catastrophe risk

Catastrophe risk + payment of obligations Financial capital

+ catastrophe risk covering

Investing financial capital

Investment return

CAT bond

Financial capital
+ catastrophe risk payment commitment

The general structure of these bonds is that insurance companies (or reinsurance

companies) first establish a Special Purpose Vehicle (SPV) or cooperate with it, if

any, and use it to transfer the risk of natural disasters to one or more investors.

Considering the amount of damage, the SPV company issues a particular type of

bond and sells it to the investor. Insurers trade as risk sellers, and investors as

risk buyers. The SPV states in the contract with the investor that if the damages

exceed the expected threshold of an insurance company, the excess damages will

be reduced from the principal or coupon of CAT bond interest in the event of a

catastrophic event. The SPV transfers the financial resources from the sale of the

CAT bond to the insurance company. The insurance company invests the resources
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in the market and, with a swap contract at a fixed interest rate, guarantees the

return on that investment and returns the proceeds to the investor by SPV.

2.1 The model

In this section, we intend to model these bonds. Therefore, the damage model

is introduced first, and then the CAT bond is symbolized using it. Finally, a

PDE model will be presented using mathematical concepts. To begin modeling,

according to the type of data used in the next section, assume that the damage

follows a random process as

dS = αSdt+ σSdwt, (1)

where the S is damage, α is damage rate of data, σ is the volatility around the

average and wt is Wiener process. We also assume that C(S, t) is the price of the

CAT bond at the time of t and the amount of the damage S, so using Ito lemma

[fi, mas1], the change of CAT bond is as follow [1,9, 21]:

dC = (Ct + αSCS + 0.5σ2S2CSS)︸ ︷︷ ︸
φC

dt+ σSCS︸ ︷︷ ︸
∆C

dwt, (2)

Assuming that D is another CAT bond similar to C as dD = φDdt +∆Ddwt, we

have the following portfolio:

Π = x1C + x2D, (3)

where x1 and x2 are the volume C and D in the portfolio, respectively. Assume

the portfolio is risk-free, so

dΠ = rΠdt,

E[x1dC + x2dD] = rx1C + rx2D.
(4)

Assuming x1 = ∆D and x2 = −∆C , from the previous expression, the following

ratio is obtained:
φC − rC

∆C
=

φD − rD

∆D
. (5)

This ratio is called the market price of risk and is denoted by q. By inserting the

values associated with the symbols, the following PDE is obtained:

Ct + (αS − qσS)CS + 0.5σ2S2CSS − rC = 0. (6)

According to the mechanism of these bonds, the terminal condition or pay off is as

follows:

C(S, T ) = C∗IS≤S∗ +max(C∗ − (S − S∗), 0)IS>S∗ , (7)

where I is indicator function, T is maturity time and S∗ is the maximum indemnity

that insurance can pay. If the amount of damage is less than S∗, this bond will act
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as a usual bond with a fixed-rate; otherwise, the amount of excess damage will be

deducted from the amount of fixed-rate bond C∗.

Also, the boundary conditions are as follows:

C(0, t) = C∗e−r(T−t),

lim
S→∞

C(S, t) = 0.
(8)

The financial interpretation of the above phrase means that if the amount of damage

is zero, it acts as a usual bond with a fixed-rate, and vice versa, if it tends to infinity,

no one will show interest in these bonds and their price will be zero.

2.2 Smart Volatility

Volatility is an essential quantity in stochastic modeling, especially financial mod-

eling. It shows the stochastic variable’s degree of fluctuation or unpredictability

and is crucial for forecasting the investment risk. The importance of analyzing the

volatility parameter is based on the following factors [10,11,15–17]:

• Investors use volatility to control risk in their portfolios. Investors change

their investing approach to account for the increased risk of greater volatil-

ity. By modeling volatility, investors may determine risk tolerance and make

educated investing choices.

• Volatility is significant in pricing financial assets, especially derivatives such

as options and futures. The anticipated volatility of the underlying asset

determines the value of these assets. Consequently, it is vital to comprehend

the volatility characteristic to price these securities appropriately.

• Hedging is a practice used to lessen the risk associated with financial invest-

ments. By modeling volatility, investors may determine the most effective

hedging techniques to protect themselves from unfavorable market swings.

• Volatility models may be used to predict future market fluctuations. This

is crucial for investors who want to make educated choices on whether to

acquire or sell assets.

The study of the volatility parameter is crucial for comprehending the risk associ-

ated with financial investments and making educated investment choices. Modeling

volatility offers a potent instrument for risk management, asset pricing, hedging,

portfolio optimization, and forecasting.

In this research, we assume that the loss model’s volatility is proportional to the

amount of reported loss. To estimate the volatility function, we use a radial basis

neural network (RBFNN) as described in the follow.

This network will be trained using the Mean Square Error loss function and

Adams optimization in Tensorflow.
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To create a data set, we examine the research methodology of Azizi and Neissy

[19, 20]. They determine the volatility value at each time step using the primary

data. Thus, we may view the dataset as follows:

{(S1, σ1(S0,S1)), ..., (Sp, σp(S0,...,Sp))} (9)

After obtaining the σ(S) value we can rewrite the PDE 6 as:

Ct + (αS − qσ(S)S)CS + 0.5σ(S)2S2CSS − rC = 0. (10)

3 The dynamic system solution of CAT bonds PDE

In this section, we intend to provide a solution method for PDE 6. Depending on

the type of PDE, it isn’t easy to get a close form, and researchers usually use other

methods, such as numerical methods. We want to find a solution to this matter

using the dynamic system. In detail, with a converting in PDE 6, we achieve a

homogeneous linear dynamic system and solve it by the usual method.

By changing the variable τ = T − t, the PDE 6 is rewritten as:

Cτ = (αS − qσ(S)S)CS + 0.5σ(S)2S2CSS − rC. (11)

Depending on the structure of the problem, we limit the range of changes S and

show it as [0, Smax]. In the next step, this interval is divided into n+ 2 sections as

follows:
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S0 = 0, S1, ..., Sn, Sn+1 = Smax,

dS = Si+1 − Si,

i ∈ {0, ..., n}.
(12)

Given the above discretization and notation C(Si, τ) = Ci(τ), the derivatives

respect to S are considered as:

∂C(Si,τ)
∂S = ∂Ci(τ)

∂S ≃ Ci+1(τ)−Ci−1(τ)
2dS ,

∂2C(Si,τ)
∂S2 = ∂2Ci(τ)

∂S2 ≃ Ci+1(τ)−Ci(τ)+Ci−1(τ)
dS2 .

(13)

By placing these derivatives in PDE 11 and considering all indexes, we have



d
dtC0(τ)
d
dtC1(τ)

...
d
dtCn(τ)

d
dtCn+1(τ)


︸ ︷︷ ︸

Ċ

=



γ 0 0 ... 0 0 0

a1 b1 c1 0

0 a2 b2 c2 0
...

. . .
. . .

. . .
...

0 an−1 bn−1 cn−1 0

0 an bn cn

0 0 0 · · · 0 0 ν


︸ ︷︷ ︸

A



B1(τ)

C1(τ)
...

Cn(τ)

B2(τ)


︸ ︷︷ ︸

C

,

γ =

{
dB1/dτ

B1
B1 ̸= 0

−1 Otherwise
,

ν =

{
dB2/dτ

B2
B2 ̸= 0

−1 Otherwise
,

ai =
0.5σ(Si)

2S2
i

dS2 −(α Si

2dS − qσ(Si)Si),

bi = −σ(Si)
2S2

i

dS2 − r,

ci =
0.5σ(Si)

2S2
i

dS2 +(α Si

2dS − qσ(Si)Si).

(14)

where B1 and B2 are boundary conditions as follows:

B1(τ) = C(0, τ),

B2(τ) = lim
S→∞

C(S, τ).
(15)

Now using the usual methods in dynamic systems, the solution to the linear dy-

namic system Ċ = AC is

C = eAτIC (16)

where IC is the initial condition.
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3.1 Stability

To study stability, Lyapunov’s definition of stability is first stated, and using the

properties of the problem, the establishment of this definition for our problem is

examined.

Definition 3.1. (Lyapunov stability) [22]: The solution X(t) is a Lyapunov stable if

for each ε, there exists a δ that for other solution Y (t), satisfying |X(t0)− Y (t0)| <
δ, we can draw conclusions |X(t)− Y (t)|t>t0

< ε.

Now suppose C is a solution to linear dynamics system 14 with the initial con-

dition C0. Also suppose F0 is obtained by adding a perturbation to C0 and the

corresponding solution is F . Hence we have

C − F = eAτC0 − eAτF0 = eAτ (C0 − F0). (17)

Using the norm property, we have

∥C − F∥ ≤ L ∥(C0 − F0)∥ ,
L =

∥∥eAτ
∥∥ . (18)

Now assuming ∥C − F∥ ≤ L ∥(C0 − F0)∥ < ε and ∥(C0 − F0)∥ < δ, for each ε,

δ = ε/L can be selected to meet the definition of Lyapunov stability.

Example 3.2. To evaluate the effectiveness of this method, we intend to compare

the results of the call option and put option with their exact solution. Suppose

the price range of an underlying asset is [0, 100], strike price 25 for the call option,

strike price 70 for the put option, interest rate 0.05, volatility 0.25, and maturity

time 1. Suppose the close-form of the call option is Call(S, t) and the put option

is Put(S, t), which are as follows:

Call(St, t) = N(d1)St −N(d2)Ke−r(T−t),

Put(St, t) = N(−d2)Ke−r(T−t) −N(−d1)St,

d1 = 1
σ
√
T−t

[
ln

(
St

K

)
+
(
r + σ2

2

)
(T − t)

]
,

d2 = d1 − σ
√
T − t.

(19)

The results of this comparison can be seen in figure 1.

To evaluate the efficiency of this method, a relative error has been used as follows:

|Ω− ω|
|Ω|

, (20)

where Ω is the actual value and ω is the estimated value. Since the actual amount

of options in the range between zero and twenty for the call option and ninety to

one hundred for the put option is close to zero and is under the ratio, the relative

error does not show the correct value, but the relative error in the general case

expresses the efficiency of the rolling method used.

To better understand the algorithm of this method, put option Python code has

been put in the Appendix (section 6) as an example.
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(a) Call option price (b) Put option price

(c) Relative error of Call option (d) Relative error of Put option

Figure 1: Call and Put option price

4 Numerical results

In this section, we intend to run the obtained results, and Python software will be

used to display the results. Real data from China’s natural disasters have been

used for the practical study. Data extracted from https://public.emdat.be.

As stated in Section 2.1, insurance companies estimate the damages that may

result from natural disasters, according to the insured, before any natural disas-

ters occur. Then, the amount of damages that the insurance company can pay is

deducted from the total estimated amount. In the next step, without losing the

whole issue, the SPV issues only one CAT bond with the estimated damage price

(this one CAT bond can be divided into any number, and the price is divided by

the same number). According to the mechanism of this financial instrument, the

amount of Payoff at maturity is calculated by deducting the amount of loss over

the specified threshold from the price of the CAT bond (for example, in the chart

3 and 5 the red line of the chart is Payoff). With this payoff, we will price the CAT

bond using the solution method provided at time zero or conclude the contract.

First, we want to price the CAT bond of the China storm. Consider the historical

data of figure 2.
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Figure 2: Storm damages

The average loss over the years is 3.7 × 109$. Suppose the ability of insurance

companies to pay compensation is 6× 109$; on the other hand, the losses of recent

years have reached 1010$. Therefore, insurance companies request SPV to issue

CAT bonds to cover this risk for 4× 109$. Using the parameter estimation method

by historical data in Bjork’s book [2], the drift value is 0.0248. Assume an interest

rate is 0.05 and the market price of risk is 0.4. We also consider 500 discretization

points to obtain a smooth diagram. The price chart of this bond can be seen in

figure 3.

Figure 3: Storm CAT bond
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Figure 4 is a graph of flood damage in China. The average loss over the years

Figure 4: Flood damages

Figure 5: Flood CAT bond

has been approximately 8.7× 109$, and suppose the insurance companies can pay

only 1.5 × 1010$. Since the amount of damages has reached 3 × 1010$, using the

SPV, the insurance companies issue the 1.5× 1010$ CAT bond, and the price chart

can be seen in the figure 5.

As can be seen from the figures 3 and 5, the price of the CAT bond decreases as

the damage increases. In the figure related to the storm, before the point 4× 109$

and in the figure related to the flood, before the point 1 × 1010$, the price graph
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is like a bond with a fixed-rate. As the results show, the price of the CAT bond is

initially below the payoff graph, but from somewhere, it is above the graph. The

specifications of the device running this program are Pentium (R) CPU 2117U

@ 1.80GHz. Although the system is not robust and the number of discretization

points is 500, the mean execution time of the program was less than 1.5 seconds,

which indicates the high efficiency of this method and is much faster than other

methods, such as the numerical method. As discussed, the error value is meager.

4.1 Run time comparing

In this section, we analyze the time complexity of this method, and for this purpose,

two numerical methods are considered. We examine the finite difference and radial

basis function approximation run time and compare it with our approach using

flood and storm computation.

Figure 6: Run time

As shown in figure 6, the dynamic system approach is faster than other numerical

methods. In general, for each amount of discretization, the runtime of our method

is shorter than the finite difference and RBF method. Although by growing the

number of discretized points, the dynamic system method run times converge to the

RBF methods spent time, it has an actual distance to the finite-difference approach.

4.2 Cross-validation of volatility estimation

Cross-validation is a statistical method used to test a prediction model’s perfor-

mance. It separates the available data into two sets: the training set, which is used

to train the model, and the validation set, which is used to assess the model’s per-

formance. The procedure is performed several times, with each iteration including
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a distinct data division into training and validation sets. The findings are then av-

eraged to assess the model’s performance on new, unknown data. Cross-validation

is an effective method for evaluating the generalization capabilities of a model, and

it is commonly used in machine learning and data science applications.

To evaluate the performance of RBFNN, we analyze the cross-validation of the

network in figure 7:

(a) Trained by 80% of data and validated
by 20%

(b) Trained by 60% of data and validated
by 40%

(c) Trained by 40% of data and validated
by 60%

(d) Trained by 20% of data and validated
by 80%

Figure 7: Loss function and Cross-validation

As seen in the above figure, the network has very high efficiency for different

amounts of training data. It should be noted that even 20% of the data can make

a reasonable estimate, indicating this network’s proper performance. The results

in the figures 7a, 7b, and 7c almost have the same behavior. The noteworthy point

is that for 20% training data, the cross-validation value is much lower than the

cost function. Very seldom, the cross-validation score will be lower than the loss

function value, particularly when the model is not overfitting the training data.

Overfitting happens when the model is too complicated and captures noise and
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random changes in the training data, which may result in a high level of accuracy

on the training set but poor generalization performance on new data. In such

circumstances, the loss function value may be small, suggesting a good fit to the

training data, yet the cross-validation score may be significant, indicating poor gen-

eralization performance. Consequently, the loss function and cross-validation are

essential to evaluate the model’s performance and minimize overfitting. Therefore,

in general, we can conclude that this network is reliable.

5 Conclusion

This research investigates the modeling and value of catastrophe bonds using dy-

namic systems. Since the frequency of natural disasters around the globe increases

each year, and they inflict significant harm to insurance firms, it is vital to employ

financial instruments to avoid insolvency due to these occurrences. Catastrophe

bonds are instruments that shift insurance damage risk to the market. In this study,

we first use mathematical principles to derive a pricing PDE and then present a

dynamic system to solve it. In this research, the damage model is supposed to

follow a random process. Using historical data and a radial basis neural network,

we achieved an appropriate estimate of the volatility parameter to improve the

accuracy of the investigated damage model. Finally, in the numerical results, con-

sidering the historical data of floods and storms in China, the price structure for

these bonds was discussed. Furthermore, we discovered that our method is quite

effective regarding time complexity compared to other methods.

This article provides a revolutionary pricing technique applicable to several fi-

nancial goods. This methodology is not straightforward for PDEs with large di-

mensions, but it may be combined with another numerical method to address the

issue.
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6 Appendix

We can see put option Python code in the following:
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