
Journal of Data Science and Modeling, Vol. 2, No. 2, 15-34, June 2024

Bayesian Semiparametric

Meta-Regression Model

Ehsan Ormoz∗1, Farzad Eskandari2

1Department of Mathematics and Statistics, Mashhad Branch,

Islamic Azad University, Mashhad, Iran.

2Department of Statistics, Allameh Tabataba’i University, Tehran, Iran.

Recieved: 25/10/2024 Accepted: 10/02/2025

Research Manuscript

Abstract:

This paper introduces a novel semiparametric Bayesian approach for bivariate

meta-regression. The method extends traditional binomial models to trinomial

distributions, accounting for positive, neutral, and negative treatment effects. Us-

ing a conditional Dirichlet process, we develop a model to compare treatment

and control groups across multiple clinical centers. This approach addresses the

challenges posed by confounding factors in such studies. The primary objective

is to assess treatment efficacy by modeling response outcomes as trinomial dis-

tributions. We employ Gibbs sampling and the Metropolis-Hastings algorithm

for posterior computation. These methods generate estimates of treatment effects

while incorporating auxiliary variables that may influence outcomes. Simulations

across various scenarios demonstrate the model’s effectiveness. We also establish

credible intervals to evaluate hypotheses related to treatment effects. Furthermore,

we apply the methodology to real-world data on economic activity in Iran from

2009 to 2021. This application highlights the practical utility of our approach in

meta-analytic contexts. Our research contributes to the growing body of literature

on Bayesian methods in meta-analysis. It provides valuable insights for improving

clinical study evaluations.
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1. Introduction

In the context of meta-analysis, we often encounter situations where m centers are

considered for conducting a similar clinical study to compare a treatment with a

control group. Early work in meta-analysis includes combining effect size estimates

or merging p-values (Tippett , 1931; Pearson , 1933).

Burr and Doss (2005) describe a Bayesian semiparametric analysis for clinical

studies, focusing on cases where p
(1)
i and p

(2)
i represent the success probabilities

of two distinct treatment and control groups in center i. These probabilities are

compared to evaluate improvement. For j = 1, 2, let y
(j)
i represent the binomial

outcome in center i. Thus, for i = 1, 2, . . . ,m, we have:

y
(j)
i ∼ Binomial(n

(j)
i , p

(j)
i ), j = 1, 2 (1.1)

Burr and Doss (2005) extend the traditional binomial model to handle trinomial

outcomes. This framework is particularly useful in real-world applications where

outcomes are more nuanced. For example, in evaluating a proposed drug, three

outcomes can be considered: the drug improves the patient’s symptoms, worsens

them, or has no effect. To account for these outcomes and their interdependence,

the normal prior in their work is extended to a bivariate normal distribution.

This extension enables the model to incorporate correlations between outcomes,

providing a more comprehensive analysis.

A parametric Bayesian approach in meta-analysis has been developed by var-

ious authors, including Carlin (1992), Higgins (1997), and Maier et al. (2022).

However, in recent years, considerable attention has been directed toward non-

parametric and semiparametric Bayesian approaches. Chung and Dunson (2007)

attribute this trend to the efficiency and simplicity of posterior computation in

Dirichlet process mixtures. Related approaches have examined semiparametric

models in meta-analysis, including Burr and Doss (2005), Ohlsen et al. (2007),

and Frömke et al. (2022). Dominici and Parmigiani (2001) and Carota and

Parmigiani (2002) also focused on semiparametric Bayesian approaches for count

data in a distinct framework.

However, substantial heterogeneity is often observed among studies, and it is

the task of statisticians to assess potential sources of this heterogeneity (Thompson

, 1994). In the context of meta-analysis, auxiliary study-level variables can be

employed to explain differences between studies. The term meta-regression, used

to describe such an analysis, dates back to works by Bashore et al. (1989), Jones

(1992), and Greenland (1994).

Thompson (1994) argues that heterogeneity can be regarded as a valuable

tool, as it enables the application of beneficial approaches that aim to examine the

impact of potential sources of heterogeneity on the overall treatment effect. For
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instance, the treatment effect might be lower in studies involving a higher number

of older men compared to those with more young women. The dependence of

treatment effects on one or more characteristics, such as age and gender, can be

examined using meta-regression.

In meta-regression, subject characteristics are considered as auxiliary variables

in a regression analysis to estimate treatment effects. As stated by Armitage

and Colton (1998), to reduce post-study risk due to examining existing data,

such auxiliary variables should be pre-specified before starting the study. The

statistical goal of meta-regression is to explain the variance component among

subjects using auxiliary variables.

Two main ideas are considered in this paper. First, we focus on the method

used to create a class Γ close to the specified prior π0 with a domain close to Ω.

The second idea is the computational technique used to calculate the posterior

distribution. Specifically, we aim to extend the results of Burr and Doss (2005)

to a bivariate meta-regression.

In Section 2, we introduce the proposed model based on the conditional Dirich-

let process. Posterior distributions are calculated in Section 3. Since these poste-

rior distributions lack closed-form expressions, they are approximated using simu-

lation techniques. To estimate parameters in a Bayesian manner, we employ Gibbs

sampling and the Metropolis-Hastings algorithm, discussed in Section 4. In Sec-

tion 5, the effectiveness of the proposed method is evaluated using three simulated

datasets, and a practical example is provided in Section 6.

2. Model Description

In clinical studies, situations often arise where, in addition to the positive and

negative effects of a drug or treatment, a third neutral effect state is also relevant.

In such cases, the response variable for the treatment effect follows a trinomial

distribution. Here, we aim to generalize studies conducted on the binomial distri-

bution to a trinomial case using a semiparametric Bayesian approach within the

meta-regression framework.

Assume a similar study is conducted in m centers, where in each center, a

comparison between the treatment and control groups is made, yielding outcomes

labeled as positive, neutral, and negative effects. Therefore, the response vari-

able for both the treatment and control groups follows a trinomial distribution.

Consequently, for patient group j in center i, we have:

r
(j)
i = (r

(j1)
i , r

(j2)
i , r

(j3)
i ) ∼ Trinomial(n

(j)
i ,p

(j)
i ), i = 1, . . . ,m; j = 1, 2

(2.2)
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where the frequency of the lth outcome, r
(jl)
i , l = 1, 2, 3, satisfies the conditions:

0 ≤ r(jl)i ≤ n(j)i and

3∑
l=1

r
(jl)
i = n

(j)
i .

Furthermore, the corresponding probability vector p
(j)
i satisfies:

0 < p
(jl)
i < 1 and

3∑
l=1

p
(jl)
i = 1.

In such studies, the primary goal is to compare the treatment and control

groups by testing the following hypothesis:

H0 : p
(1)
i = p

(2)
i , i = 1, . . . ,m. (2.3)

These comparisons are often confounded by unavoidable effects due to differences

between the testing centers. Thus, to test H0, these confounding factors must

be accounted for. This issue is central to many meta-analysis studies. In this

paper, we address it by regressing p
(j)
i on some auxiliary variables that specify

the conditions under which the experiment was conducted. After obtaining the

regression model, we can make inferences about p
(j)
i while accounting for the effects

of confounding factors. In this approach, we use the log-odds of the treatment and

control outcomes, denoted by Di =
(
D

(1)
i , D

(2)
i

)
, where

D
(k)
i = log

p
(1k)
i

p
(2k)
i

= x
′(k)
i β

(k)
i , k = 1, 2. (2.4)

Note that here x
′(k)
i represents a vector of auxiliary variables. It is evident that

equations 2.3 and 2.4 pursue similar objectives. To perform Bayesian analysis,

we require the prior distribution for βi. We assume these prior distributions are

bivariate normal with means dependent on auxiliary variables representing exper-

imental conditions, as follows:

βi = (β
(1)
i , β

(2)
i )′ ∼ind N2(ηi,Σi),

where

ηi = (η
(1)
i , η

(2)
i )′, Σi =

(
σ
2(1)
i σ

(12)
i

σ
(21)
i σ

2(2)
i

)
.

Thus,

Di = (D
(1)
i , D

(2)
i )′ = (x

′(1)
i β

(1)
i , x

′(2)
i β

(2)
i )′ ∼ind N2(η∗i ,Σ

∗
i ), (2.5)

where

η∗i =

(
η
(1)∗
i

η
(2)∗
i

)
= (x

′(1)
i η

(1)
i , x

′(2)
i η

(2)
i )′, Σ∗i =

(
x
′(1)
i x

′(2)
i

)
Σi

(
x
(1)
i

x
(2)
i

)
.
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Note that η
(k)
i are the regression coefficients, and ρi =

σ
(12)
i√

σ
2(1)
i σ

2(2)
i

is the correla-

tion coefficient between D
(1)
i and D

(2)
i , which arises from the common experimental

environment for treatment and control groups. By considering the prior distribu-

tion for the vector ηi and transforming from ηi to p, we can obtain the prior

distribution for p. It should be noted that although we use the specified model

corresponding to equations 2.4 and 2.5, these settings can be generalized to more

complex scenarios, leading to a bivariate meta-regression problem.

As Griffin and Steel (2007) mentioned, the Dirichlet process (Ferguson , 1973)

has been extensively used as a prior distribution for an unknown model distribu-

tion, especially when dealing with multinomial distributions. In the following, we

will specify the required prior distributions using the Dirichlet process, and con-

sequently estimate posterior distributions and their parameters under a Bayesian

semiparametric meta-regression model.

Definition 2.1. Let Θ be a set and A be the sigma-field of subsets of Θ. Also, let

α be a finite, non-empty, non-negative, and finitely additive measure on (Θ, A).

We say that a random probability measure P on (Θ, A) is a Dirichlet process with

parameter α on (Θ, A), and we write P ∼ D(α), if for every k = 1, 2, . . . , and for

every measurable partition B1, . . . , Bk of Θ, the joint distribution of the random

probabilities (P (B1), . . . , P (Bk)) is Dirichlet with parameters (α(B1), . . . , α(Bk)).

Definition 2.2. Let Hθ for θ ∈ Θ ⊂ <k be a parametric family of distributions on

the real line, and let λ be a distribution on Θ. Also, let Mθ > 0 be known weights,

and set αθ = MθHθ. If θ is sampled from λ and F is sampled from Dαθ , i.e., a

Dirichlet process with parameter αθ, then we say that the prior distribution for F

is a mixture of Dirichlet processes (Antoniak , 1974).

In other words, a mixture of Dirichlet processes is a Dirichlet process whose

measure parameter is itself a random variable. For simplicity, we assume that

M does not depend on θ. Doss (1985) defined conditional Dirichlet processes as

follows.

Definition 2.3. Let α be a finite measure on the real line, and µ ∈ (−∞,∞) be

a fixed value. Instead of an arbitrary set A, let αµ− and αµ+ be the restrictions of

α to (−∞, µ) and (µ,∞), respectively, defined as:

αµ−(A) = α(A ∩ (−∞, µ)) +
1

2
α(A ∩ {µ}),

αµ+(A) = α(A ∩ (µ,∞)) +
1

2
α(A ∩ {µ}).

F− ∼ Dαµ−
and F+ ∼ Dαµ+

are sampled independently, and F (t) is defined as:

F (t) =
1

2
F−(t) +

1

2
F+(t), (2.6)
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where the distribution of F is denoted by Dµ
α. Note that the median of F is equal

to µ with probability one. Therefore, if F ∼ Dα, then Dµ
α is the conditional

distribution of F given that its median is equal to µ.

Similar to Burr and Doss (2005) and using equation 2.5, for i = 1, 2, . . . ,m

and j = 1, 2, we propose the following model:

η
(j)
i | F

(j) ∼ind F (j); (2.7)

F (j) | µ(j), τ (j) ∼ind Dµ(j)

M×N(µ(j),τ2(j))
; (2.8)

µ(j) | τ (j) ∼ind N(c(j), d(j)τ2(j)); (2.9)

γ(j) =
1

τ2(j)
∼ind Γ(a(j), b(j)). (2.10)

Remark 2.4. Note that, similar to Burr and Doss (2005), the use of an index

for a distribution implies conditioning.

The main question now is whether the means of F (j) differ significantly from

zero. To answer this question, we will use posterior credible intervals.

3. Posterior Computation

Following a similar process to Burr and Doss (2005), the prior distribution of η
(j)
i

can be expressed as:

π{η(j)
(−i),µ

(j),τ(j)}(η
(j)
i ) =

1

2

M ×Nµ(j)

− (µ(j), τ2(j)) +
∑

k 6=i,η(j)k <µ(j)

δ
η
(j)
k

M
2 +m

(j)
−

+
1

2

M ×Nµ(j)

+ (µ(j), τ2(j)) +
∑

k 6=i,η(j)k >µ(j)

δ
η
(j)
k

M
2 +m

(j)
+

, (3.11)

where

m
(j)
− =

∑
k 6=i

I(η
(j)
k < µ(j)) and m

(j)
+ =

∑
k 6=i

I(η
(j)
k > µ(j)). (3.12)

This distribution is a special case of the normal distribution with hyperparame-

ters α = (µ(1), µ(2), τ (1), τ (2)). Using equation 2.4, the likelihood of Di conditional

on η
(1)
i , η

(2)
i , σ

2(1)
i , σ

2(2)
i , ρi is given by:

L{η(1)
(−i),η

(2)

(−i),α}
(Di|η(1)i , η

(2)
i ) = N2(x

′(1)
i η

(1)
i , x

′(2)
i η

(2)
i , σ

2(1)
i , σ

2(2)
i , ρi). (3.13)

Thus, we aim to derive the posterior distribution

πD(η
(1)
i , η

(2)
i |η

(1)
(−i), η

(2)
(−i), µ

(1), µ(2), τ (1), τ (2)),
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where η
(j)
(−i) = (η

(j)
1 , . . . , η

(j)
i−1, η

(j)
i+1, . . . , η

(j)
m ).

The following theorem demonstrates that while the posterior distribution is

complex, it provides a better estimate of the parameters in equation 2.4.

Theorem 3.1. Given equations 3.11 and 3.13, the posterior distribution of (η
(1)
i , η

(2)
i )

conditional on (η
(1)
(−i), η

(2)
(−i)), (µ(1), µ(2)), and (τ (1), τ (2)) is:

πD(η
(1)
i , η

(2)
i |η

(1)
(−i), η

(2)
(−i),α) ∝W0 +M

∑
k 6=i

W ki
1 N2(x

′(1)
i η

(1)
i , x

′(2)
k η

(2)
k , σ

2(1)
i , σ

2(2)
i , ρi)

+M
∑
k 6=i

W ik
2 N2(x

′(1)
i η

(1)
i , x

′(2)
k η

(2)
k , σ

2(1)
i , σ

2(2)
i , ρi)

+
∑
k 6=i

∑
h6=i

W kh
3 N2(x

′(1)
i η

(1)
i , x

′(2)
k η

(2)
k , σ

2(1)
i , σ

2(2)
i , ρi),

where for a ∈ {−,+} and b ∈ {−,+}:

S1
ki = {η(1)k , η

(2)
i |η

(1)
k ∈ (−∞, µ(1)), η

(2)
i ∈ (−∞, µ(2))},

S2
ki = {η(1)k , η

(2)
i |η

(1)
k ∈ (−∞, µ(1)), η

(2)
i ∈ (µ(2),+∞)},

S3
ki = {η(1)k , η

(2)
i |η

(1)
k ∈ (µ(1),+∞), η

(2)
i ∈ (−∞, µ(2))},

S4
ki = {η(1)k , η

(2)
i |η

(1)
k ∈ (µ(1),+∞), η

(2)
i ∈ (µ(2),+∞)},

with

Ca,b =
M2

4
+
M

2
(m(1)

a +m
(2)
b ) +m(1)

a m
(2)
b ,

and

W0 =

4∑
l=1

∑
a,b

C
(1,2)
a,b N

(µ(1),µ(2))
a,b (A

(1)
i , A

(2)
i , B

2(1)
i , B

2(2)
i , ρi)ISlki(η

(1)
i , η

(2)
i ),

W ik
1 =

4∑
l=1

∑
a,b

1

Ca,b
Nµ(1)

a (µ(1), τ2(1))ISlki(η
(1)
i , η

(2)
i ),

W ki
2 =

4∑
l=1

∑
a,b

1

Ca,b
Nµ(2)

b (µ(2), τ2(2))ISlki(η
(1)
i , η

(2)
i ),

W kh
3 =

4∑
l=1

∑
a,b

1

Ca,b
ISlki(η

(1)
i , η

(2)
i ),

where for l = 1, 2:

A
(l)
i =

(1− ρ2i )σ
2(l)
i µ(l) + τ2(l)x

′(l)
i β

(l)
i x

(l)
i

(1− ρ2i )σ
2(l)
i + x

′(l)
i τ2(l)x

(l)
i

, B
2(l)
i =

σ
2(l)
i τ2(l)

(1− ρ2i )σ
2(l)
i + x

′(l)
i τ2(l)x

(l)
i

.

(3.14)
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Additionally,

C
(1,2)
a,b =

M2

Ca,b
N(x

′(1)
i µ(1), (1− ρ2i )σ

2(1)
i + x

′(1)
i τ2(1)x

(1)
i )

×N(x
′(2)
i µ(2), (1− ρ2i )σ

2(2)
i + x

′(2)
i τ2(2)x

(2)
i )eRa,b . (3.15)

Moreover,

Ra,b = R× Ua,b,

and

R =− ρi
1− ρ2i

{
1

B
(1)
i B

(2)
i

(η
(1)
i −A

(1)
i )(η

(2)
i −A

(2)
i )

−

(
x
′(1)
i β

(1)
i − η

(1)
i

σ
(1)
i

)(
x
′(2)
i β

(2)
i − η

(2)
i

σ
(2)
i

)}
,

with

U−,− =

{
1 (η

(1)
i , η

(2)
i ) ∈ S1

ii,

0 o.w.
, U−,+ =

{
1 (η

(1)
i , η

(2)
i ) ∈ S2

ii,

0 o.w.
,

U+,− =

{
1 (η

(1)
i , η

(2)
i ) ∈ S3

ii,

0 o.w.
, U+,+ =

{
1 (η

(1)
i , η

(2)
i ) ∈ S4

ii,

0 o.w.
.

Note that to generate α from πD(α|η(1),η(2)) based on equations 2.9 and 2.10,

we have:

πD(α|η(1),η(2)) = π(α|η(1),η(2)) = π(µ(1), τ2(1)|η(1))π(µ(2), τ2(2)|η(2)).

In this specific case, we use Proposition 1 from Burr and Doss (2005).

Proposition 3.2. Burr and Doss (2005) Suppose H is absolutely continuous

with a continuous density function h and its median is zero. Also, let ψ1, . . . , ψm

be random samples from the distribution F , and the prior distribution for F is

a mixture of conditional Dirichlet processes
∫
Dµ
MθHθ

λ(dθ). Then the posterior

distribution θ conditional on ψ1, . . . , ψm is absolutely continuous with respect to λ,

and

λψ(dθ) = c(ψ)

(
dist∏

h

(
ψi − µ
τ

))
k(ψ, θ)×

[
(Mθ)

#(ψ)Γ(Mθ)

Γ(Mθ + n)

]
λ(dθ),

where

K(ψ(j), µ(j)) =

[
Γ

(
M

2
+

m∑
i=1

I(ψ
(j)
i < µ(j))

)
× Γ

(
M

2
+

m∑
i=1

I(ψ
(j)
i > µ(j))

)]−1
.

(3.16)
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In this equation, the symbol dist in the product operator indicates that the

product is taken only over distinct values, #(ψ) is the number of distinct values

in the vector ψ, and c(ψ) is a normalization constant.

Now, using this proposition, we ensure that the posterior distributions have

closed forms. Note that since the expression K(η(j), µ(j)) is analytically complex,

in applications, simulation-based methods such as Gibbs sampling must be used.

Theorem 3.3. Suppose m(j)∗ is the number of distinct values of η
(j)
i and define:

η(j) =
1

m(j)∗

dist∑
η
(j)
i .

Then, π(µ(j), τ (j)|η(j)) has a distribution proportional to the product:

π(µ(j), τ (j)|η(j)) = gη(j)(µ(j), τ (j))K(η(j), µ(j)), (3.17)

where gη(j)(µ(j), τ (j)) has a similar form to equations 2.9 and 2.10 with updated

parameters a(j)
′
, b(j)

′
, c(j)

′
, and d(j)

′
, given by:

a(j)
′

= a(j) +
m(j)∗

2
,

b(j)
′

= b(j) +
1

2

dist∑
(η

(j)
i − η(j))2 +

m(j)∗(η(j) − c(j))2

2(1 +m(j)∗d(j))
,

c(j)
′

=
c(j) +m(j)∗d(j)η(j)

1 +m(j)∗d(j)
,

d(j)
′

=
1

m(j)∗ + d(j)−1 .

K(ψ(j), µ(j)) is introduced in equation 3.16.

Remark 3.4. By integrating equation 3.17 with respect to τ , we can derive the

marginal distribution of µ(j) conditional on η(j), which is proportional to:

t
(

2a(j)
′
, c(j)

′
, b(j)

′
d(j)

′
/a(j)

′
)

(.)K
(
η(j), .

)
, (3.18)

where t(d, l, s2) is a t-distribution with d degrees of freedom, location parameter

l, and scale parameter s. Moreover, conditional on µ(j) and η(j), the conditional

distribution of 1
τ(j) is given by:

Γ

(
a(j)

′
+

1

2
, b(j)

′
+

(µ(j) − c(j)′)2

2d(j)′

)
. (3.19)

4. Gibbs Sampler

The proposed Gibbs sampler consists of two main steps:
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Step 1: Updating (η(1),η(2)). For i = 1, . . . ,m, generate the values of (η
(1)
i , η

(2)
i ) con-

ditional on the current values of (η
(1)
j , η

(2)
j ) for j 6= i, (µ(1), µ(2)), (τ (1), τ (2)),

and the data, iteratively.

Step 2: Updating (µ(1), µ(2), τ (1), τ (2)). To generate (µ(1), µ(2), τ (1), τ (2)) conditional

on (η(1),η(2)), the following two steps are performed:

Step 2-a: Generate (µ(1), µ(2)) from the marginal distribution conditional on (η(1),η(2))

as derived in equation 3.18. This distribution is proportional to the

product of two t-distributions as in equation 3.18, multiplied by a fac-

tor that can be easily computed.

Step 2-b: Generate (τ (1), τ (2)) conditional on (η(1),η(2)) and (µ(1), µ(2)) from the

distribution given in equation 3.19. For j = 1, 2, the distribution of 1
τ(j)

follows a Gamma distribution, and τ (1) and τ (2) are independent.

5. Simulation

To evaluate the proposed model, we conducted a simulation study. Three scenarios

were considered. In the first scenario, each center consists of two trinomial popu-

lations with probability vectors p = (0.5, 0.4, 0.1). In the second scenario, the two

trinomial populations have different probability vectors, with the first population

having p = (0.6, 0.3, 0.1) and the second having p = (0.5, 0.3, 0.2). Finally, in the

third scenario, the probabilities of the two populations are p = (0.5, 0.4, 0.1) and

p = (0.3, 0.6, 0.1), respectively. For each population, only one auxiliary variable

was considered, and both auxiliary variables were generated from the N(2, 1) dis-

tribution.

In each case, ten centers were used, and observations for each center were

generated based on the described scenarios. Using these generated data, we can

now evaluate the proposed model. To do so, we first compute the log-odds and

their correlations. The variances were estimated using the following relation:

var(θ̂) =
F1

n1S1
+

F2

n2S2
,

where θ̂ is the observed log-relative risk for i = 1, 2, Si is the number of successes

in the first cell of population i, Fi is the number of failures, and ni is the number

of observations for population i. The correlation was set to −0.5.

Using this data, we implemented the model. The estimates, mean squared

errors (MSE), and confidence intervals for β(1), β(2), D(1), D(2), µ(1), and µ(2) are
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Table 1: Estimates, Mean Squared Errors, and Confidence Intervals for β(1) and

β(2)

β(1) β(2)

Estimate Scenario 1 0.0026 −0.0235

Scenario 2 0.0681 −1.1924

Scenario 3 0.5308 −0.5094

MSE Scenario 1 7.17× 10−6 0.0005

Scenario 2 0.0046 1.4240

Scenario 3 0.2818 0.2598

Confidence Interval Scenario 1 (−0.0265, 0.0336) (−0.0660, 0.0060)

Scenario 2 (0.0340, 0.1018) (−4.5655, 0.0558)

Scenario 3 (0.1839, 0.7473) (−1.0539,−0.0057)

reported in Tables 1-3. To compute these quantities, the Gibbs sampler was run

for 1500 iterations, with the first 500 iterations discarded as burn-in. (It should be

noted that convergence was checked using various criteria, and convergence was

confirmed.)

As seen, for Scenario 1, the computed confidence intervals contain zero; hence

hypothesis 2.3 is accepted. In other words, we conclude that the probability vectors

of the two populations are equal, consistent with the simulation settings.

In Scenario 2, except for the confidence intervals of β(1) and D(1), all other

confidence intervals contain zero, leading us to correctly reject hypothesis 2.3.

Specifically, we can observe that the probabilities for the first group of the two

trinomial populations are not equal, while the probabilities for the second group

are, which is consistent with Scenario 2.

In Scenario 3, all confidence intervals except for µ(2) do not contain zero,

leading us to conclude that the probabilities for both groups of the two trinomial

populations are not equal.

6. A Real-World Example: Population Aged 15

and Older by Economic Activity Status from

2009 to 2021

In this section, we study the proposed model on a real dataset, examining the

population aged 15 and older in the Islamic Republic of Iran between 2009 and
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Table 2: Estimates, Mean Squared Errors, and Confidence Intervals for D(1) and

D(2)

D(1) D(2)

Estimate Scenario 1 0.0032 −0.0313

Scenario 2 0.1542 −1.7120

Scenario 3 0.4856 −0.3575

MSE Scenario 1 1.08× 10−5 0.0009

Scenario 2 0.0238 2.9327

Scenario 3 0.2360 0.1288

Confidence Interval Scenario 1 (−0.0475, 0.0577) (−0.0911, 0.0068)

Scenario 2 (0.0783, 0.2319) (−6.9223, 0.0532)

Scenario 3 (0.3409, 0.5851) (−0.6307,−0.0146)

Table 3: Estimates, Mean Squared Errors, and Confidence Intervals for µ(1) and

µ(2)

µ(1) µ(2)

Estimate Scenario 1 −0.0595 0.0183

Scenario 2 0.0132 −1.0729

Scenario 3 0.7236 −0.6491

MSE Scenario 1 0.0078 0.0033

Scenario 2 0.0046 1.1555

Scenario 3 0.5240 0.4229

Confidence Interval Scenario 1 (−1.1321, 1.3267) (−1.3401, 1.3686)

Scenario 2 (−1.7783, 1.4935) (−4.9956, 1.1256)

Scenario 3 (0.1537, 2.4793) (−3.6337, 0.1489)



Bayesian Semiparametric Meta-Regression Model 27

2021. The data is available in Table 4 and can be accessed from the website of

the Statistical Center of Iran. To ensure uniformity in the data across the two

periods, adjustments were made to account for changes in provincial boundaries

by merging the provinces of Tehran and Alborz for the year 2021.

The population aged 15 and older is categorized into employed individuals,

unemployed individuals, and economically inactive individuals. Therefore, the

dataset represents two trinomial populations: the population aged 15 and older

in 2021 as the first population, and the active population in 2009 as the second

population. Consequently, D1 represents the logarithm of the odds ratio of em-

ployment in 2021 to 2009, while D2 represents the logarithm of the odds ratio of

economically inactive individuals in 2021 to that group in 2009.

The analysis is conducted across 30 provinces, considered as study centers.

Additionally, the ratio of literate to illiterate individuals in 2021 is included as an

auxiliary variable for D1 and D2, respectively. Following the simulation protocol,

the Gibbs sampler is executed 1500 times, with the first 500 executions regarded

as the burn-in period.

The estimate for D1 is 0.046, with a 95% confidence interval of (−0.055, 0.011).

Since the confidence interval encompasses zero, we fail to reject the null hypothesis

H0 : D1 = 0. This suggests that the ratio of employed individuals in 2009 and 2021

is statistically equivalent. Similarly, β1, the coefficient for the auxiliary variable,

is 0.0005, with a 95% confidence interval of (−0.0006, 0.0013), which also includes

zero. This indicates no significant association between the employment odds ratio

and the ratio of literate individuals.

These findings imply that over the 12-year period, there was no measurable

change in the relative proportion of employment among the population aged 15

and older. Moreover, the literacy ratio did not emerge as a significant factor influ-

encing this trend. This result could suggest stability in the employment structure

across provinces, potentially reflecting a lack of transformative economic or policy

interventions during this time frame.

The estimate forD2 is−0.953, with a 95% confidence interval of (−2.895, 0.213),

which also includes zero. Thus, we fail to reject the null hypothesis H0 : D2 = 0,

suggesting no significant difference in the ratio of economically inactive individu-

als between 2009 and 2021. The auxiliary variable for D2, the ratio of illiterate

individuals, also showed no significant association, with β2 = −0.071 and a 95%

confidence interval of (−0.218, 0.186).

The lack of significant change in D2 suggests that the proportion of econom-

ically inactive individuals has remained stable over time. This result, combined

with the findings for D1, could indicate broader socio-economic trends in Iran,

such as persistent barriers to workforce participation or the inability of economic
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Figure 1: Densities of D1, D2, β1, and β2

growth to translate into improved employment opportunities. The insignificance

of the literacy ratio as a predictor highlights the potential need for more targeted

policies addressing the underlying factors of economic inactivity, such as skill mis-

matches or regional disparities.

The densities of D1, D2, β1, and β2 are plotted in Figure 1. These results

underscore the importance of employing nuanced statistical models like the one

proposed in this paper to gain deeper insights into socio-economic trends and their

implications for policy-making.

7. Results and Discussion

In this study, we employed Bayesian meta-regression models to analyze treatment

effects across multiple clinical studies, effectively addressing heterogeneity and

confounding variables. Utilizing a semiparametric Bayesian framework, we incor-

porated auxiliary variables to account for variability among studies. We conducted

simulations across three datasets, each reflecting different levels of heterogeneity



Bayesian Semiparametric Meta-Regression Model 29

in treatment response, and estimated posterior distributions of treatment effects

using Gibbs sampling and the Metropolis-Hastings algorithm.

Our model was also applied to a real dataset, illustrating its practical appli-

cability. The results from both simulations and real-world applications highlight

the advantages of Bayesian meta-regression in clinical research. By incorporating

prior information and managing heterogeneity, these models yield more accurate

and interpretable results than traditional methods. Our findings align with the

assertions of Thompson (1994) and Burr and Doss (2005) that understand-

ing heterogeneity enhances the interpretability of treatment effects and supports

evidence-based decision-making in healthcare.

The flexibility of our framework in handling complex data structures positions

it as a valuable tool for future meta-analytic studies. As clinical research evolves,

the integration of Bayesian methods will become increasingly crucial for synthesiz-

ing evidence across diverse studies and informing clinical practice. In conclusion,

our study emphasizes the need for advanced statistical techniques, such as Bayesian

meta-regression, to tackle the challenges of heterogeneity in clinical trials. Future

research should consider extending these models to contexts like longitudinal stud-

ies and multi-arm trials to enhance their applicability and impact on healthcare

decision-making.
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Proof of theorem 3.1

By combining Equations 3.11 and 3.13, we can derive the posterior distribution of
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Here, ζ represents the remaining terms of the posterior distribution introduced in

the theorem, which include the point masses. We now calculate each term of the
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above equation separately.
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Maier, M., Bartoš, F., and Wagenmakers, E.-J. (2022). Robust Bayesian meta-

analysis: Addressing publication bias with model-averaging. Psychological

Methods. Advance online publication.

Ohlsen, D.I, Sharples, L.D. and Spiegelhalter, D.J. (2007). Flexible random effect

models using Bayesian semi-parametric models: applications to institutional

comparisons. Journal of Statistics in Medicine, 26, 2088-2112.

Pearson, K. (1933). On A Method of Determining Whether A Sample Size n

Supposed To Have Been Drawn from a Parent Population Having A Known

Probability Integral Has Property Been Drawn At Random. Biometrika, 25,

379-410.

Thompson, S.G. (1994). Why sources of heterogeneity in meta-analysis should be

investigated. British Medical Journal, 309, 1351-1355.

Tippett, L.H.C. (1931). The Methods of Statistics. London: Williams and Norgate.



34 E.Ormoz & F. Eskandari

Table 4: Population aged 15 and older by economic activity status by province
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