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Abstract:
Abstract:
This paper considers a one-year healthcare insurance contract in which a policy-
holder protects against an epidemic risk within the policy term and its side effects
at most five years later for those who got an infection during the policy period.
To derive actuarial computations, it considers a SIDS epidemic model in which
infection rates depends on the time. Under such SIDS epidemic model and four
health insurance plans fair premium and loss reserves have been evaluated. Finally,
through a simulation study practical application of the product has been given.
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1 Introduction

In light of the recent outbreak of Covid-19, it is important to remember that epi-

demics raise sanitary as well as financial concerns. Analytically tractable models

and cover epidemic risk are needed. The literature on epidemic models is very

large and is continuing to expand. Epidemic models are labeled SIR, SIRS, SIS,

and SEIRD, where S, E, I, R, and D denote the class of susceptible, exposed, in-

fected, recovered, and died, respectively. More realistic mathematical models for

infectious diseases have been dramatically developed lately. More specifically, (1)

factors and structures, such as latent periods and time delays, age, infection-age,

gender, other physiologic structures, and effects of isolations, quarantine, vaccina-

tion, or treatment, have been further included; (2) the dimensions of the models

have been greatly increased, which allows for studying epidemic transmission dy-

namics between populations and species in depth; (3) more thorough and detailed

investigations have been conducted on specific infectious diseases, such as AID-

S/HIV and vectorborne diseases. Nevertheless, as the epidemic models become

closer to reality and more biological and social factors are included, the model
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Figure 1: Flow chart of the SIR model

features and behavior become more complex [11].We only introduce some basic

mathematical disease models. Discussion about epidemiological models, see [1], [2]

and [4].

For example the flow chart of the SIR model is shown in Figure 1. The number

of susceptibles who are infected by an infected individual per unit of time, at

time t, is proportional to the total number of susceptibles with the proportional

coefficient (transmission coefficient) β, so that the total number of newly infectives,

at time t, is βS(t)I(t). The number removed (recovered) individuals from the

infected compartment per unit time is γI(t) at time t, where γ is the recovery rate

coefficient, and the recovered individuals gain permanent immunity.

the corresponding model equations are given in the system

dSt

dt
= βSI

dIt

dt
= βSI − γI

dRt

dt
= γI

For viral diseases, such as influenza, measles, and chickenpox, the recovered
individuals, in general, gain immunity to the same virus. Then the SIR model
described above is applicable. However, for bacterial diseases, such as encephalitis,
and gonorrhea, the recovered individuals gain no immunity and can be reinfected.
To study the transmission dynamics of these diseases, researchers proposed an SIS
model. The flow chart of an SIS model is shown in Figure 2.

Model equations are given:

dSt

dt
= −βSI + γI

dIt

dt
= βSI + γI

The difference between the SIR and the SIS model is in the SIS model, the
infectives are recovered but gain no immunity after recovery. In the SIR model, the
infectives obtain permanent immunity to the disease after recovered from infection.

Figure 3 illustrates an SEIRS model with a latent period, where ω is the progres-
sion rate coefficient for individuals from compartments E to I, such that 1

ω is the
mean latent period. In this models, an exposed compartment, in which all of the
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Figure 2: Flow chart of the SIS model

individuals have been infected but have not yet infectious. And model equations
are given:

dSt

dt
= −βSI + δR

dRt

dt
= γI − δR

dEt

dt
= βSI − ωE

dIt

dt
= ωE − γI

Infectious diseases have always been an important part of human history. Pay-
ment of medical expenses are the most significant benefit provided by the infectious
disease insurance policy. Insurers often develop new products or tweak existing ones
in response to market needs. An organization may be trying to solve a business
problem or plan new revenue streams. It is common for new products to be built
with the customer in mind. Benet-rich products are easier to sell to customers. A
confluence of macro factors has made healthcare one of the most significant concerns
facing leaders and citizens in all nations. In todays highly competitive healthcare
market, health insurance companies continue to introduce more products. Insurers
must be able to respond quickly to their clients demands for products that are
tailored to their specific needs to compete effectively. For insurers to meet these
challenges, they must be more innovative and agile, for example, by streamlining
product development processes to create a broad range of new products, and by
responding quickly to market and regulatory changes.

[5] developed the actuarial applications in epidemic models. They designed in-
surance products for two well-known epidemics: the Great Plague in England and
the SARS epidemic in Hong Kong. [10] applied actuarial methods to propose a life
insurance plan protecting against epidemic disease. They extended SIR epidemic
model in which the removal and infection rates may depend on the number of regis-
tered removals. [13] studied SIDRS epidemic model and used actuarial techniques
and principles to determine the financial obligations of the insurance parties. [3]
studied determining the optimal insurance premium rate for healthcare in deter-
ministic and stochastic SEIR models. Their results showed how the vaccination
program affects insurance costs by comparing the savings in benefits with the ex-
penses for vaccination. [6] used an actuarial approach for modeling pandemic risk.
He used the SIR model and calculate fair pure premium in Belgium, Germany, Italy
and Spain.
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Figure 3: Flow chart of the SEIRS model

[12] considered SEIR model and formulated the level net premiums of infinite
term infectious disease. This study proposes epidemic insurance plans that include
hospitalization coverage, death benefits, and the side effects of disease coverage.
Moreover, it provides a mathematical model to calculate the insurers and policy-
holders liabilities in the epidemic insurance policy. This paper considers annuity
and lump sum for hospitalization coverage and also it considers the side effects of
the disease in the insurance plan. We discuss the present value of the premium as
the financial obligation of the policyholder. The structure of this paper is as follows:
in Section 2, the model of the spread of the epidemic disease is introduced. Section
3 introduces actuarial models for epidemic diseases. The details of the designed
product, the theoretical basis of the product, and how to value it are discussed in
this section. In Section 4, a numerical example is presented. Finally, Section 5 will
present the conclusions and suggestions.

2 Epidemic model

Dynamic models for infectious diseases are mostly based on compartment structures
that were initially proposed by [8] and [9] and developed later by many other
biomathematicians. To formulate a dynamic model for the transmission of an
epidemic disease, the population in a given region is often divided into several
different groups or compartments.

In this paper, we use a SIDS model. This model classifies the population into
susceptible individuals S, infected I, and died D. Note that the recovered individu-
als have only temporary immunity after they recovered from infection and return to
the group of susceptible. In this paper, we use the proposed epidemic model by [6].
He proposed a new deterministic model in which the contagion rate is inversely
proportional to time instead of to the susceptible population.

It = Ne−(α+µ)t(βt)γ (1)

β(day−1) represents the transmission rate to the infected compartment I; the µ
is the transition rate from compartment I to the deceased compartment D. α is
the recovery rate from the disease. We assume that the recovered peoples have only
temporary immunity after they recovered from infection. If the number of people
who lose their immunity is αI, they enter the susceptible compartment again. γ

t is
the contagion rate per capita.

Let Dt be the total number of deaths up to time t and it is solution of the
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following ordinary differential equation:

dDt

dt
= µI

the size of susceptible individuals denoted by St and it is solution of the following
ordinary differential equation:

dSt

dt
= αIt −

γ

t
It

We assume that the total population size, N, is constant and St + It + Dt = N .
There is no entry into or departure from the population, except possibly through
death from the disease.

Remark 2.1. Note that the variables S, I,D, β, γ, µ and α used in the model are
assumed to only depend on time t. In particular, they are assumed not to depend on
the age and gender of the individuals. A key quantity in the epidemic model is the
basic reproductive number, R0. A disease dies out if R0 < 1 and spreads if R0 > 1.
R0 is the average number of secondary infections due to a single infectious individual
during the mean course of infection in a completely susceptible population. In our
model, the reproduction number is a function of time and it equals to

R0(t) =
γ

t(α+ µ)

3 Actuarial models for infectious disease insurance

In this paper, the designed health insurance product provides the policyholder with
a lump sum (or annuity benefits) if the insured individual catches an epidemic illness
which is specified by the policy conditions. This product is modeled by a multiple-
state model with state space S, I, and D. States which have already been defined
in the previous section. In the stochastic model of the SIDS discrete Markov chain
model, it is assumed that the time step is very small so that one change per time
unit is possible. Transfer possibilities only depend on the current situation. So the
Markov chain process is like a birth-death process.

3.1 Product specifications

In our epidemic insurance plan, the insurer has obligations in three situations:
hospitalization benefits, death benefits, and side effects of the disease. At the
beginning of the contract, a healthy policyholder (susceptible), state S, pays the
fixed premium, π, to the insurance company. If the policyholder becomes infected
she/he will be to state I. People who are in state I will go to state S if they recover,
and if not, they will go to the state of D. Note that the recovered individuals have
only temporary immunity after they recovered from infection. One of the side
effects of the epidemic disease is damage to organs. People who become severely
ill with Covid-19 may experience organ damage that affects the heart, kidneys,
skin, and brain. Inflammation and immune system problems, may also occur. It
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is not known how long these effects may last. These effects can also lead to new
conditions, such as diabetes or heart or nervous system disease. In this insurance
product, the side effects of the disease will be covered for up to ve years after the
end of the insurance period.

Model Assumption 1. Assume:
A1) The insurer pays the cost of hospitalization at a constant rate of c1 in the

form of an annuity or c3 in a lump sum.
A2) The insurer pays the lump sum of the amount at a constant rate c2 to the

deceased policyholders.
A3) The insurer pays the lump sum of the amount with a constant rate c4 to the

policyholders who have the side effects of the disease.
A4) The side effects of the disease must occure within 5 years after the infectious

disease and be caused by the insured infectious disease.
A5) In the side effects of the disease policyholder can only make one claim. The

benefit is only paid once and coverage is terminated upon payout of benefits.
A6) The insurance premium is payable during the period when the insured re-

mains susceptible.

3.2 Theoretical representation of the product

For modeling, we use international actuarial notations and concepts similar to life
insurance, except that instead of conditioning the probability of payments on death,
we condition this probability on illness.

Fair insurance premium

In this subsection, we aim to determine a fair insurance premium rate for the infec-
tious insurance policy in SIDS model. Insurance premium is the price demanded
by the insurance company for transferring the risk of loss from the insured to the
insurer. Numerous principles can be applied at the policy level. We refer the reader
to study [7] for more details about premium principles. In this paper, we use the
standard equivalence principle:

E(Present value of benefits)=E(Present value of benefits premiums)
We use the similar notation of Boado-Penas et al. [3] to calculate the actuarial

present value of premium payments from the insured and the benefits payments
from the insurer.

Definition 3.1. For an infectious disease insurance plan under the SIDS model
and the force of interest δ > 0, the actuarial present value (APV) is given by,

(i) APV of continuous premium payments of 1 unit per year for a T-year period
from individuals in class S is:

āsT⌉ =

∫ T

0

e−δtStdt. (2)

(ii) APV of continuous benefit payments of 1 unit per year for a T-year period
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to individuals in class I is:

āiT⌉ =

∫ T

0

e−δtItdt. (3)

(iii) APV of lump sum benefit payment to individuals in class I is:

Āi
T⌉ =

∫ T

0

e−δt γ

t
Itdt. (4)

(iv) APV of lump-sum benefit payment to individuals in class D is:

Ād
T⌉ =

∫ T

0

e−δtDtdt. (5)

We mention here some results of Hainaut [9] which are crucial throughout this
paper.

Lemma 3.2. For δ ≥ 0, we have

āiT⌉ =
Nβγ

θγ+1
Γ(γ + 1, T θ),

where θ = δ + α+ µ and Γ(γ + 1, x) =
∫ x

0
uγe−udu is the lower incomplete gamma

function.

□
Lemma 3.3. The cumulated number of deceases caused by the epidemic disease at
time t ≥ 0 is given by

Dt = Nµβγ(α + µ)−γ−1Γ(γ + 1, t(α + µ)).

If θ = δ + α+ µ, we have

Ād
T⌉ =

Nµβγ

θγ+1
Γ(γ + 1, T θ).

□
By the fact that St+ It+Dt = N , the size of the susceptible population at time

t ≥ 0 is given by

St = N −Ne−(α+µ)t(βt)γ −Nµβγ(α + µ)−γ−1Γ(γ + 1, t(α + µ)). (6)

Lemma 3.4. For δ ≥ 0, we have

āsT⌉ =
N

δ
(1 − e−δT ) −

Nβγ

θγ+1
Γ(γ + 1, T θ)(1 −

µ

δ
) +

Nµβγ

δ(α + µ)γ+1
e−δT Γ(γ + 1, T (α + µ)).

□
Corollary 3.5. For side effects of the disease under assumptions A4 and A5 from
Model Assumption (1) the actuarial present value of 1 unit lump-sum benefit pay-
ment is

Āsa
5⌉ =

Nγβγ

θγ
(Γ(γ, 6θ) − Γ(γ, θ)).
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Proof. From assumption A5, we have that

Āsa
5⌉ =

∫ 6

1
e−δt γ

t
Itdt

=

∫ 6

1

e−δt

t
Ne−(α+µ)t(βt)γdt

=
Nγβγ

θγ
(Γ(γ, 6θ) − Γ(γ, θ)).

We consider θ = α + µ + δ and perform a change of variable θt = u and calculate
the integral.

We consider four insurance plans for covering the infectious disease:

• Plan 1. Annuity for hospitalization and lump sum for death benefit.

• Plan 2. Lump sum for hospitalization and lump sum for a death benefit.

• Plan 3. Annuity for hospitalization, a lump sum for side eects of the disease,
and a lump sum for a death benefit.

• Plan 4. Lump sum for each hospitalization, side effects of the disease, and
death benefit. In the following theorem, we develop expressions for a net level
premium, π, based on the equivalence principle for four proposed plans. We
will use a one-year term for the policy.

Theorem 3.6. For the SIDS model, the net level premium for one-year term in-
surance is to be collected continuously from individuals in the susceptible class

(i) to pay level benefits continuously while in the infectious class under Plan 1 is
given by

π1 =
(c1 + µc2)Γ(γ + 1, θ)

θγ+1

δβγ (1 − e−δ) − Γ(γ + 1, θ)(1 − µ
δ

) + µθγ+1

δ(α+µ)γ+1 e
−δΓ(γ + 1, (α + µ))

. (7)

(ii) to pay lump sum for hospitalization and lump sum for a death benefit under
Plan 2 is given by

π2 =
c3γΓ(γ, θ) + c2θ−1µΓ(γ + 1, θ)

θγ

δβγ (1 − e−δ) − 1
θ

Γ(γ + 1, θ)(1 − µ
δ

) + µθγ

δ(α+µ)γ+1 e
−δΓ(γ + 1, (α + µ))

. (8)

(iii) to pay level benefits continuously while in the infectious class, a lump sum for
side effects of the disease, and a lump sum for death benefit under Plan 3 is
given by

π3 =
(c1 + c2µ)Γ(γ + 1, θ) + c4γθe−δ(Γ(γ, 6θ) − Γ(γ, θ))

θγ+1

δβγ (1 − e−δ) − Γ(γ + 1, θ)(1 − µ
δ

) + µθγ+1

δ(α+µ)γ+1 e
−δΓ(γ + 1, (α + µ))

. (9)

(iv) to pay a lump sum for hospitalization, a lump sum for side effects of the
disease and a lump sum for death benefit under Plan 4 is given by

π4 =
(c3γθ + c2µ)Γ(γ + 1, θ) + c4γθe−δ(Γ(γ, 6θ) − Γ(γ, θ))

θγ+1

δβγ (1 − e−δ) − Γ(γ + 1, θ)(1 − µ
δ

) + µθγ+1

δ(α+µ)γ+1 e
−δΓ(γ + 1, (α + µ))

. (10)
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Proof. (i) The net level premium for a policy of one-year term for Plan 1 is given
by:

π1 =
c1āi1⌉ + c2Ād

1⌉

ās
1⌉

.

The proof is straightforward from Lemma (3.2), Lemma (3.3), and Lemma
(3.4). Combining these results leads to Equation (7).

(ii) The net level premium for a policy of one-year term for Plan 2 is given by:

π2 =
c3Āi

1⌉ + c2Ād
1⌉

ās
1⌉

. (11)

Ād
1⌉ and ās1⌉ are obtained from Lemma (3.3) and Lemma (3.4) with T = 1,

respectively. It remains to calculate Āi
1⌉.

Āi
1⌉ =

∫ 1

0
e−δt γ

t
Itdt

=

∫ 1

0
e−δt γ

t
Ne−(α+µ)t(βt)γdt

=
Nγβγ

θγ
Γ(γ, θ).

We consider θ = α + µ + δ and perform a change of variable θt = u and
calculate the integral. By substituting these results to Equation (11) we
obtained the desired result Equation (8).

(iii) The net level premium for Plan 3 is

π3 =
c1āi1⌉ + c2Ād

1⌉ + c4e−δĀsa
5⌉

ās
1⌉

.

The proof is straightforward from Lemma (3.2), Lemma (3.3), Lemma (3.4)
and Corollary (3.5).

(iv) The net level premium for Plan 4 is

π4 =
c3Āi

1⌉ + c2Ād
1⌉ + c4e−δĀsa

5⌉

ās
1⌉

.

The proof is straightforward from Lemma (3.3), Lemma (3.4) and Corollary
(3.5). Āi

1⌉ is given in part (ii) in this theorem.

Reserve valuation

Prediction of loss reserve is an important problem from insurers’ and regulators’
viewpoints. Reserves are a critical tool for insurers to measure their liabilities to-
ward policyholders. In classical life insurance, reserves build-up from the beginning
of the policy term, as the insurer accumulates premiums, to ultimately run out
at the end of the policy term, when all benefits have been paid out to the policy-
holders. In the proposed health insurance plans, loss reserves may be calculated
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Figure 4: Run-off triangle.

using various standard and accepted actuarial methods, such as the chain ladder
technique. Mack chain ladder model for loss reserving has been deeply studied in
the literature; see, e.g., [14]. The typical data structure for loss reserve problem is
given in Figure 1 where the rows corresponds to the occurrence date k = 1, 2, ,K
and the column corresponds to the loss development date j = 0, 1, , J , where J is
the maximum possible development. We consider a sequence of random variables
Xk,j , where Xk,j denotes the incremental payments made for the kth accident time
up to the jth development time.

Cumulative payments C(k, j) for accident time k and after j development time
is given by

Ck,j =
J∑

j=0

Xk,j

The claim’s development process Ck,j in mack chain ladder satisfies the following
assumptions.

Model Assumption 2. Assume:
B1) Cumulative claims Ck,j of different accident time k are independent.
B2) There exist development factors f0, · · · , fj−1 ≥ 0 such that

E(Ck,j | Ck,0, ..., Ck,j−1) = fj−1Ck,j−1

where f̂j =
∑K−j−1

k=0 Ck,j+1)∑K−j−1
k=0 Ck,j

.

B3) There exist variance parameters σ2
0 , · · · , σ2

j−1 0 such that

V ar(Ck,j | Ck,j−1) =
2
j−1Ck,j−1

where σ2
j = 1

K−j−1

∑K−j−1
k=0 Ck,j(

Ck,j+1

Ck,j
− f̂j)2.

Let’s Dk being the information available when the reserves are estimated, the
filtration generated by the aggregated claim costs i.e.

Dk = {Ck,j ; k + j ≤ K, j ≤ K}

Under Model Assumption (2), we have

ĈCL
k,j = Ê(Ck,j | Dk) = Ck,K−k

k−1∏
l=K−k

f̂l

The loss reserve for accident time k is given by R̂k = ĈCL
k,j −Ck,K−k, and the total

loss reserve is R̂total =
∑K

k=1 R̂k .
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4 A practical application

This section provides the practical application of the findings. Assume that the
constant recovery rate is α = 0.13, the mortality rate is µ = 0.05, the infection
rate is β = 0.75, γ = 0.75 and the force of interest is δ = 0.002. Moreover,
assume that the insurance company provides c1 = 1000$ per day for hospitalization
costs to the individuals in compartment I. The additional compensation for a dead
individual is c2 = 1000$. The insurance company provides c3 = 10000$ lump sum
for hospitalization costs to the individuals in compartment I and the costs for side
effects of disease are c4 = 1000$.

Given that we do not have the data related to the epidemic disease during 5 years,
so to calculate the loss reserve, we will generate the number of claims related to
the hospitalization costs, the side effects caused by the disease, and death benefits
using the simulation method. We generate synthetic data by using the Algorithm
2.

Algorithm 2 Generate run off triangle

1: Require: Inpute λk, pj , cm
2: Ensure: Output full run-off triangle
3: Set k ← 1;
4: While k ≤ 5 do
5: Use the Poisson distribution (with intensity λk) to generate the number of

claims for the accident year k, and call it Nk;
6: for j ← 0 to 4
7: Using the Multinomial distribution with parameters (Nk, p0, · · · , pj) to gener-

ate vector (Nk,0, · · · , Nk,j)
′;

8: for l← 1 to Nk,j

9: Set Xk,j =

Nk,j∑
l=1

c(l)m ;

10: Set k ← k + 1.

We assume that individuals claimed the hospitalization costs to the insurance
company in accident year k, Nh

k , in Poisson distribution with intensity λhk =
(51, 136, 149, 232, 341). For the side effects caused by epidemic disease, we assume
that individuals claimed to the insurance company in accident year k, Nsa

k , in
Poisson distribution with intensity λsak = (45, 120, 132, 205, 320), and the individu-
als claimed death to the insurance company in accident year k, Nd

k , in Poisson
distribution with intensity λdk = (47, 126, 139, 215, 317). For each data genera-
tion, the number of claims reported for each accident year k is distributed in the
cells of the run-off triangle based on a multinomial distribution with probability
pj = (0.2508, 0.4304, 0.1931, 0.0700, 0.0555). The benefits are placed in the number
of Nk,j in each cell (k, j) of the run-off triangle. We simulated a run-off triangle
for hospitalization and death benefits (data for Plan 1 and Plan 2), and a run-off
triangle for hospitalization, side effects, and death benefits (data for Plan 3 and
Plan 4). Table 2 shows the cumulative run-off triangle for the coverage of Plan 1
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and Plan 2.

Table 1: Cumulative claims, Ck,j , run-off triangle for Plan 1 and Plan 2 in $.

j/k 0 1 2 3 4

1 114,000 357,000 475,000 523,000 549,000

2 406,000 1,101,000 1,469,000 1,568,000

3 254,000 927,000 1,226,000

4 594,000 1,739,000

5 939,000

The chain ladder model has been applied to the data in Table 2 to predict the
amount of loss reserve. To use the chain ladder method, we must first calculate the
development factors. The development factor estimates f̂j for Plan 1 and Plan 2
are calculated by assumption B2 of Model Assumption (2) and presented in Table
3. Applying these development factor estimators to the data set of Table 2 leads

Table 2: Cumulative claims, Ck,j , run-off triangle for Plan 3 and Plan 4 in $.

j/k 0 1 2 3 4

1 125,000 391,000 514,000 568,000 593,000

2 436,000 1,211,000 1,604,000 1,711,000

3 295,000 1,019,000 1,346,000

4 645,000 1,861,000

5 1,028,000

Table 3: Development factor estimator for Plan 1, Plan 2, Plan 3 and Plan 4.

f̂Plans1&2
j 3.0146 1.3291 1.0772 1.04373 1

f̂Plans3&4
j 2.9860 1.3216 1.0760 1.0440 1

to the chain ladder loss reserves. For this aim, we employ the ChainLadder package
of the R software and predict the lower part of Table 2 which is shown in red color
in Table 4. The difference between the numbers in the last column of Table 4 and
the numbers on the diagonal of Table 2 in each accident year gives the yearly loss
reserves. The yearly loss reserves under Plan 1 and Plan 2 are presented in Table
2. The total loss reserve is obtained from the sum of the yearly loss reserves. In
the same way, calculations for Plan 3 and Plan 4 are presented in Table 5

The results of net level premium under Theorem (3.6) are shown in the second
column of Table (7). The loss reserve for these plans is presented in the third
column of Table (7). Plan 3 and Plan 4 provide more coverage than Plan 1 and
Plan 2, so the insurance company faces more risk in Plan 3 and Plan 4, and for
this reason, it must keep more loss reserves.
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Table 4: Prediction of loss reserve under Plan 1 and Plan 2 coverages in $.

j/k 0 1 2 3 4

1

2 1,636,563

3 1,320,599 1,378,344

4 2,311,375 2,489,722 2,598,588

5 2,830,728 3,762,435 4,052,747 4,229,958

Table 5: Prediction of loss reserve under Plan 3 and Plan 4 coverages in $.

j/k 0 1 2 3 4

1

2 1,786,308

3 1,448,316 1,512,063

4 2,459,559 2,646,523 2,763,007

5 3,069,618 4,056,908 4,365,294 4,557,429

Table 6: Yearly loss reserves for Plan 1, Plan 2, Plan 3 and Plan 4 in $.

R̂Plans1&2
k 0 68,563 152,344 859,588 3,290,958

R̂Plans3&4
k 0 75,308 166063 902,007 3,529,429

Table 7: Fair premium and loss reserve for health insurance under four plans in $

Type of plan Premium Loss reserve

Plan 1 π1 = 20.42 4,371,452

Plan 2 π2 = 36.34 4,371,452

Plan 3 π3 = 81.40 4,672,806

Plan 4 π4 = 64.61 4,672,806

5 Conclusion and suggestions

This paper combines epidemiological models with actuarial literature and develops
a theoretical model to design new health insurance products with some specific
benefits for epidemic disease. This paper proposes four health insurance plans. For
each plan, a policyholder pays a premium and receives somehow constant hospital-
ization cost coverage (per day or lump sum), constant coverage for one side effects
caused by epidemic disease, and lump sum for the death of epidemic disease. The
only difference between these four plans is their coverage conditions. The first
plan provides coverage for hospitalization costs in annuity and lump sum for death
benefit. In the second plan, the insurance company pays the hospitalization costs
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in a lump sum and the death benefit is paid in lump sum such as Plan 1. We
believe that the coverage of side effects of the disease may be more attractive for
policyholders who want to get more coverage for her/his fear of the epidemic dis-
ease. The third plan pays the hospitalization costs in annuity, a lump sum for side
effects of the disease, and a lump sum for a death benefit. The fourth plan is the
same as the third plan but it pays the hospitalization costs in a lump sum. This
paper employed a simple actuarial method to determine a fair insurance premium
for four health insurance proposed plans. To this aim, we concentrate on the sim-
plest SIDS epidemic model. We calculate the premium based on the equivalence
principle. We investigate how one can calculate loss reserve for the epidemic health
insurance plans. To predict the loss reserve, the chain ladder method was used.
As we know, one of the problems caused by infectious diseases is the occurrence
of side effects after contracting the disease. These side effects of the disease may
cause critical illnesses for the insured. In this paper, attention has been paid to
these side effects, and it was suggested that the side effects caused by the infectious
disease mentioned in the insurance policy that occurs up to five years after the
expiration of the insurance policy will be covered. Because we do not have data
related to the epidemic disease for five years, we designed an algorithm to generate
the data so that we can predict the loss reserve. In this paper, the costs related to
the side effects caused by the disease are considered fixed. It is suggested that in
future research these costs should be considered variable according to the inflation
rate. Different epidemic compartment models will have different premiums. It is
recommended that future research consider the calculation of premiums for other
epidemic models. It can be useful to predict the reserve of epidemic diseases based
on real data. In this paper, the chain ladder method was used to predict the loss
reserve for the epidemic disease. The use of other reserving methods, especially
micro-level models that include more information details in the reserving model,
are suggested as future works.
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