| تعداد نشریات | 61 |
| تعداد شمارهها | 2,226 |
| تعداد مقالات | 18,190 |
| تعداد مشاهده مقاله | 55,989,255 |
| تعداد دریافت فایل اصل مقاله | 29,031,034 |
On data-driven robust portfolio optimization with semi mean absolute deviation via support vector clustering | ||
| Journal of Mathematics and Modeling in Finance | ||
| دوره 5، شماره 1، مهر 2025، صفحه 155-165 اصل مقاله (188.87 K) | ||
| نوع مقاله: Research Article | ||
| شناسه دیجیتال (DOI): 10.22054/jmmf.2025.84881.1170 | ||
| نویسندگان | ||
| Eftekhar Kosarinia؛ Maziar Salahi* ؛ Tahereh Khodamoradi | ||
| Department of Applied Mathematics, Faculty of Mathematical Sciences, University of Guilan, Rasht, Iran | ||
| چکیده | ||
| In [14] the authors have studied robust semi-mean absolute deviation portfolio optimization model when assets expected returns involve uncertainty. They applied a data driven approach via support vector clustering to construct the uncertainty set using support vector clustering. In this paper, we show that their robust formulation is not the worst case counterpart of the original model. Then we give the true robust model of the underlying problems in the best an worst cases. Experiments are conducted to show the optimal objective value of the robust model in [14] belongs to the interval generated by our best and worst case models. | ||
| کلیدواژهها | ||
| Portfolio optimization؛ Semi-mean absolute deviation؛ Uncertainty؛ Support vector clustering | ||
| مراجع | ||
|
[1] D. Bertsimas, M. Sim, The price of robustness, Operations Research, 52(2004), pp. 3553. [2] D. Bertsimas, V. Gupta, N. Kallus, Data-driven robust optimization, Mathematical Programming, 167(2018), pp. 235292. [3] T.J. Chang, N. Meade, J.E. Beasley, Y.M. Sharaiha, Heuristics for cardinality constrained portfolio optimisation. Computers & Operations Research 27(13)(2000), pp. 12711302. [4] L. El Ghaoui, M. Oks, F. Oustry, Meshless methods, Worst-case value-at-risk and robust portfolio optimization: A conic programming approach, Operations Research, 51(2003), pp. 543556. [5] C. D. Feinstein, M. N. Thapa, A reformulation of a mean-absolute deviation portfolio optimization model, Management Science, 39 (1993), pp. 1552-1553. [6] M. Grant, S. Boyd, Y. Ye, CVX: Matlab software for disciplined convex programming, version 2.0 beta, 2013. [7] R. Ji, M. A. Lejeune, Data-driven optimization of reward-risk ratio measures, INFORMS Journal on Computing, 33 (2021), pp. 11201137. [8] D. Li, W.L. Ng Optimal dynamic portfolio selection: Multiperiod mean-variance formulation, Mathematical Finance 10(3)(2000), pp. 387406. [9] H. Markowitz, Portfolio selection, Journal of Finance, 7(1) (1952), pp. 7791. [10] Y. Moon, T. Yao, A robust mean absolute deviation model for portfolio optimization, Computers and Operations Research, 38(2011), pp. 1251-1258. [11] PN.R. Patel, M.G. Subrahmanyam A simple algorithm for optimal portfolio selection with fixed transaction costs, Management Science 28(3)91982), pp. 303314. [12] R.T. Rockafellar, S. Uryasev, Optimization of conditional value-at-risk, The Journal of Risk, 2 (2000), pp. 21–42. [13] M. Salahi, T. Khodamoradi, and A. Hamdi, Mean-standard deviation-conditional valueat-risk portfolio optimization, Journal of Mathematics and Modeling in Finance, 3(1) (2023), pp. 83-98. [14] R. Sehgal, P. Jagadeshm, Data-driven robust portfolio optimization with semi mean absolute deviation via support vector clustering, Expert Systems with Applicatins, 224(2023), 120000. [15] R. Sehgal, A. Mehra, Robust rewardrisk ratio portfolio optimization, International Transactions in Operational Research, 28 (2021a), pp. 21692190. [16] C. Shang, X. Huang, F. You, Data-driven robust optimization based on kernel learning, Computers and Chemical Engineering, 106 (2017), pp. 464479. | ||
|
آمار تعداد مشاهده مقاله: 677 تعداد دریافت فایل اصل مقاله: 196 |
||