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This study focuses on estimating the parameters of the Lindley distribution un-

der a Type-II censoring scheme using Bayesian inference. Three approaches—E-

Bayesian, hierarchical Bayesian, and Bayesian methods—are employed, with a
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methods through Monte Carlo simulations, utilizing the Lindley approximation

and Markov Chain Monte Carlo (MCMC). To demonstrate practical applicabil-

ity, the methodology is applied to a real-world dataset. Comparative results re-

veal the robustness and accuracy of the approaches. This evaluation underscores

the advantages of Bayesian methods in censored parameter estimation, provid-

ing insights for reliability analysis and related fields. The study concludes with

key findings that support further exploration of Bayesian techniques in censored
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1. Introduction

The Lindley distribution, originally proposed by Lindley (1958), has gained con-

siderable attention due to its ability to model positively skewed lifetime data.

Compared to classical models like the exponential distribution, it offers greater

flexibility and has been shown to provide a better fit for various real-life reliabil-

ity datasets (Ghitany et al. (2008); Zakerzadeh and Dolati (2009)). Moreover,

its mathematical simplicity and compatibility with Bayesian analysis make it a

suitable candidate for modeling under censored and fuzzy data conditions. For

more detailed information, Silvey (1967) and Anscombe (1965) can be referred

to. Due to its striking similarity to the well-known exponential distribution, it was

overlooked for several years. However, Ghitany et al. (2008) extensively explored

the statistical properties of this distribution and its application to real datasets.

They highlighted its superiority and flexibility in various scenarios compared to the

exponential distribution. The estimation of reliability in the Lindley distribution

with a progressively Type-II right censored scheme has been discussed by Krishna

and Kumar (2011). Gupta and Singh (2013) performed parameter estimation

for the Lindley distribution using a hybrid censoring scheme. Singh and Gupta

(2012) also studied the load-sharing system model based on the Lindley distri-

bution and applied it to a real dataset. The Lindley distribution, characterized

by a parameter θ > 0, has the following probability density function (pdf) and

cumulative distribution function (cdf):

f(x) =
θ2

θ + 1
(1 + x)e−θx, (1.1)

and

F (x) = 1− 1 + θ(1 + x)

1 + θ
e−θx. (1.2)

Lifetime experiments and reliability studies often encounter a common chal-

lenge known as ”censoring,” where complete information regarding the failure

times of all experimental units is not always available to the experimenter. Type-

II censoring, which terminates the life testing experiment after the rth failure

(where r is predetermined), is one of the most commonly used censoring schemes.

For more comprehensive information, Cohen (1963) and Balakrishnan and Cohen

(2014) can be referred to. This censoring scheme has attracted the attention

of many scholars. Ng et al. (2006) employed it for parameter estimation of

the Birnbaum-Saunders distribution, utilizing both point and distance methods.

Singh and Kumar (2007) obtained Bayesian estimation of exponential distribu-

tion parameters using the Type-II censoring scheme. Iliopoulos and Balakrishnan

(2011) applied it in the context of the Laplace distribution, while Kundu and
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Raqab (2012) utilized it for making inferences on the Weibull distribution within

a Bayesian framework. Makhdoom et al. (2016) proposed a Bayesian approach to

estimate the reliability parameter of the power Lindley distribution, demonstrating

its applicability in reliability analysis. Recently, Roodbary and Makhdoom (2024)

obtained the parameters of the generalized power Lindley distribution based on

the hybrid Type-II censoring scheme.

Statistical modeling plays a crucial role in handling data as it accounts for the

inherent randomness present in the data. Its applications span across various sci-

entific disciplines, encompassing numerous continuous variables encountered in our

daily lives. When we encounter these variables, they are examined from various

perspectives. Although we assume that each measurement of a continuous variable

represents an exact value, this assumption is not appropriate due to the inherent

nature of continuous phenomena, which cannot be measured with absolute pre-

cision. Despite the development of sophisticated tools for precise measurements,

the results we obtain are often imprecise and referred to as fuzzy.

Hence, it can be observed that the observed data combines two types of uncer-

tainties: the variation among the observations and the imprecision inherent in each

individual observation, known as fuzziness. Some researchers have incorporated

fuzzy sets in the estimation theory. Coppi et al. (2006) presented applications

of Bayesian methods in a fuzzy framework. Huang et al. (2006) introduced a

new method for Bayesian reliability analysis based on fuzzy lifetime data. Ak-

bari and Rezaei (2007) introduced a uniformly minimum variance unbiased point

estimator using fuzzy observations. Several studies have been conducted by Pak

et al. (2013a), Pak et al. (2014b), Pak (2016), Pak (2017), Pak et al.

(2014a), Pak et al. (2013b), Pak and Mahmoudi (2018), and Makhdoom and

Pak (2024), focusing on inferential procedures for lifetime distributions based on

fuzzy observations.

The hierarchical Bayesian prior distribution was primarily proposed by Lindley

and Smith (1972). Subsequently, Han (1997) examined the structure of the hier-

archical prior distribution, along with the E-Bayesian method and its applications.

In recent years, Han (2009) further investigated the E-Bayesian and hierarchical

Bayesian methods for estimating the exponential parameter and the ratio in the

binomial distribution. Jaheen and Okasha (2011) derived the E-Bayesian esti-

mation for the Burr type-XII model using a Type-II censoring scheme. Further-

more, Wang et al. (2012) conducted the E-Bayesian estimation and hierarchical

Bayesian estimation of system reliability to estimate parameters in the Pascal

distribution. More recently, Yaghoobzade Shahrestani and Makhdoom (2021)

computed E-Bayesian and hierarchical Bayesian estimations for R = P (X > Y )

in the Weibull distribution. Makhdoom et al. (2023) obtained the E-Bayesian
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and hierarchical Bayesian estimation of reliability in a multi-component stress-

strength model based on the inverse Rayleigh distribution. Very recently, Alotaibi

et al. (2023) obtained the estimation of the modified Lindley distribution apply-

ing a progressive Type-II censoring scheme. Yaghoobzadeh Shahrastani (2019)

performed E-Bayesian and hierarchical Bayesian analyses for the scalar parame-

ter of the Gompertz distribution based on fuzzy data under a Type-II censoring

scheme. Additionally, Heidari et al. (2022) made inferences on the E-Bayesian

and hierarchical Bayesian estimation of the Rayleigh distribution parameter using

a Type-II censoring scheme and imprecise data.

In many real-world applications, data collected from observations, surveys, or

expert opinions is inherently imprecise or vague. Traditional crisp data models

may not adequately capture this uncertainty, leading to reduced accuracy or over-

simplified representations of complex situations.

Fuzzy data provides a flexible framework to handle such ambiguity by allowing

values to be expressed in degrees of membership rather than as fixed points. This

is particularly useful in domains such as decision-making, risk assessment, and

human behavior modeling, where subjective judgments and uncertain inputs are

common.

Given that no previous attempts have been made to apply a Bayesian approach

for estimating parameters in the Lindley model using a Type-II censoring scheme

in the presence of fuzzy data, we were inspired to undertake this study. We em-

ploy the E-Bayesian and hierarchical Bayesian methods with a Type-II censoring

scheme to estimate the parameter θ using fuzzy data. The estimation process is

guided by the entropy loss function, which is defined as follows:

L(θ̂, θ) ∝

(
θ̂

θ

)k
− k ln

(
θ̂

θ

)
− 1, k 6= 0.

In many real-world scenarios, information is not always precise or clearly de-

fined. Traditional data models often rely on crisp values—such as binary clas-

sifications or exact numerical measurements—which may not adequately capture

the vagueness or uncertainty present in human reasoning, perception, or naturally

imprecise environments. To address this, fuzzy data provides a mathematical

framework for handling imprecision and partial truth.

Fuzzy data is rooted in fuzzy set theory, introduced by Zadeh (1965), where an

element’s membership in a set is expressed by a value between 0 and 1, rather than

as a binary (0 or 1) decision. A fuzzy set A in a universe of discourseX is defined by

a membership function µA : X → [0, 1], where µA(x) denotes the degree to which

element x belongs to set A. For instance, in describing temperature, the statement

“It is hot” cannot be accurately represented by a single threshold; rather, fuzzy
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data allows “hot” to be a gradual concept, with values like 0.2 (slightly hot), 0.7

(hot), or 1.0 (very hot).

This approach is particularly useful in systems where data is derived from

expert opinions, linguistic assessments, or imprecise measurements, such as in

medical diagnosis, decision-making systems, and social sciences. In our study,

fuzzy data is used to obtain estimates where crisp values would not reflect the

underlying uncertainty accurately.

By incorporating fuzzy data, we aim to capture the inherent vagueness in

the input information and produce results that are more aligned with real-world

behavior and human reasoning.

In the upcoming sections, we will provide a concise overview of some funda-

mental definitions that are necessary for understanding the subsequent discussions.

These definitions were initially introduced by Zadeh (1968) and are presented be-

low.

Definition 1.1. Consider a universal set X. We define a fuzzy set denoted as Ã

by utilizing the membership function µÃ(x) : R → [0, 1]. Here, x ∈ X represents

the degree to which x belongs to the fuzzy set Ã. A fuzzy set can be represented as

a pair consisting of a set X (which is typically required to be non-empty) and the

membership function µÃ. The universe of discourse, often denoted by X or U , is

the reference set. For each x ∈ X, the value µÃ(x) is referred to as the grade of

membership of x in the fuzzy set A.

Definition 1.2. A fuzzy set Ã in a universal set X is considered normal if and

only if the supremum of the membership function over X, supx∈X µÃ(x), equals

1.

Definition 1.3. A fuzzy set Ã in a universal set X is defined as convex if the

following equation holds for all x, y ∈ X and λ ∈ [0, 1]:

µÃ (λx+ (1− λ)y) ≥ min {µÃ(x), µÃ(y)} .

Definition 1.4. If X is a universal set and the fuzzy set within X is both normal

and convex, then the fuzzy set of X is referred to as a fuzzy number.

Definition 1.5. Suppose we have two continuous functions L and R defined as

L : R+ → [0, 1] and R : R+ → [0, 1], which possess the following characteristics:

L(−x) = L(x), R(−x) = R(x),

L(0) = R(0) = 1,

and

lim
x→∞

L(x) = lim
x→∞

R(x) = 0.



250 I. Makhdoom et al.

If the functions L and R, defined on the interval [0,∞), are both decreasing,

then the fuzzy number M̃ can be classified as a type of L-R if the following equation

holds:

µM̃ (x) =


L
(
m−x
α

)
x ≤ m, α > 0,

R
(
m−x
β

)
x ≥ m, β > 0.

The average of the fuzzy number M̃ , denoted by m, is used to determine its

left and right bounds, α and β, respectively. The fuzzy number of type L-R is

represented as M̃ = (m,α, β). The key innovation lies in incorporating fuzzy data

into a Type-II censored Bayesian framework, which to the best of our knowledge

has not been previously addressed in the context of the Lindley distribution.

The structure of the paper is as follows: Section 2 explains the model in de-

tail. Section 3 of the article is dedicated to E-Bayesian estimation. Hierarchical

Bayesian estimations are mentioned in Section 4. Section 5 focuses on simulation

studies. We analyze a real dataset in Section 6, and finally, we present the findings

and conclusions in Section 7.

2. Model definition: problem formulation and as-

sumptions

Bayesian methods are particularly well-suited for analyzing lifetime data under

censoring and fuzzy uncertainty. Unlike frequentist techniques, which rely heav-

ily on precise observations and large-sample properties, the Bayesian framework

naturally accommodates imprecision by modeling uncertainty through prior dis-

tributions. Additionally, Bayesian inference yields full posterior distributions for

the parameters, allowing credible intervals and loss-based estimates to be easily

derived. These advantages, along with computational feasibility via MCMC tech-

niques, make Bayesian methods the preferred approach in this study.

Upon conducting an experiment to measure the lifetime of n separate units,

symbolized as X1, X2, · · · , Xn, which correspond to their individual durations of

functionality, it is presumed that these units are independent and identically dis-

tributed (iid) with a probability density function (pdf), which is elaborated in

Eq. (1.1). Before initiating the test, we choose a number r, which is less than

n, with the intention to conclude the test upon the occurrence of the rth failure.

We are now faced with a situation where exact failure timings are not recorded,

a result of adhering to a Type-II censoring scheme. We are left with incomplete

data represented by fuzzy numbers x̃i = (m,αi, βi) for the indices i ranging from
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1 to r. These fuzzy numbers are each paired with their corresponding member-

ship function µx̃i
(xi). The largest average of these fuzzy values is represented as

m(r). Moreover, we express the lifetime of the remaining n − r units, which are

withdrawn post the rth failure, as fuzzy numbers x̃i for the indices i = r+ 1 to n,

each with an associated degree of membership function

µx̃j (x) =


0 x ≤ m(r),

1 x > m(r),

, j = r + 1, · · ·n.

Suppose we are given a random sample of size n from the Lindley distribution,

denoted as X1, X2 · · · , Xn, with a probability density function (pdf) as specified

in Eq. (1.1). The random vector formed by these variables is denoted as X =

(X1, · · · , Xn). To calculate the likelihood function for the complete data, we can

express it as follows:

L(θ; x) =
θ2n

(θ + 1)n

(
n∏
i=1

(1 + xi)

)
exp(−θ

n∑
i=1

xi).

We have a concrete set of outcomes for X as x = (x1, · · · , xn) with precisely known

observed values. However, the definitive values of X are not accessible; instead, we

have incomplete data represented by a fuzzy set x̃ = (x̃1, · · · , x̃n), accompanied

by the membership function µx̃(x) = µx̃1(x1) × · · · × µx̃n(xn). This vector that

captures the observed lifetimes is considered as fuzzy data. For calculating the

likelihood function of the observed fuzzy data, Zadeh (1968)’s concept of the

probability associated with a fuzzy event is applied, leading us to the subsequent

theorem:

Theorem 2.1. Let’s assume that X1, · · · , Xn is a sample set derived from the

Lindley distribution. For such a dataset, the likelihood function applicable to the

fuzzy data is based on the Type-II censoring scheme and is articulated as follows:

`(θ; x̃) =
θ2r

(1 + θ)n
(
1 + θ(1 +m(r))

)n−r
exp(−(n− r)m(r)θ)

×

 r∏
j=1

∫ ∞
0

(1 + x)e−θxµx̃j (x)dx

 . (2.3)

Proof. Referring to the work of Zadeh (1968), we can derive the likelihood function
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for fuzzy data in the following manner:

`(θ; x̃) =

∫ ∞
0

f(x; θ)µx̃(x) dx

=

n∏
j=1

∫ ∞
0

θ2

θ + 1
(1 + x)e−θxµx̃j

(x) dx

=

 r∏
j=1

∫ ∞
0

θ2

θ + 1
(1 + x)e−θxµx̃j (x) dx


×

 n∏
j=r+1

∫ ∞
0

θ2

θ + 1
(1 + x)e−θxµx̃j

(x) dx


=

 r∏
j=1

∫ ∞
0

θ2

θ + 1
(1 + x)e−θxµx̃j

(x) dx


×

 n∏
j=r+1

[∫ m(r)

0

θ2

θ + 1
(1 + x)e−θxµx̃j

(x) dx+

∫ ∞
m(r)

θ2

θ + 1
(1 + x)e−θxµx̃j

(x) dx

]
=

 r∏
j=1

∫ ∞
0

θ2

θ + 1
(1 + x)e−θxµx̃j

(x) dx


×

 n∏
j=r+1

∫ ∞
m(r)

θ2

θ + 1
(1 + x)e−θxµx̃j

(x) dx

 . (2.4)

By performing straightforward calculations and solving two integrals, we arrive

at Eq. (2.3) and successfully complete the proof.

3. Estimating the E-Bayesian

Since the Gamma distribution offers considerable flexibility due to its two-parameter

structure, it can model a wide range of prior beliefs depending on the values of

the shape (a) and scale (b) parameters. Moreover, it serves as a conjugate prior

for several likelihood functions, which simplifies analytical derivations in Bayesian

inference. Therefore, we assume that the prior distribution of θ follows a Gamma

distribution with the following probability density function (pdf):

π(θ|a, b) =
ba

Γ(a)
θa−1e−bθ, θ > 0, a, b > 0. (3.5)

According to Han (1997), if the prior distribution of θ follows a Gamma dis-

tribution with shape parameter a and scale parameter b, the derivative of the
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probability density function π(θ|a, b) with respect to θ can be expressed as:

dπ(θ|a, b)
dθ

=
baθa−2e−bθ

Γ(a)
((a− 1)− bθ) ,

where b > 0 and 0 < a ≤ 1. This equation reveals that the rate of change of the

pdf with respect to θ is negative, indicating a decrease in the pdf as θ increases.

According to Berger (2013), increasing the scale parameter b in the Gamma prior

distribution for θ leads to a decrease in the efficiency of the Bayesian estimator for

θ. Therefore, it is advisable to impose an upper bound on the value of b, such that

0 < b < c. Additionally, Han (2011) suggested that a suitable choice for modeling

the distribution of b is a uniform distribution. In this study, we assume that the

distribution of the rate parameter b follows a continuous uniform distribution on

the interval (0, c), denoted as π1(b). With this assumption, the probability density

function for θ given b can be expressed as follows:

π(θ|b) = be−bθ. (3.6)

Equations (2.3) and (3.6) present the prior distribution for handling fuzzy data as

follows:

π(θ|x̃) =

θ2n

(1+θ)n e
−θ[b+(n−r)m(r)]

[∏r
j=1

(∫∞
0

(1 + x)e−θxµx̃j (x)dx
)]

∫∞
0

θ2n

(1+θ)n e
−θ[b+(n−r)m(r)]

[∏r
j=1

(∫∞
0

(1 + x)e−θxµx̃j
(x)dx

)]
dθ
. (3.7)

The Bayesian estimation of a function of θ, denoted as h(θ), using the entropy loss

function can be expressed as follows:

ÛhBay(b) =
{
Eθ|x̃(h(θ))−k

}− 1
k

=


∫∞

0
(h(θ))−k θ2n

(1+θ)n e
−θ[b+(n−r)m(r)]u(θ)dθ∫∞

0
θ2n

(1+θ)n e
−θ[b+(n−r)m(r)]u(θ)dθ


− 1

k

, (3.8)

where

u(θ) =

r∏
j=1

(∫ ∞
0

(1 + x)e−θxµx̃j
(x)dx

)
.

In most cases, it is not feasible to calculate it directly. Therefore, the Lindley

approximation, introduced by Lindley in 1980, is often employed to approximate

its value. The Lindley approximation assumes the following:

w(θ) = ln l(x̃, θ) + lnπ(b) = L(θ) + v(θ), (3.9)

where

L(θ) = 2n log θ + (n− r)m(r)θ + log u(θ)− n log(1 + θ),
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and v(θ) = ln b− bθ. So, Eq. (3.8) is converted as follows:

ÛhBay(b) =

{∫∞
0

[h(θ)]−kew(θ)dθ∫∞
0
ew(θ)dθ

}− 1
k

=

(
[h(θ)]−k +

1

2
h11δ11 + v1h1δ11 +

1

2
w3(δ11)2h1

)− 1
k

, (3.10)

where

h1 =
d([h(θ)]−k)

dθ
, h11 =

d2([h(θ)]−k)

dθ2
,

v1 =
dv(θ)

dθ
, w3 =

d3w(θ)

d3θ
,

and

δ11 =

[
−d

2w(θ)

d2θ

]−1

.

By utilizing Eq. (3.10) and considering the specific case where h(θ) = θ, we can

derive the Bayesian estimate for θ as follows:

θ̂Bay(b) = ÛθBay(b)

=

(
θ−k +

k(k + 1)δ11

2
θ−(k+2) + bkδ11θ

−(k+1) − kw3(δ11)2

2

)− 1
k

, (3.11)

where δ11 and w3 are

δ11 =

2n

θ2
− n

(1 + θ)2
−

r∑
j=1

Ij2I
j
0 − (Ij1)2

(Ij0)2

−1

,

w3 =
4n

θ3
− 2n

(1 + θ)3
+

r∑
j=1

Ij3(Ij0)2 − 3Ij0I
j
1I
j
2 + 2(Ij1)3

(Ij0)3
, (3.12)

and

Ijn =

∫ ∞
0

xn(1 + x)e−θxµx̃j
(x)dx, n = 0, 1, 2, 3.

Definition 3.1. If the Bayesian estimate of the parameter θ is denoted as θ̂Bay(b),

and the prior distribution of b is represented by π1(b), then the E-Bayesian esti-

mate of the parameter θ, which is the mathematical expectation of θ̂Bay(b), can be

denoted as θ̂EBay and defined as follows:

θ̂EBay =

∫
λ

θ̂Bay(b)π1(b)db, b ∈ Λ. (3.13)
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According to Equations (3.11) and (3.13) and the distribution of b, the E-

Bayesian estimation of α is obtained as follows:

θ̂EBay =
1

c

∫ c

0

(
θ−k +

k(k + 1)δ11

2
θ−(k+2) + bkδ11θ

−(k+1) − kw3(δ11)2

2

)− 1
k

db

=
1

c(k − 1)δ11

{(
θ−k +

k(k + 1)δ11

2
θ−(k+2) + ckδ11θ

−(k+1) − kw3(δ11)2

2

) k−1
k

−
(
θ−k +

k(k + 1)δ11

2
θ−(k+2) − kw3(δ11)2

2

) k−1
k

}
, (3.14)

where δ11 and w3 are given in Eq. (3.12).

4. Hierarchical Bayesian estimation

In this section, our focus will be on establishing the prior hierarchical density

function and performing hierarchical Bayesian estimation for θ. Assuming λ as

the hyperparameter of θ, we denote the prior density function of θ as π(θ|λ).

Similarly, the prior density function of the hyperparameter λ is denoted as π1(λ).

Subsequently, we define the hierarchical prior density function for θ as follows:

π2(θ) =

∫
Λ

π(θ|λ)π1(λ)dλ, λ ∈ Λ. (4.15)

Based on Eq. (4.15), we can derive the prior density function of θ as follows:

π2(θ) =

∫ c

0

π(θ|b)π1(b)db =
1− (1 + cθ)e−cθ

cθ2
. (4.16)

By utilizing Equations (2.3) and (4.16), we can derive the hierarchical prior density

function of θ in the following manner:

π∗(θ|x̃) =

θ2n

(1+θ)n e
−θ[b+(n−r)m(r)]u(θ)π2(θ)∫∞

0
θ2n

(1+θ)n e
−θ[b+(n−r)m(r)]u(θ)π2(θ)dθ

. (4.17)

Using Eq. (4.17), we can obtain the hierarchical Bayesian estimation of θ by

employing the entropy loss function in the following manner:

θ̂HBay =


∫∞
0
θ2n−k

(1+θ)n e−θ[b+(n−r)m(r)]u(θ)π2(θ)dθ∫∞
0

θ2n

(1+θ)n e
−θ[b+(n−r)m(r)]u(θ)π2(θ)dθ


− 1

k

.

It is evident that estimating θ is generally not possible. As a result, the Lindley

approximation method is commonly used for its estimation. By assuming w∗(θ) =
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ln l(x̃, θ) + lnπ2(θ) = L(θ) + v(θ), where

L(θ) = 2n log θ + (n− r)m(r)θ + log u(θ)− n log(1 + θ)

v∗(θ) = ln[1− (1 + cθ)e−cθ]− ln(cθ2).

We have,

θ̂HBay =

(
θ−k +

1

2
h11δ

∗
11 + v∗1h1δ

∗
11 +

1

2
w∗3h1(δ∗11)2

)− 1
k

,

where

h1 =
d(θ−k)

dθ
, h11 =

d2(θ−k)

dθ2
,

v∗1 =
dv∗(θ)

dθ
, w∗3 =

d3w∗(θ)

d3θ
,

and

δ∗11 =

[
−d

2w∗(θ)

d2θ

]−1

.

Therefore, we can obtain the hierarchical Bayesian estimation of θ as follows:

θ̂HBay =

(
θ−k +

k(k + 1)δ∗11

2
θ−(k+2) −

k
[
c2θ2e−cθ + 2(1 + cθ)e−cθ − 2

]
δ∗11

θ [1− (1 + cθ)e−cθ]
θ−(k+1)

− kw∗3(δ∗11)2

2

)
, (4.18)

where δ∗11 and w∗3 are as below:

δ∗11 =

[
δ−1
11 −

c2e−cθ
(
1− cθ − e−cθ

)
[1− (1 + cθ)e−cθ]

2 − 2

θ2

]−1

,

and

w∗3 = w3 +
c3e−cθ

(
4e−cθ + c2θe−cθ − 2e−2cθ − 2

)
[1− (1 + cθ)e−cθ]

3 − 4

θ3
,

so that δ11 and w3 are shown in Eq. (3.12).

5. Numerical analysis: a simulation study

This section will focus on comparing the Bayesian estimation, E-Bayesian esti-

mation, and hierarchical Bayesian estimation of the parameter θ. The steps for
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conducting the simulation are outlined as follows:

Step 1:

b is generated for a specific value of c and using the prior distribution of π1(b) = 1
c ,

where 0 < b < c.

Step 2:

In the first step, θ is calculated using the estimated value of b and Eq. (3.6).

Step 3:

In the process following the estimation of θ from the second phase, we craft a set

of Type-II censored samples using a variety of (n, r) pairings within the frame-

work of the Lindley distribution. This distribution is defined by a probability

density function (PDF) outlined in Eq. (1.1), and the sample creation is done

through a specific procedure. Confronted with the challenge that the equation

F (x) = u, or θx − log(1 + θ + θx) + log[(1 + θ)(1 − u)] = 0 cannot be directly

solved, which involves the term u drawn from a uniform distribution over the range

(0, 1), we cannot employ the direct inversion method to derive random samples

from the Lindley distribution. Nevertheless, we can utilize our understanding that

the Lindley distribution is actually a unique combination of the Exponential(θ)

and Gamma(2, θ) distributions. The function f(x) is a weighted sum of two func-

tions, pf1(x) and (1− p)f2(x), for positive values of x and θ, where p is defined as

p = θ/(1 + θ), f1(x) is θe−θx, and f2(x) is θ2xe−θx. To simulate random variables

Xi for i ranging from 1 to n, according to the Lindley distribution parameterized

by θ, we adhere to the subsequent algorithm:

• For each i from 1 to n, generate Ui following a Uniform(0, 1) distribution.

• For each i from 1 to n, generate Vi from an Exponential distribution with

parameter θ.

• For each i from 1 to n, generate Wi from a Gamma distribution with the

shape parameter 2 and scale parameter θ.

Then for each i, if Ui is less than p = θ/(1 + θ), we assign Xi the value of Vi.

If not, Xi is assigned the value of Wi. Subsequently, in our third step, we assess

every Type-II censored sample X using the fuzzy system as introduced by Pak et

al. (2013a). This evaluation is conducted by applying the following membership

functions to the fuzzy sample.
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µx̃1(x) =



1 x ≤ 0/25

0/5−x
0/25 0/25 ≤ x ≤ 0/5

0 otherwise

, µx̃2(x) =



x−0/25
0/25 0/25 ≤ x ≤ 0/5

0/75−x
0/25 0/5 ≤ x ≤ 0/75

0 otherwise

µx̃3(x) =



x−0/5
0/25 0/5 ≤ x ≤ 0/75

1−x
0/25 0/75 ≤ x ≤ 1

0 otherwise

, µx̃4(x) =



x−0/75
0/25 0/75 ≤ x ≤ 1

1/25−x
0/25 1 ≤ x ≤ 1/25

0 otherwise

µx̃5(x) =



x−1
0/25 1 ≤ x ≤ 1/25

1/25−x
0/25 1/25 ≤ x ≤ 1/5

0 otherwise

, µx̃6(x) =



x−1/25
0/25 1/25 ≤ x ≤ 1/5

1/75−x
0/25 1/5 ≤ x ≤ 1/75

0 otherwise

µx̃7(x) =



x−1/5
0/25 1/5 ≤ x ≤ 1/75

2−x
0/25 1/75 ≤ x ≤ 2

0 otherwise

, µx̃8(x) =



x− 1/75 1/75 ≤ x ≤ 2

1 x ≥ 2

0 otherwise

To calculate the estimate of θ, we utilized Equations (3.11), (3.14), and (4.18)

for the Bayesian, E-Bayesian, and hierarchical Bayesian approaches, respectively.

This estimation procedure, encompassing the initial three steps, was conducted

5000 times. Subsequently, we computed the mean estimate and the mean squared

error for each calculation, which are detailed in Tables 1 through 3.
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Table 1: The average value (AV) and mean squared error (MSE) of the estimates

of θ for various combinations of (n, r), with k = 2.5 and c = 2.

θ̂Bay θ̂EB θ̂HB

n r AV MSE AV MSE AV MSE

15 10 0.45919 0.23565 2.5596 8.0475 0.45791 0.23496

15 12 0.58995 0.34152 4.1179 1.2697 0.58905 0.34060

30 10 0.49601 0.26755 9.0763 2.0329 0.49493 0.26652

30 15 0.75936 0.50453 2.2164 5.7672 0.75883 0.50402

30 20 0.88733 0.70995 1.6719 5.2871 0.88702 0.70963

50 30 1.17700 1.02620 1.3266 4.1612 1.17680 1.02610

50 40 1.28500 1.25210 1.4989 3.4333 1.28490 1.25200

100 50 1.38030 1.47880 2.3151 7.2344 1.38020 1.47870

100 75 1.57846 1.92048 2.2591 5.7384 1.54847 1.92045

200 120 1.72474 0.24477 3.4616 1.0935 1.72472 0.24477

200 150 1.82367 0.27103 4.6589 1.4728 1.82366 0.27103

300 200 1.93404 0.31066 6.0102 1.8993 1.93402 0.31066

Table 2: The average value (AV) and mean squared error (MSE) of the estimates

of θ for various combinations of (n, r), with k = 1.5 and c = 3.

θ̂Bay θ̂EB θ̂HB

n r AV MSE AV MSE AV MSE

15 10 0.387905 0.237101 8.84804 2.78477 0.386140 0.235024

15 12 0.549023 0.391670 1.720587 5.440366 5.476302 0.390088

30 10 0.456275 0.286303 1.54725 4.89115 0.454268 0.284306

30 15 0.772446 0.654157 4.25977 1.34706 0.771869 0.653346

30 20 0.895936 1.011226 6.68305 1.31643 0.895666 1.010924

50 30 1.113385 1.644294 1.71068 5.39716 1.113254 1.164217

50 40 1.321879 0.215920 8.29087 2.62177 1.321870 0.215913

100 50 1.380530 2.807087 8.64223 2.71223 1.380442 2.807085

100 75 1.718225 0.407471 8.92795 2.82326 1.718230 0.407470

200 120 1.778132 0.533849 4.50165 1.42334 1.778122 0.533677

200 150 1.829669 0.527371 4.20076 1.328283 1.829686 0.527371

300 200 1.860709 0.573782 1.74237 5.45145 1.860698 0.573781
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Table 3: The average value (AV) and mean squared error (MSE) of the estimates

of θ for various combinations of (n, r), with k = 3 and c = 1.5.

θ̂Bay θ̂EB θ̂HB

n r AV MSE AV MSE AV MSE

15 10 0.504677 0.224393 2.15262 6.79651 0.503779 0.223762

15 12 0.647202 0.317141 1.08086 2.70186 0.646563 0.316616

30 10 0.538610 0.251183 1.46428 4.50750 0.537780 0.250598

30 15 0.829147 0.458681 3.25068 1.02778 0.829303 0.458268

30 20 1.014993 0.614151 6.97603 2.20597 1.014723 0.613925

50 30 1.200791 0.896351 2.81974 8.91677 1.200691 0.896255

50 40 1.330317 0.107214 4.13114 1.12505 1.330238 0.107205

100 50 1.511448 0.127547 5.10061 1.57374 1.511366 0.127542

100 75 1.669456 0.160740 3.89875 1.23289 1.669419 0.160737

200 120 1.936836 0.207105 9.82617 2.61061 1.936823 0.207103

200 150 2.102049 0.236256 2.95966 7.47460 2.102034 0.236255

300 200 2.151874 0.258583 3.15324 7.14100 2.151865 0.258582

6. Real dataset analysis

In this section, we present a real dataset to demonstrate that the Lindley dis-

tribution may provide a superior model compared to the exponential distribu-

tion. The dataset in Table 4 represents the waiting times (in minutes) before

service for 100 bank customers (Ghitany et al. (2008)). Using real data, the

Kolmogorov–Smirnov test statistic and the corresponding p-value were obtained

as 0.1126 and 0.8765, respectively, using the R software. These results indicate

that the data fit the Lindley distribution well.

From the uniform distribution in the interval [0, 0.5], we randomly select a

number and call it u1, and from the uniform distribution in the interval [0.5, 1],

we randomly select another number and call it u2. Then, we convert the real data

(X) into triangular fuzzy data in the form (X,X · u1, X · u2) (see Table 5).

The Bayesian estimates, E-Bayesian, and hierarchical Bayesian estimate of the

Lindley parameter, along with the Kolmogorov–Smirnov (K-S) test statistic and

the corresponding p-value, are presented in Table 6. Given the values of the K-S

test statistic and its p-value, it is clear that the hierarchical Bayesian estimate of

the Lindley parameter is better than the Bayesian and E-Bayesian estimates.
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Table 4: Waiting Times (min) of 100 Bank Customers

0.8 0.8 1.3 1.5 1.8 1.9 1.9 2.1 2.6 2.7

2.9 3.1 3.2 3.3 3.5 3.6 4.0 4.1 4.2 4.2

4.3 4.3 4.4 4.4 4.6 4.7 4.7 4.8 4.9 4.9

5.0 5.3 5.5 5.7 5.7 6.1 6.2 6.2 6.2 6.3

6.7 6.9 7.1 7.1 7.1 7.1 7.4 7.6 7.7 8.0

8.2 8.6 8.6 8.6 8.8 8.8 8.9 8.9 9.5 9.6

9.7 9.8 10.7 10.9 11.0 11.0 11.1 11.2 11.2 11.5

11.9 12.4 12.5 12.9 13.0 13.1 13.3 13.6 13.7 13.9

14.1 15.4 15.4 17.3 17.3 18.1 18.2 18.4 18.9 19.0

19.9 20.6 21.3 21.4 21.9 23.0 27.0 31.6 33.1 38.5

Table 5: Fuzzified data represented as triangular fuzzy numbers (X,X.u1, X.u2)
(X,X.u1, X.u2) (X,X.u1, X.u2) (X,X.u1, X.u2) (X,X.u1, X.u2) (X,X.u1, X.u2)

(0.8, 0.405, 0.205) (0.8, 0.029, 0.607) (1.3, 0.035, 1.06) (1.5, 0.582, 0.656) (1.8, 0.186, 1.55)

(2.9, 2.75, 2.29) (3.1, 0.041, 0.925) (3.2, 3.05, 0.473) (3.3, 1.54, 2.80) (3.5, 2.61, 0.151)

(4.3, 0.202, 4.12) (4.3, 3.39, 3.09) (4.4, 0.049, 0.814) (4.4, 1.38, 0.090) (4.6, 2.34, 0.300)

(5.0, 3.36, 4.05) (5.3, 4.97, 3.95) (5.5, 0.713, 5.13) (5.7, 1.19, 2.49) (5.7, 3.86, 1.49)

(6.7, 3.71, 4.40) (6.9, 1.95, 4.75) (7.1, 4.63, 3.85) (7.1, 5.32, 6.56) (7.1, 0.959, 0.914)

(8.2, 7.11, 3.33) (8.6, 1.06, 2.51) (8.6, 0.534, 0.611) (8.6, 7.17, 1.04) (8.8, 4.47, 8.29)

(9.7, 5.49, 4.93) (9.8, 9.47, 4.93) (10.7, 0.352, 5.39) (10.9, 4.08, 1.28) (11.0, 9.12, 6.58)

(11.9, 3.48, 10.5) (12.4, 4.30, 6.27) (12.5, 8.29, 9.61) (12.9, 5.60, 11.3) (13.0, 5.63, 8.70)

(14.1, 2.68, 11.6) (15.4, 12.6, 11.9) (15.4, 0.587, 13.4) (17.3, 0.368, 10.2) (17.3, 10.9, 0.129)

(19.9, 2.59, 12.9) (20.6, 15.8, 12.1) (21.4, 1.98, 15.5) (21.4, 11.9, 8.70) (21.9, 10.1, 4.28)

(1.9, 1.73, 0.688) (1.9, 0.648, 1.04) (2.1, 1.92, 0.450) (2.6, 0.209, 0.549) (2.7, 0.694, 2.02)

(3.6, 1.09, 3.18) (4.0, 3.31, 1.39) (4.1, 1.87, 0.790) (4.1, 3.95, 3.82) (4.2, 2.98, 2.81)

(4.7, 2.94, 0.148) (4.7, 0.998, 0.456) (4.8, 4.53, 2.74) (4.8, 1.57, 2.55) (4.9, 1.37, 2.45)

(6.1, 3.52, 2.02) (6.2, 3.36, 4.25) (6.2, 3.78, 0.299) (6.2, 2.13, 1.21) (6.3, 4.42, 0.899)

(7.1, 1.39, 4.82) (7.4, 4.65, 2.60) (7.6, 6.07, 5.96) (7.7, 0.399, 3.12) (8.0, 5.44, 0.747)

(8.8, 0.275, 6.73) (8.9, 4.32, 0.731) (8.9, 6.89, 3.42) (9.5, 6.82, 4.38) (9.6, 7.38, 2.09)

(11.0, 2.53, 4.54) (11.1, 4.04, 2.05) (11.2, 9.65, 6.75) (11.2, 11.0, 2.59) (11.5, 6.41, 7.07)

(13.1, 2.82, 9.09) (13.3, 7.51, 7.00) (13.6, 11.6, 3.39) (13.7, 8.87, 1.69) (13.9, 4.42, 0.244)

(18.1, 11.6, 11.3) (18.2, 18.1, 2.14) (18.4, 8.35, 17.8) (18.9, 11.6, 17.5) (19.0, 0.209, 11.2)

(23.0, 11.7, 5.29) (27.0, 17.2, 5.74) (31.6, 13.3, 4.58) (33.1, 13.1, 9.05) (38.5, 14.7, 31.7)

Table 6: Kolmogorov–Smirnov test statistics and Lindley parameter estimates

Metric θHB θEB θBay

Estimate 0.5046 2.152 0.5037

K-S statistic 0.0329 0.0594 0.0476

P-value 0.9261 0.7234 0.8995
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7. Conclusion and Future Work

This study provides practical insights into parameter estimation for reliability data

where measurements are imprecise and censored. The proposed Bayesian frame-

work, incorporating fuzzy data and flexible prior distributions, offers a robust and

interpretable approach suitable for real-world decision-making. Applications span

a wide range of fields, including industrial reliability, service optimization, and

medical diagnostics, where uncertainty is an inherent challenge. By highlighting

the advantages of Bayesian inference and the use of the Lindley model, this work

contributes a versatile methodology with both theoretical depth and practical rel-

evance.

In our research, we estimated the parameter of the Lindley distribution under

a Type-II censoring scheme, using fuzzy data and an entropy loss function for

evaluation. Our analysis involved comparing Bayesian estimation, E-Bayesian es-

timation, and hierarchical Bayesian estimation, all within the framework of Monte

Carlo simulations. The results indicated that hierarchical Bayesian estimation out-

performed both Bayesian and E-Bayesian methods in terms of efficiency. Moreover,

the Bayesian approach demonstrated better performance than the E-Bayesian

method. Notably, as the sample size increased, the performance of the hierar-

chical and standard Bayesian estimators tended to converge, ultimately showing

negligible differences.

Suggestions for future research are as follows:

• Extending the methodology to other lifetime distributions beyond the Lind-

ley model;

• Investigating the impact of different types of fuzzy sets (e.g., intuitionistic

or interval-valued fuzzy sets);

• Applying advanced MCMC algorithms, such as Hamiltonian Monte Carlo,

to improve sampling efficiency and convergence;

• Conducting a comparative analysis with frequentist estimators, such as Max-

imum Likelihood Estimation (MLE), to evaluate trade-offs between Bayesian

and classical approaches under uncertainty.
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