- حبیبی راد امین، پناهی علی. (1400). تبیین رابطه قیمت بیتکوین در مبادلات مالی کسبوکارها و حجم جستجو بهمنظور شناسایی الگوی رفتاری آن: یک مطالعه تطبیقی بین کشورها.مطالعات مدیریت کسبوکار هوشمند, 10(37), 347-372. doi: 10.22054/ims.2021.61455.1982
- حسینقلی زاده رضا، البرزی محمود، طلوعی اشلقی عباس، ضرغام بروجنی، حمید. (1401). پویایی عقاید ذینفعان گردشگری ایران در مواجهه با گردشگران چینی. فصلنامه مطالعات مدیریت گردشگری، 17(60), 47-77. doi: 10.22054/tms.2022.69532.2746
References
- Amirzadeh, R., Nazari, A., Thiruvady, D. R., & Ee, M. S. (2023). Modelling determinants of cryptocurrency prices: A Bayesian network approach. arXiv preprint. https://doi.org/10.48550/arXiv.2303.16148
- Amirzadeh, R., Thiruvady, D., Nazari, A., & Ee, M. S. (2024). Dynamic Bayesian networks for predicting cryptocurrency price directions: Uncovering causal relationships. arXiv preprint arXiv:2306.08157. https://doi.org/10.48550/arXiv.2306.08157
- Ayitey Junior, M., Appiahene, P., Appiah, O., & Bombie, C. N. (2023). Forex market forecasting using machine learning: Systematic literature review and meta-analysis. Journal of Big Data, 10(1), Article 9. https://doi.org/10.1186/s40537-022-00676-2
- Beato, F. (2024). US unveils new tools to withstand encryption-breaking quantum. World Economic Forum. Retrieved from https://www.weforum.org/stories/2024/08/us-tools-encryption-breaking-quantum-computing-nist/
- Durga, P. V. V., & Anusha, G. (2024). Predicting cryptocurrency price using multiple deep learning models. In Accelerating Discoveries in Data Science and Artificial Intelligence I (pp. 247–258). Springer. https://doi.org/10.1007/978-3-031-51167-7_24
- Fama, E. F. (1970). Efficient capital markets: A review of theory and empirical work. The Journal of Finance, 25(2), 383–417. https://doi.org/10.2307/2325486
- Fama, E. F. (1965). The behavior of stock-market prices. Journal of Business, 38(1), 34-105. https://doi.org/10.1086/294743
- Friedman, N., Geiger, D., & Goldszmit, M. (1997). Bayesian network classifiers. Machine Learning, 29(2-3), 131-163. https://doi.org/10.1023/A:1007465528199
- Hastie, T., Tibshirani, R., & Friedman, J. (2009). The elements of statistical learning: Data mining, inference, and prediction (2nd ed.). Springer. https://doi.org/10.1007/978-0-387-84858-7
- Heckerman, D. (1995). A tutorial on learning with Bayesian networks. Machine Learning, 20(3), 197–243. https://doi.org/10.1007/BF00994016Hexn. (2024). Understanding Ethereum 2.0: Improving scalability and security. Hexn. Retrieved from https://hexn.io/blog/what-you-need-to-know-about-ethereum-20-225
- Jensen, F. V., & Nielsen, T. D. (2007). Bayesian networks and decision graphs. Springer. https://doi.org/10.1007/978-0-387-68282-0
- Levenchuk, L. (2022). The Bayesian approach to analysis of financial operational risk. Finance, 10(2), 123–135. https://doi.org/10.21303/2313-8416.2022.002377
- Liu, R., Yang, B., Zio, E., & Chen, X. (2018). Artificial intelligence for fault diagnosis of rotating machinery: A review. Mechanical Systems and Signal Processing, 108, 33–47. https://doi.org/10.1016/j.ymssp.2018.02.016
- Lorenz, G. (2024). Regulating decentralized financial technology: A qualitative study on challenges and opportunities in the DeFi space. Stanford Journal of Blockchain Law & Policy, 8(1). https://doi.org/10.21428/96c8d426.8f7b8a3b
- McCullagh, P., & Nelder, J. A. (1989). Generalized linear models (2nd ed.). Chapman & Hall/CRC. https://doi.org/10.1201/9781315133156
- McCloskey, S. (2000). Probabilistic reasoning and Bayesian networks. Neural Networks and Machine Learning, Winter 1999-2000. Retrieved from https://www.cim.mcgill.ca/~scott/RIT/researchPaper.html
- Margaritis, D. (2005). Learning Bayesian Network Model Structure from Data. [PhD Thesis]. Retrieved from https://www.cs.cmu.edu/~dmarg/Papers/PhD-Thesis-Margaritis.pdf. DOI: 10.5555/12345678
- Minka, T. P. (2000). Expectation propagation for approximate Bayesian inference. Proceedings of the 17th Conference on Uncertainty in Artificial Intelligence, 362-369. https://doi.org/10.5555/2073878
- Mironeanu, A., Irimia, B., Săndulescu, V., & Teodoroiu, C. (2021). The impact of Tesla’s bitcoin investment and its plans to accept it as a payment method on the evolution of bitcoin. Proceedings of the International Conference on Business Excellence, 15, 58-74. https://doi.org/10.2478/picbe-2021-0007
- Mohan, K., & Pearl, J. (2018). Graphical models for processing missing data. arXiv preprint arXiv:1801.03583. https://doi.org/10.48550/arXiv.1801.03583Pearl, J. (1988). Probabilistic reasoning in intelligent systems: Networks of plausible inference. Morgan Kaufmann. https://doi.org/10.5555/56670
- Ozili, P. K. (2022). Decentralized finance research and developments around the world. Journal of Banking and Financial Technology, 6(1), 117–133. https://doi.org/10.1007/s42786-022-00044-x
- Pearl, J. (1988). Probabilistic reasoning in intelligent systems: Networks of plausible inference. Morgan Kaufmann. https://doi.org/10.1016/C2009-0-27609-4
- Polotskaya, K., Muñoz-Valencia, C. S., Rabasa, A., Quesada-Rico, J. A., Orozco-Beltrán, D., & Barber, X. (2024). Bayesian networks for the diagnosis and prognosis of diseases: A scoping review. Machine Learning and Knowledge Extraction, 6(2), 1243–1262. https://doi.org/10.3390/make6020058
- Poudel, S., Paudyal, R., Cankaya, B. et al. (2023). Cryptocurrency price and volatility predictions with machine learning. J Market Anal 11, 642–660. https://doi.org/10.1057/s41270-023-00239-1
- Saha, V. (2023). Predicting future cryptocurrency prices using machine learning algorithms. Journal of Data Analysis and Information Processing, 11(4), 400–419. https://doi.org/10.4236/jdaip.2023.114021
- Sebastião, H., & Godinho, P. (2021). Forecasting and trading cryptocurrencies with machine learning under changing market conditions. Financial Innovation, 7(1), Article 3. https://doi.org/10.1186/s40854-020-00217-x
- Zellner, M., Abbas, A. E., Budescu, D. V., & Galstyan, A. (2021). A survey of human judgement and quantitative forecasting methods. Royal Society Open Science, 8(2), 201187. https://doi.org/10.1098/rsos.201187
- Zhou, X. H., Obuchowski, N. A., & McClish, D. K. (2011). Statistical methods in diagnostic medicine . Wiley. https://doi.org/10.1002/9780470906514
|