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Abstract:

Accurate weather prediction plays a vital role in many sectors, such as agri-

culture, disaster preparedness, transportation systems, and urban planning. Tra-

ditional meteorological models face challenges in capturing complex atmospheric

dynamics, leading to an increased reliance on artificial neural networks (ANNs)

for improved forecasting accuracy. ANNs have been widely applied in meteorology

due to their ability to model nonlinear relationships and temporal dependencies.

Based on Sinc numerical methods, the modified Sinc neural network (MSNN) has

been introduced recently. This model leverages the advantages of the Sinc func-

tion, such as smoothness and oscillatory behavior, while enhancing the ability to

model nonlinear dependencies and temporal dynamics in environmental data. This

work utilizes the MSNN for time series forecasting, with its parameters adjusted

using a discrete-time online Lyapunov-based learning algorithm. The model is

then applied to enhance weather forecasting. It is evaluated on datasets contain-

ing various meteorological components. The data used in this study pertains to the

city of Khorramabad in Iran. The results show that, despite its simple structure,

the MSNN demonstrates high efficiency in weather forecasting.
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1. Introduction

Weather forecasting plays a crucial role in agriculture, disaster management, trans-

portation, and daily life. Accurate predictions allow for better preparedness for

extreme weather events such as storms, floods, and droughts, thereby reducing

economic losses and protecting lives. Traditionally, numerical weather forecast-

ing models have been the primary tools in this context, relying on physical and

mathematical equations that describe atmospheric dynamics (Bauer et al. , 2015).

Over the years, advancements in computational methods and data-driven models

have significantly improved forecasting accuracy. However, traditional meteorolog-

ical models often struggle with the complexity of atmospheric dynamics, require

substantial computational resources, and face limitations in real-time applications

(Ren and et al. , 2021). Consequently, there has been a growing shift among re-

searchers toward leveraging machine learning methods—especially artificial neural

networks (ANNs)—to enhance the accuracy and efficiency of weather forecasting.

ANNs are inspired by the human nervous system and consist of computational

neurons connected via weighted edges (Gupta and et al. , 2003). By adjusting

these weights using learning rules, ANNs can model and approximate complex

nonlinear functions. The architecture of ANNs can vary widely, from simple feed-

forward networks—where information moves in one direction from input to out-

put—to more sophisticated structures such as recurrent neural networks (RNNs)

and convolutional neural networks (CNNs). By harnessing these principles, ANNs

have become fundamental components of modern machine learning and artificial

intelligence, enabling the solution of problems once deemed unsolvable. Their ca-

pacity to learn from data and generalize to new, unseen scenarios makes them

indispensable tools in today’s world.

The use of ANNs in weather forecasting has attracted considerable interest

because of their ability to capture complex nonlinear relationships within mete-

orological data (Ren and et al. , 2021). Unlike conventional statistical models,

ANNs adapt to changing environmental conditions and uncover intricate patterns

in historical weather data. Neural networks have demonstrated remarkable success

in various meteorological applications, particularly in modeling nonlinear relation-

ships in time series data.

One promising approach in the context of weather forecasting is the Sinc neural

network (SNN), which employs Sinc functions as activation functions instead of

traditional sigmoidal or rectified linear unit (ReLU) functions. The Sinc function

has unique properties that make it well-suited for function approximation and sig-

nal processing tasks. Leveraging these characteristics, SNNs have shown improved

performance in various applications.

While deep and complex neural networks have achieved remarkable results
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in many domains, simpler neural models remain highly relevant, especially when

dealing with limited datasets (Goodfellow and et al. , 2016). Deep networks

require vast amounts of data to generalize effectively; otherwise, they risk overfit-

ting and poor performance on unseen data. In contrast, simpler models such as

SNNs and traditional multilayer perceptrons (MLPs) offer better interpretability,

faster training times, and reduced computational costs, making them more suit-

able when data is scarce. In many practical forecasting scenarios, especially in

localized regions like Khorramabad, access to extensive, high-quality datasets is

limited. Therefore, leveraging simpler yet efficient neural architectures can yield

competitive results without the need for excessive computational resources or com-

plex hyperparameter tuning.

The aim of this study is to assess the effectiveness of the modified Sinc neural

network (MSNN) in forecasting weather components in Khorramabad. First, we

outline the mathematical framework for time series forecasting using MSNN and

employ a discrete-time Lyapunov-based learning algorithm to train the network.

Then, we apply the proposed method to predict various weather elements.

The approach is evaluated using datasets that include multiple meteorologi-

cal parameters such as minimum air temperature (Tmin), maximum air temper-

ature (Tmax), minimum relative humidity (RHmin), maximum relative humidity

(RHmax), wind speed (WS), wind direction (WD), rainfall (RA), and atmospheric

pressure (QFE). Its performance is compared to that of an MLP, with a particular

emphasis on forecasting accuracy and computational efficiency. The datasets used

in this study were obtained from a meteorological station located in Khorramabad,

Iran.

The contributions of this work are summarized as follows:

• The MSNN is employed within a systematic framework for time series fore-

casting.

• A discrete-time Lyapunov-based online learning algorithm is used to train

the MSNN, providing stable and efficient convergence for nonlinear time

series prediction.

• The MSNN is applied to forecast meteorological components (temperature,

humidity, wind speed and direction, rainfall, and pressure) using real-world

data from a station in Khorramabad, Iran—a region where high-resolution

datasets are limited.

• Comparative analysis demonstrates that MSNN achieves better forecast-

ing performance and computational efficiency compared to traditional MLP

models. Additionally, the network shows acceptable performance and im-

proved computational efficiency relative to LSTM networks.
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• As a lightweight alternative to deep architectures, the MSNN offers a viable

solution for localized and resource-constrained forecasting applications.

The remainder of this paper is structured as follows: related works are de-

scribed in Section 2. Section 3 discusses the architecture of MSNN. Section 4

explains its application in time series prediction. Section 5 addresses the chal-

lenges of weather forecasting. Section 6 presents the implementation of MSNN for

weather forecasting. Finally, Section 7 concludes the paper.

2. Related Works

The historical development of Sinc-based neural networks can be traced back to

early research on wavelet networks and function approximation methods, where

Sinc functions were recognized for their superior interpolation capabilities (Stenger

, 1993). The Sinc function’s inherent band-limited properties make it particularly

effective in signal processing and function approximation tasks. Recent studies

indicate that modifications to the SNN structure further enhance its predictive

power, offering a viable alternative to conventional ANN models in meteorological

forecasting (Ahmadi , 2024).

Research on ANNs employing the Sinc activation function remains limited but

promising. Elwasif and Fausett (Elwasif and Fausett , 1996) utilized SNNs with a

single input and output to approximate single-variable functions, demonstrating

the function’s efficacy in nonlinear approximation. More recent advances include

Sinc-based convolutional neural networks applied to biomedical signal decoding

(Borra et al. , 2020), showing robustness in processing time-dependent signals.

Applications of SNNs span EEG-based brain-computer interface (BCI) motor im-

agery classification (Bria et al. , 2021), automatic speaker and age identification

(Radha et al. , 2024), EEG motor imagery classification (Liu et al. , 2023), and

human motion recognition (Biswas et al. , 2023), highlighting the broad adapt-

ability of Sinc-based architectures. Recently, SNNs have also been used to address

fractional optimal control problems (Heydari and Ahmadi , 2024).

To address inherent limitations of classical SNNs, Ahmadi (2024) proposed

the MSNN, which refines the architecture to better capture nonlinear dependen-

cies and temporal dynamics characteristic of environmental data. MSNN pre-

serves the beneficial properties of the Sinc function—such as smoothness and

band-limitation—while improving modeling flexibility and reducing computational

costs. Its ability to incorporate frequency-domain information makes MSNN par-

ticularly suitable for time series forecasting and signal processing tasks relevant to

weather prediction.

Neural networks have extensive applications in time series forecasting (Faruk
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, 2010). Recently, deep learning models have been employed for multi-step-ahead

time series forecasting (Chandra et al. , 2021). Novel research has also proposed

hybrid approaches integrating dynamical systems, signal processing, and neural

networks for time series forecasting (Azizi , 2024). Additionally, several modern

neural architectures—such as transformer-based and attention-driven deep learn-

ing models—have been applied to time series, especially for weather forecasting.

These methods have been reviewed in recent studies by Li and Eddie (2024), Kim

et al. (2024), and Conti (2024).

The broader use of neural networks in weather forecasting has been extensively

studied. Early implementations of neural networks in meteorology date back to

the late 20th century, with models such as MLPs being used for temperature and

precipitation forecasting (Hsieh and Tang , 1998), establishing neural networks as

effective tools for meteorological time series. Recurrent neural networks (RNNs)

and their gated variants, such as long short-term memory (LSTM) networks, have

been widely used to capture temporal dependencies in weather data, yielding im-

proved forecasts for components like rainfall and wind speed (Elsaraiti and Mer-

abet , 2021; Ouma et al. , 2022). Convolutional neural networks (CNNs) have

also been adapted for spatiotemporal weather prediction, especially in short-term

rainfall nowcasting (Shi et al. , 2015).

Recent advancements in Iran have demonstrated the efficacy of neural network

models for precipitation and hydrological forecasting. Taie Semiromi and Koch

(2024) introduced a hybrid wavelet transform–artificial neural network–quantile

mapping approach to downscale daily precipitation in the semi-arid Gharehsoo

River Basin, achieving notable accuracy in capturing wet/dry spell dynamics un-

der multiple scenarios. Moradpoor et al. (2023) implemented advanced AI mod-

els, including ANN frameworks, for spatiotemporal monthly rainfall modeling in

Ilam Province, showing strong agreement between simulated and observed values.

Barzegari Banadkooki et al. (2019) compared MLP and support vector machine

(SVM) models optimized via a flow regime algorithm for precipitation forecast-

ing, finding that MLP outperformed SVM, with quantified uncertainty estimates.

Khoramabadi and Moradinia (2024) used a wavelet neural network to predict

precipitation changes in the Aji-Chay watershed.

There are few studies specifically focused on weather forecasting in Khorram-

abad. Khosravi (2017) utilized fuzzy neural networks and genetic algorithms to

forecast temperature in the city. Iranshahi et al. (2023) applied neural net-

works to analyze the effects of climate change on temperature and precipitation in

Khorramabad. Veyskarami et al. (2024) used metaheuristic models to estimate

the daily evaporation rate in Lorestan Province. More recently, the author has

used neural networks for air pollution and wind speed forecasting in Khorramabad
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(Ahmadi and Akbari , 2024; Ahmadi , 2024).

In summary, while deep learning dominates recent advances in weather fore-

casting, the MSNN presents a novel, computationally efficient approach well-suited

to localized forecasting problems with limited data. Its frequency-domain integra-

tion and reduced parameter requirements position MSNN as a promising tool for

improving meteorological time series predictions in Khorramabad and similar re-

gions.

3. Modified Sinc Neural Network (MSNN)

This section focuses on the architecture and training methodology of the Modified

Sinc Neural Network (MSNN).

3.1 Sinc Function

The MSNN employs the mathematically elegant Sinc basis functions as activation

functions in the hidden layer. The Sinc function is commonly encountered in

signal processing and Fourier transform theory and is sometimes referred to as the

sampling function. In this study, we utilize the normalized Sinc function, defined

as follows:

Sa(x) =

{
sin(πx)
πx , x 6= 0,

1, x = 0.
(3.1)

The Sinc function plays a significant role in various domains of applied sciences,

including Sinc interpolation and Sinc-based numerical methods, yielding valuable

results in solving nonlinear problems (Stenger , 2010). As the inverse Fourier trans-

form of the rectangular function, it is fundamental in signal processing, enabling

analysis of the relationship between signals in both time and frequency domains

(Schanze , 1995).

This function exhibits a smooth, oscillatory behavior, alternating between pos-

itive and negative values. As the input approaches infinity, its output converges

to zero. It is also central to the formulation of the Whittaker cardinal function,

an essential concept in approximation theory.

Let

Sai(x) = Sa

(
1

h
(x− ih)

)
, i = −∞, . . . ,∞, (3.2)

be the i-th function in the collection of Sinc basis functions, where h is a positive

real number. For a real-valued function f , the Whittaker cardinal function is
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defined as:

C(f, h)(x) =

∞∑
i=−∞

f(ih)Sai(x). (3.3)

Notably, Equation (3.3) interpolates the function f at the discrete points ih for

all integers i.

In the context of the complex ω-plane, the strip domain Dd is defined as

(Eftekhari and Saadatmandi , 2021):

Dd = {ω = t+ is : |s| < d}. (3.4)

When addressing problems on a subinterval I of R, a conformal map φ is

used such that φ(I) = R. Let φ be a conformal map, and let ζ denote its inverse,

mapping the simply connected domain D—which contains the interval (0, 1)—onto

Dd. Consequently, for the subinterval I = (0, 1) = ζ(R), where φ(0) = −∞ and

φ(1) = +∞, the function f(x) can be approximated by:

f(x) ≈
N∑

i=−N
f(xi)Sai(φ(x)), (3.5)

where xi = ζ(ih).

3.2 The Structure of MSNN

There is limited research focused on neural networks that utilize the Sinc activation

function. A significant early contribution was made by Elwasif and Fausett in 1996,

who used a single-input, single-output Sinc Neural Network (SNN) for function

approximation with a single variable (Elwasif and Fausett , 1996). More recently,

Heydari and Ahmadi extended the SNN framework to address fractional optimal

control problems (Heydari and Ahmadi , 2024).

Building upon the SNN architectures presented in (Elwasif and Fausett , 1996;

Heydari and Ahmadi , 2024) and incorporating the Sinc basis functions defined in

equations (3.2), (3.3), and (3.5), the Modified Sinc Neural Network (MSNN) was

introduced by Ahmadi (Ahmadi , 2024).

The standard SNN structure consists of three layers. Notably, the connections

between the input and hidden layers do not involve trainable parameters; these

weights are fixed, typically set to 1. Trainable parameters in the SNN include the

weights between the hidden and output layers and the output biases.

MSNN extends this structure by introducing additional direct connections from

the input layer to the output layer, each associated with trainable weights, as illus-

trated in Figure 1. These additional parameters enhance the network’s flexibility

and its capacity to model complex nonlinear relationships.
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Figure 1: The structure of MSNN in time series prediction.

Let

X = [x1, x2, . . . , xn]T , Y = [y1, y2, . . . , yq]
T

denote the input and output vectors of the MSNN, respectively. Let Si(t), (i =

0, 1, 2, . . . ,m− 1) be the i-th function in the set of Sinc basis functions. Define:

Sai(X) = [Sai(x1), Sai(x2), . . . , Sai(xn)]
T
, i = 0, 1, . . . ,m− 1,

Sa(X) =


Sa0(X)

Sa1(X)
...

Sam−1(X)

 . (3.6)

Let W1 denote the weight matrix for the direct input-output connections, W2

the weights from the hidden layer to the output, and b the bias vector for the

output layer. Then:

Y = W1X +W2Sa(X) + b

=
[
W1 W2 b

] X

Sa(X)

1


= WS(X), (3.7)
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where

W =
[
W1 W2 b

]
, S(X) =

 X

Sa(X)

1

 . (3.8)

Figure 1 illustrates the schematic of MSNN for time series prediction.

Remark 3.1. The MSNN architecture is based on a set of Sinc basis functions,

which differ from the standard activation functions (e.g., sigmoid, ReLU) com-

monly used in neural networks. These basis functions are particularly well-suited

for capturing band-limited or oscillatory features found in real-world signals, such

as those in meteorological and engineering contexts.

Remark 3.2. MSNN employs a shallow, single-hidden-layer architecture. Despite

its simplicity, this structure provides sufficient representational capacity due to the

richness of the Sinc basis, enabling effective approximation of smooth and periodic

signals with computational efficiency and interpretability.

Remark 3.3. Each neuron in the MSNN is parameterized by a center and a

scaling factor. The centers define the location of the Sinc basis functions, while the

scaling factors determine their width, allowing the network to adaptively capture

localized features in the input time series.

3.3 Training of MSNN

By applying a suitable learning algorithm, the neural network parameters can be

optimized and the trained MSNN can be used for time series forecasting. An

online learning algorithm based on stochastic gradient descent has been proposed

in (Ahmadi , 2024). In this study, we employ a discrete-time Lyapunov-based

stability method to design an online training algorithm for MSNN.

In Lyapunov-based learning algorithms, parameter updates are guided by Lya-

punov stability theory. These algorithms avoid local minima by using an energy

function with a global minimum. A candidate Lyapunov function vk is selected,

and the parameters are updated to ensure ∆vk < 0. Consequently, the modeling

error asymptotically converges to zero (Ahmadi and Teshnehlab , 2017).

Let Yk be the output of the target system at time step k corresponding to input

Xk, and let Ŷk be the output of the MSNN. The modeling error is then defined as:

Ek = Yk − Ŷk. (3.9)

Following the approach in (Ahmadi , 2022), the learning algorithm is given by:

∆Wk = ΓEkS(Xk)T , (3.10)
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where Γ is the learning rate matrix.

Assume that the MSNN with optimal parameters W? satisfies:

Yk = W?S(Xk). (3.11)

Let Wk be the current estimate of W?. Then:

Ŷk = WkS(Xk), (3.12)

Ek = W?S(Xk)−WkS(Xk) = W̃kS(Xk), (3.13)

where W̃k = W? −Wk is the weight error.

Theorem 3.4. Suppose the MSNN parameters are updated using equation (3.10)

and that:

λmax(Γ) max
k
‖S(Xk)‖2 ≤ 2. (3.14)

Then, the modeling error Ek converges to zero.

Proof. Let

vk = tr
(
W̃T
k Γ−1W̃k

)
be a candidate Lyapunov function. Then:

∆vk = vk+1 − vk
= 2tr

(
W̃T
k Γ−1∆W̃k

)
+ tr

(
∆W̃T

k Γ−1∆W̃k

)
= −2tr

(
W̃T
k EkS(Xk)T

)
+ tr

(
S(Xk)ETk ΓEkS(Xk)T

)
= −2tr

(
EkE

T
k

)
+ ETk ΓEk‖S(Xk)‖2

≤ −2‖Ek‖2 + λmax(Γ)‖Ek‖2‖S(Xk)‖2

≤
(
λmax(Γ) max

k
‖S(Xk)‖2 − 2

)
‖Ek‖2. (3.15)

According to condition (3.14), we have ∆vk < 0. Following the argument in

Theorem 1 of (Ahmadi , 2022), it follows that

lim
k→∞

Ek = 0.

4. Time Series Forecasting by MSNN

Time series forecasting involves estimating future values by analyzing previously

recorded data points. This technique is widely utilized in domains such as finance,
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meteorology, and supply chain management. In recent years, artificial neural net-

works (ANNs) have been increasingly employed to enhance prediction accuracy.

A time series is represented by {xk}∞k=0, where xk is the observation at time

index k. We aim to forecast xk+1 based on the previous values:

xk+1 = f(xk, xk−1, . . . , xk−T )

= f(Xk), (4.16)

with Xk = [xk, xk−1, . . . , xk−T ]T . Let A be a Hurwitz matrix (i.e., its eigenvalues

lie within the unit circle). Adding and subtracting AXk yields:

xk+1 = AXk + g(Xk), (4.17)

where g(Xk) = f(Xk)−AXk. We approximate g using MSNN and equation (3.7):

xk+1 = AXk +W?S(Xk), (4.18)

where W? is the optimal parameter matrix. The parametric MSNN model be-

comes:

x̂k+1 = AXk + ŴkS(Xk), (4.19)

with x̂k+1 as the forecast and Ŵk the current estimate of W? at time k.

We emphasize the strategic use of this shallow MSNN architecture. Unlike

deep learning models that demand extensive data and computation, MSNNs are

ideal when data are limited—as is typical at regional weather stations. Benefits

include:

• Reduced risk of overfitting with fewer training samples.

• Computational efficiency and real-time training suitability in resource-constrained

environments.

• Higher interpretability and stability than deep architectures, which is ad-

vantageous in sensitive domains like environmental monitoring.

• A balanced solution offering modeling power, training simplicity, and pre-

dictive performance for regional forecasting with modest data.

5. Weather Forecasting

Weather forecasting is essential across numerous sectors. While traditional models

face challenges in adaptability and accuracy, ANNs provide a powerful alternative

for capturing complex, nonlinear environmental dependencies.
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Figure 2: Daily weather records in Khorramabad from early 1392 to end of 1401

(solar Hijri calendar).
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This section describes the MSNN-based weather forecasting process. We adopt

a Knowledge Discovery in Databases (KDD) approach, which involves extracting

actionable insights from raw weather data (Cordova et al. , 2021). This method

supports multi-day-ahead predictions, aiding urban and resource management in

Khorramabad.

The KDD pipeline comprises:

1. Problem Definition: We explore weather forecasting in Khorramabad

(population ∼400,000), using MSNN to predict key meteorological variables.

2. Data Collection: Daily observations from early 1392 to end of 1401 (solar

Hijri) include Tmin, Tmax, RHmin, RHmax,WS,WD,RA,QFE, as visualized

in Figures 2 and 3.

3. Data Preprocessing: Missing values are handled via interpolation. A

Butterworth filter smooths fluctuations (see Figure 4). Data are normalized

to [α, β] as:

yk = α+ (β − α)
xk −min{xk}

max{xk} −min{xk}
,

where α, β are set empirically to preserve distribution characteristics.

4. Model Training: The MSNN is trained online using the Lyapunov-based

algorithm detailed in Section 3. Hyperparameters are tuned empirically for

optimal performance.

5. Evaluation: We assess MSNN performance against MLP and LSTM models

using Mean Squared Error (MSE), Mean Absolute Error (MAE), and CPU

runtime.

6. Weather Forecasting Using the MSNN

In this section, we employ the MSNN architecture to forecast meteorological vari-

ables using data from Khorramabad, Iran. The input vector for the MSNN is

defined as

Xk = [xk, xk−1, xk−2]T .

In the result tables, nh denotes the number of hidden neurons, and h is defined

in equation (3.2). The optimal number of neurons is determined via grid search,

balancing validation error and model complexity. We evaluated the model across a

range of neuron counts and selected the configuration yielding the best predictive

performance.
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Figure 3: Histograms of daily weather data in Khorramabad (early 1392–late 1401,

solar Hijri).
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Figure 4: Preprocessed daily weather data after interpolation and filtering.
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The dataset was partitioned chronologically to preserve the temporal depen-

dencies inherent in time series data. Specifically, the first 86% of the samples were

allocated for training, and the remaining 14% for testing.

The performance of the MSNN is compared against two widely used models:

Multi-Layer Perceptron (MLP) and Long Short-Term Memory (LSTM) networks.

The MLP comprises three layers: an input layer, a single hidden layer with a

hyperbolic tangent activation function, and an output layer with a linear activation

function suitable for regression tasks. It is trained using the same online Lyapunov-

based learning algorithm as the MSNN. The input vector for the MLP is identical

to that of the MSNN:

Xk = [xk, xk−1, xk−2]T .

The LSTM model includes one hidden layer with 50 memory cells. Training

is performed using the Adam optimizer with a learning rate of 0.005. To prevent

overfitting, early stopping is applied with a patience of 20 epochs.

6.1 Forecasting of Tmin

The minimum daily temperature (Tmin) is forecasted using the three neural ar-

chitectures: MLP, LSTM, and MSNN. In the MLP, the trainable parameters are

initialized randomly within the interval [−0.05, 0.05]. For the MSNN, all adjustable

parameters are initialized to zero, reflecting the differences in structural design and

parameter sensitivity between the two networks.

Detailed hyperparameter configurations and corresponding performance met-

rics for each model are summarized in Table 1. Additionally, Figure 5 provides a

comparative visualization of the forecasting results for Tmin using the MLP and

MSNN models, offering a clear depiction of their relative accuracy and generaliza-

tion capabilities.

Table 1: MSEs of neural models in the forecasting of Tmin in Khorramabad.

Model nh α β A Γ Epochs CPU time MSE MAE

MLP 500 -1 1 -25 0.02I500 1 5.769 0.1826 0.4002

LSTM 50 0 1 - 0.005 50 166.822 0.1221 0.3162

MSNN 34 -5 5 -20 0.1I34 1 4.806 0.0565 0.2111

6.2 Forecasting of Tmax

The prediction of Tmax is performed using three distinct neural network architec-

tures: MLP, LSTM, and MSNN. In the MLP model, the trainable parameters are

initialized with random values within the range [−5, 5], whereas in the MSNN, all
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Figure 5: Implementation of MLP and MSNN to forecast the Tmin in Khorram-

abad.
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Table 2: MSEs of neural models in the forecasting of Tmax in Khorramabad.

Model nh α β A Γ Epochs CPU time MSE MAE

MLP 85 -1 1 -35 0.005I85 1 4.356 0.4018 0.5040

LSTM 50 0 1 - 0.005 20 121.703 0.1668 0.3324

MSNN 34 -3 3 -40 0.1I34 1 4.765 0.1118 0.3900

Figure 6: Implementation of MLP and MSNN to forecast the Tmax in Khorram-

abad.

adjustable parameters are initialized to zero. Additional hyperparameters, along

with the corresponding model outcomes, are provided in Table 2. Furthermore, a

comparative visualization of the Tmax forecasting results using MLP and MSNN is

presented in Figure 6, offering a clear illustration of their performance differences.

6.3 Forecasting of RHmin

The prediction of RHmin is performed using three distinct neural network archi-

tectures: MLP, LSTM, and MSNN. In the MLP model, the trainable parameters

are initialized with random values within the range [−5.5, 5.5], whereas in the

MSNN, the adjustable parameters are initialized within the range [−0.005, 0.005].

Additional hyperparameters, along with the corresponding model outcomes, are

provided in Table 3. Furthermore, a comparative visualization of the RHmin fore-
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Table 3: MSEs of neural models in the forecasting of RHmin in Khorramabad.

Model nh α β A Γ Epochs CPU time MSE MAE

MLP 70 -1 1 -40 0.01I70 1 3.795 0.6649 0.6457

LSTM 50 0 1 - 0.005 20 115.102 0.5006 0.5000

MSNN 34 -6 6 -40 0.2I34 1 5.850 0.2482 0.3599

Figure 7: Implementation of MLP and MSNN to forecast the RHmin in Khorram-

abad.

casting results using MLP and MSNN is presented in Figure 7, offering a clear

illustration of their performance differences.

6.4 Forecasting of RHmax

The prediction of RHmax is performed using three distinct neural network architec-

tures: MLP, LSTM, and MSNN. In the MLP model, the trainable parameters are

initialized with random values within the range [−5, 5], whereas in the MSNN, the

adjustable parameters are initialized within the range [−0.005, 0.005]. Additional

hyperparameters, along with the corresponding model outcomes, are provided in

Table 4. Furthermore, a comparative visualization of the RHmax forecasting re-

sults using MLP and MSNN is presented in Figure 8, offering a clear illustration

of their performance differences.
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Table 4: MSEs of neural models in the forecasting of RHmax in Khorramabad.

Model nh α β A Γ Epochs CPU time MSE MAE

MLP 70 -1 1 -40 0.01I70 1 5.835 1.5118 0.9599

LSTM 50 0 1 - 0.005 20 138.719 1.3567 0.9756

MSNN 34 -5 5 -40 0.2I34 1 6.717 1.1308 0.6815

Figure 8: Implementation of MLP and MSNN to forecast the RHmax in Khorram-

abad.

6.5 Forecasting of WS

The prediction of WS is carried out using three distinct neural network architec-

tures: MLP, LSTM, and MSNN. In the MLP model, the trainable parameters are

initialized with random values within the range [−0.025, 0.025], while the initial-

ization range for the adjustable parameters in the MSNN is set to [−0.005, 0.005].

Additional hyperparameters, along with the corresponding model outcomes, are

detailed in Table 5. Furthermore, a comparative visualization of the WS fore-

casting results using MLP and MSNN is presented in Figure 9, providing a clear

illustration of their performance differences.
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Figure 9: Implementation of MLP and MSNN to forecast theWS in Khorramabad.

Figure 10: Implementation of MLP and MSNN to forecast the WD in Khorram-

abad.
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Table 5: MSEs of neural models in the forecasting of WS in Khorramabad.

Model nh α β A Γ Epochs CPU time MSE MAE

MLP 200 -1 1 -40 0.03I200 1 3.003 0.0070 0.0883

LSTM 50 0 1 - 0.005 20 112.837 0.0041 0.0510

MSNN 34 -2 2 -40 0.2I34 1 4.707 0.0052 0.0590

Table 6: MSEs of neural models in the forecasting of WD in Khorramabad.

Model nh α β A Γ Epochs CPU time MSE MAE

MLP 200 -1 1 -40 0.01I200 1 6.932 9.3070 2.1910

LSTM 50 0 1 - 0.005 20 107.096 3.3324 1.2178

MSNN 34 -8 8 -40 0.2I34 1 5.551 0.9326 0.6690

6.6 Forecasting of WD

The prediction of WD is carried out using three distinct neural network architec-

tures: MLP, LSTM, and MSNN. In the MLP model, the trainable parameters are

initialized with random values within the range [−0.005, 0.005], while the initial-

ization range for the adjustable parameters in the MSNN is set to [−0.005, 0.005].

Additional hyperparameters, along with the corresponding model outcomes, are

detailed in Table 6. Furthermore, a comparative visualization of the WD fore-

casting results using MLP and MSNN is presented in Figure 10, providing a clear

illustration of their performance differences.

6.7 Forecasting of RA

Table 7: MSEs of neural models in the forecasting of RA in Khorramabad.

Model nh α β A Γ Epochs CPU time MSE MAE

MLP 85 -1 1 -40 0.03I85 1 4.919 0.0303 0.0887

LSTM 50 0 1 - 0.005 20 109.473 0.0315 0.0936

MSNN 34 -6 6 -40 0.2I34 1 6.768 0.0160 0.0599

The prediction of RA is carried out using three distinct neural network archi-

tectures: MLP, LSTM, and MSNN. In the MLP model, the trainable parameters

are initialized with random values within the range [−10, 10], while the initial-

ization range for the adjustable parameters in the MSNN is set to 0. Additional

hyperparameters, along with the corresponding model outcomes, are detailed in

Table 7. Furthermore, a comparative visualization of the RA forecasting results

using MLP and MSNN is presented in Figure 11, providing a clear illustration of

their performance differences.
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Figure 11: Implementation of MLP and MSNN to forecast the RA in Khorram-

abad.

6.8 Forecasting of QFE

Table 8: MSEs of neural models in the forecasting of QFE in Khorramabad.

Model nh α β A Γ Epochs CPU time MSE MAE

MLP 200 -1 1 -40 0.01I200 1 6.268 0.0729 0.1980

LSTM 30 0 1 - 0.005 50 123.598 0.0471 0.1633

MSNN 34 -3 3 -40 0.1I34 1 3.909 0.0468 0.1708

The prediction of QFE is carried out using three distinct neural network archi-

tectures: MLP, LSTM, and MSNN. In the MLP model, the trainable parameters

are initialized with random values within the range [−0.35, 0.35], while the initial-

ization range for the adjustable parameters in the MSNN is set to 0. Additional

hyperparameters, along with the corresponding model outcomes, are detailed in

Table 8. Furthermore, a comparative visualization of the QFE forecasting results

using MLP and MSNN is presented in Figure 12, providing a clear illustration of

their performance differences.
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Figure 12: Implementation of MLP and MSNN to forecast the QFE in Khorram-

abad.

6.9 Discussion

The analysis reveals that the MSNN outperforms the MLP in forecasting all the

weather components. This is particularly remarkable given that the MSNN has

a relatively simpler architecture and fewer trainable parameters compared to the

MLP. This advantage, which is related to the capabilities of the Sinc basis in

nonlinear function approximation, is critical for real-time and edge-based mete-

orological applications. The superior performance of the MSNN underscores its

efficiency and effectiveness in this specific forecasting task, making it a promising

approach for future applications in temperature prediction.

Our experimental results demonstrate that the MSNN outperforms LSTM in

terms of forecasting accuracy (measured using MSE) across most cases. Moreover,

the computational efficiency of MSNN is significantly higher; its training and in-

ference require much less CPU time compared to LSTM. This performance gain

is largely due to MSNN’s shallow structure.

Importantly, MSNN is particularly advantageous when dealing with time series

data that exhibit periodic or oscillatory behavior. In such cases, MSNN provides

a fast, interpretable, and efficient solution. On the other hand, if the time series

contains complex, long-term temporal dependencies, or if multi-step ahead fore-
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casting is required, LSTM is typically the more suitable choice due to its inherent

capability to retain and process temporal context over extended horizons.

7. Conclusion

This study emphasizes the significant challenges associated with weather forecast-

ing in Khorramabad, Iran, and showcases the innovative application of the MSNN

for predicting weather elements. Despite its relatively straightforward architecture

and fewer trainable parameters, the MSNN has outperformed traditional models,

demonstrating remarkable accuracy and efficiency. By combining advanced model-

ing techniques with real-time learning algorithms, this research establishes a robust

framework that can support informed decision-making in urban management and

disaster preparedness.

Looking to the future, there is considerable potential for further exploration

and enhancement. Expanding the datasets to include more diverse and compre-

hensive meteorological data, multivariate extensions, and integrating cutting-edge

technologies such as deep learning architectures and hybrid modeling approaches

could significantly improve the precision and reliability of weather predictions.
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