- 1. رجبزاده، علی، قاسمی، احمدرضا، آذر، عادل و حسینی، روحالله. (1397). تبیین و ارزیابی شاخصهای اولویتگذاری پروژههای صنعتی بهمنظور برنامهریزی بهینه در اقتصاد. فصلنامه علمی پژوهشهای اقتصاد صنعتی، 2(3)، 23-44. https://doi.org/10.30473/indeco.2019.28952.1064
- یزدانپرست، سید مرتضی، جامی پور، مونا و جعفری، سید محمدباقر. (1401). شناسایی و اولویتبندی کاربردهای هوش مصنوعی در بازاریابی برخط. کاوشهای مدیریت بازرگانی، 14(28), 103-137. https://doi.org/10.22034/jbar.2022.15783.3850
- پازوکی، پریسا و صراف، فاطمه و جعفری، محبوبه و باغانی، علی (۱۴۰۰) کاربرد هوش مصنوعی در شناسایی عوامل عملکردی مؤثر بر سلامت مالی. فصلنامه مهندسی مالی و مدیریت اوراق بهادار، دوره: 12، شماره: 48. https://sanad.iau.ir/fa/Article/1078874
- Ali, O., Abdelbaki, W., Shrestha, A., Elbasi, E., Alryalat, M. A. A., & Dwivedi, Y. K. (2023). A systematic literature review of artificial intelligence in the healthcare sector: Benefits, challenges, methodologies, and functionalities. Journal of Innovation & Knowledge, 8(1), 100333. https://doi.org/10.1016/j.jik.2023.100333
- (2024). 10 applications of generative AI in insurance. Retrieved July 22, 2024, from https://research.aimultiple.com/generative-ai-in-insurance
- Acosta-Prado, J. C., Hernández-Cenzano, C. G., Villalta-Herrera, C. D., & Barahona-Silva, E. W. (2024). Three Horizons of Technical Skills in Artificial Intelligence for the Sustainability of Insurance Companies. Administrative Sciences, 14(9), 190. https://doi.org/10.3390/admsci14090190
- Ahmad, H., Gulzar, M. M., Aziz, S., Habib, S., & Ahmed, I. (2024). AI-based anomaly identification techniques for vehicles communication protocol systems: Comprehensive investigation, research opportunities and challenges. Internet of Things, https://doi.org/10.1016/j.iot.2024.101245
- Alkhelb, A. A., & Alshagrawi, S. (2025). Role of artificial intelligence in healthcare insurance: systematic literature review. Exploration of Digital Health Technologies, 3, 101145. https://doi.org/10.37349/edht.2025.101145
- Clemente, G. P., Della Corte, F., Savelli, N., & Zappa, D. (2023). Special Issue “Data Science in Insurance”. Risks, 11(5), 80 https://doi.org/10.3390/risks11050080
- Djenna, A., Bouridane, A., Rubab, S., & Marou, I. M. (2023). Artificial intelligence-based malware detection, analysis, and mitigation. Symmetry, 15(3), 677. https://doi.org/10.3390/sym15030677
- Eling, M., Nuessle, D., & Staubli, J. (2022). The impact of artificial intelligence along the insurance value chain and on the insurability of risks. The Geneva Papers on Risk and Insurance-Issues and Practice, 47(2), 205-241.https://doi.org/10.1057/s41288-020-00201-7
- Fong, P. H. Y. (2023). Feasibility of artificial intelligence in improving sales and service of insurance agents in the life insurance industry of Malaysia (Doctoral dissertation, UTAR). http://eprints.utar.edu.my/id/eprint/5693
- Hassan, B. (2022). Artificial Intelligence in Social Security: Opportunities and Challenges. Журнал исследований социальной политики, 20(3), 407-418.https://doi.org/10.17323/727-0634-2022-20-3-407-418
- Iftikhar, P., Kuijpers, M. V., Khayyat, A., Iftikhar, A., & De Sa, M. D. (2020). Artificial intelligence: a new paradigm in obstetrics and gynecology research and clinical practice. Cureus, 12(2), 15.https://doi.org/10.7759/cureus.7124
- Klaus, D., Zaccarine, S., Pischulti, P., & Rollock, A. (2020, July). Establishing Assessment Criteria for Intelligent Infusion of “Smart Systems” into a Space Habitat. International Conference on Environmental Systems. https://hdl.handle.net/2346/86403
- Lim, E. (2022). B2B artificial intelligence transactions: A framework for assessing commercial liability. Singapore Journal of Legal Studies, 46-74.https://doi.org/10.2139/ssrn.4025415
- Ma, H. (2024). Research on the Application of Artificial Intelligence in Commercial Auto Insurance. Journal of Artificial Intelligence,7(3), 14. https://doi.org/10.23977/jaip.2024.070309
- Mullen, P. M. (2003). Delphi: myths and reality. Journal of health organizationandmanagement,17(1),37-52..https://doi.org/10.1108/14777260310469319
- Mohammadifar, A., Gholami, H., & Golzari, S. (2023). Novel integrated modelling based on multiplicative long short-term memory (mLSTM) deep learning model and ensemble multi-criteria decision making (MCDM) models for mapping flood risk. Journal of Environmental Management,345, 118838https://doi.org/10.1016/j.jenvman.2023.118838.
- Mahata, N. (2024). Artificial Intelligence and Machine Learning: A New Era in Technology. Journal of Research in Engineering and Computer Sciences, 2(2), 20–22. Retrieved July 22, 2025, from https://hspublishing.org/JRECS/article/download/384/337/533
- McKinsey & Company. (2020). Insurance 2030: The impact of AI on the future of insurance. Retrieved from [https://www.mckinsey.com] Ernst & Young. (2024). Generative AI in insurance. Retrieved from [https://www.ey.com](https://www.ey.com/content/dam/ey-unified-site/ey-com/en-gl/insights/insurance/documents/ey-gl-generative-ai-in-insurance-05-2024.pdf) https://www.mckinsey.com
- Neha, V., et. al., (2025). Explainable Artificial Intelligence (XAI) in Insurance, 2025 International Conference on Pervasive Computational Technologies, ICPCT 2025Pages 305 - 3102025 2025 International Conference on Pervasive Computational Technologies, ICPCT 2025Greater Noida 8 to 9 February 2025Code 208025. https://doi.org/10.1109/ICPCT64145.2025.10939062
- Hendrix, N., Veenstra, D. L., Cheng, M., Anderson, N. C., & Verguet, S. (2022). Assessing the economic value of clinical artificial intelligence: challenges and opportunities. Value in Health, 25(3), 331-339. https://doi.org/10.1016/j.jval.2021.08.015
- O'Brien, S. (2021). The criminal act of committing insurance fraud: The challenges facing insurers when detecting and preventing insurance fraud (Doctoral dissertation, Dublin Business School). Retrieved July 22, 2024, from https://esource.dbs.ie/server/api/core/bitstreams/ea70dfed-c9f7-4e5f-bd12-a6d7fb67f384/content
- Pourghasemi, H. R., Amiri, M., Edalat, M., Ahrari, A. H., Panahi, M., Sadhasivam, N., & Lee, S. (2020). Assessment of urban infrastructures exposed to flood using susceptibility map and Google Earth Engine. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 14, 1923-1937. https://doi.org/10.1109/JSTARS.2020.3045278
- Rane, N., Choudhary, S., & Rane, J. (2024). Artificial Intelligence-driven corporate finance: enhancing efficiency and decision-making through machine learning, natural language processing, and robotic process automation in corporate governance and sustainability. Natural Language Processing, and Robotic Process Automation in Corporate Governance and Sustainability (February 8, 2024). https://doi.org/10.48185/sebr.v5i2.1050
- Rao, D., & Pathak, P. (2022, October). Evolving robotic process automation (RPA) & artificial intelligence (AI) in response to Covid-19 and its future. In AIP Conference Proceedings (Vol. 2519, No. 1). AIP Publishing..https://doi.org/10.1063/5.0109615
- Selvakumar, L., & Shanmugam, V. (2024, June). Impact of artificial intelligence and machine learning in the insurance industry: A bibliometric analysis 2000-2022. In AIP Conference Proceedings(Vol. 3112, No. 1). AIP Publishing. https://doi.org/10.1063/5.0211582
- Sasubilli, S. M., Kumar, A., & Dutt, V. (2020, June). Machine learning implementation on medical domain to identify disease insights using TMS. In 2020 International Conference on Advances in Computing and Communication Engineering (ICACCE) (pp. 1-4). IEEE..https://doi.org/10.1109/ICACCE49060.2020.9154960
- Savanur, A., Niranjanamurthy, M., Amulya, M. P., & Dayananda, P. (2021, July). Application of Chatbot for consumer perspective using Artificial Intelligence. In 2021 6th International Conference on Communication and Electronics Systems (ICCES) (pp. 1479-1483). IEEE. https://doi.org/10.1109/ICCES51350.2021.9488990
- Shah, S., Ghomeshi, H., Vakaj, E., Cooper, E., & Fouad, S. (2023). A review of natural language processing in contact centre automation. Pattern Analysis and Applications, 26(3), 823-846. https://doi.org/10.1007/s10044-023-01182-8
- Singh, S. K., & Chivukula, M. (2020). A commentary on the application of Artificial Intelligence in the insurance industry. Trends in Artificial Intelligence, 4(1), 75-79. https://doi.org/10.36959/643/305
- Shabbir, J., & Anwer, T. (2018). Artificial intelligence and its role in near future.arXivpreprintarXiv:1804.01396.
https://doi.org/10.48550/arXiv.1804.01396
- Trawnih, A., Al-Masaeed, S., Alsoud, M., & Alkufahy, A. (2022). Understanding artificial intelligence experience: A customer perspective. International Journal of Data and Network Science, 6(4), 1471-1484. https://doi.org/10.5267/j.ijdns.2022.5.004
- Yeh, W. C., Kuo, C. Y., Chen, J. M., Ku, T. H., Yao, D. J., Ho, Y. C., & Lin, R. Y. (2024). Pioneering Data Processing for Convolutional Neural Networks to Enhance the Diagnostic Accuracy of Traditional Chinese Medicine Pulse Diagnosis for Diabetes. Bioengineering, 11(6), 561. https://doi.org/10.3390/bioengineering11060561
- Zarifis, A., Holland, C. P., & Milne, A. (2023). Evaluating the impact of AI on insurance: The four emerging AI-and data-driven business models. Emerald Open Research, 1(1), 12-25.. https://doi.org/10.1108/EOR-01-2023-0001
- Zhang, J., Pan, L., Han, Q. L., Chen, C., Wen, S., & Xiang, Y. (2021). Deep learning based attack detection for cyber-physical system cybersecurity: A survey. IEEE/CAA Journal of Automatica Sinica, 9(3), 377-391. https://doi.org/10.1109/JAS.2021.1004261
- Zanke, P., & Sontakke, D. (2021). Artificial Intelligence Applications in Predictive Underwriting for Commercial Lines Insurance. Advances in Deep Learning Techniques, 1(1), 23–38. Retrieved July 22, 2024, from https://thesciencebrigade.com/adlt/article/view/181
|