- Abbas, S. F., & Usman, M. (2025). Optimizing Portfolios in Digital Finance: An Integration of Cryptocurrencies with Conventional Assets. The Critical Review of Social Sciences Studies, 3(1), 2894-2913. https://www.doi.org/10.59075/wmw3j756
- Abdelmalek, W. (2024). Cryptocurrencies and portfolio diversification before and during COVID-19. EuroMed Journal of Business, 19(4), 1084-1120. https://www.doi.org/10.1108/EMJB-10-2022-0182
- Akyildirim, E., Goncu, A., & Sensoy, A. (2021). Prediction of cryptocurrency returns using machine learning. Annals of Operations Research, 297, 3-36. https://www.doi.org/10.1007/s10479-020-03575-y
- Alonso-Monsalve, S., Suárez-Cetrulo, A. L., Cervantes, A., & Quintana, D. (2020). Convolution on neural networks for high-frequency trend prediction of cryptocurrency exchange rates using technical indicators. Expert Systems with Applications, 149, 113250. https://www.doi.org/10.1016/j.eswa.2020.113250
- Bulut, M., Uyar, M. E., & Özcan, E. (2024). An integrated model for evaluating the risk factors of crypto-currencies under fuzzy environment. Engineering Applications of Artificial Intelligence, 134, 108650. https://www.doi.org/10.1016/j.engappai.2024.108650
- Boido, C., & Aliano, M. (2025). The contribution of cryptocurrencies to portfolio diversification. INVESTMENT MANAGEMENT & FINANCIAL INNOVATIONS, 22(2), 26-35. https://www.doi.org/10.21511/imfi.22(2).2025.03
- Brauneis, A., & Mestel, R. (2019). Cryptocurrency-portfolios in a mean-variance framework. Finance Research Letters, 28, 259-264. https://www.doi.org/10.1016/j.frl.2018.05.008
- Bruhn, P., & Ernst, D. (2022). Assessing the Risk Characteristics of the Cryptocurrency Market: A GARCH-EVT-Copula Approach. Journal of Risk and Financial Management, 15(8), 346. https://www.doi.org/1911-8074/15/8/346
- Chen, S., Chen, C. Y.-H., Härdle, W. K., Lee, T. M., & Ong, B. (2018). Econometric analysis of a cryptocurrency index for portfolio investment. In Handbook of Blockchain, Digital Finance, and Inclusion, Volume 1 (pp. 175-206). Elsevier. https://www.doi.org/abs/pii/B9780128104415000087
- Elendner, H., Trimborn, S., Ong, B., & Lee, T. M. (2018). The cross-section of crypto-currencies as financial assets: Investing in crypto-currencies beyond bitcoin. In Handbook of Blockchain, Digital Finance, and Inclusion, Volume 1 (pp. 145-173). Elsevier. https://www.doi.org/abs/pii/B9780128104415000075
- Han, W., Newton, D., Platanakis, E., Wu, H., & Xiao, L. (2024). The diversification benefits of cryptocurrency factor portfolios: Are they there?. Review of Quantitative Finance and Accounting, 63(2), 469-518. https://www.doi.org/10.1007/s11156-024-01260-w
- Inci, A. C., & Lagasse, R. (2019). Cryptocurrencies: applications and investment opportunities. Journal of Capital Markets Studies. https://www.doi.org/10.1108/JCMS-05-2019-0032
- Jorion, P. (1997). Value at risk: the new benchmark for controlling market risk. (No Title). https://www.doi.org/1130282270956536960
- Konno, H., & Yamazaki, H. (1991). Mean-absolute deviation portfolio optimization model and its applications to Tokyo stock market. Management science, 37(5), 519-531.
- Lahmiri, S., & Bekiros, S. (2019). Cryptocurrency forecasting with deep learning chaotic neural networks. Chaos, Solitons & Fractals, 118, 35-40. https://www.doi.org/10.1016/j.chaos.2018.11.014
- Liu, W. (2019). Portfolio diversification across cryptocurrencies. Finance Research Letters, 29, 200-205. https://www.doi.org/10.1016/j.frl.2018.07.010
- Markowitz, H. (1959). Portfolio Selection: Efficient Diversification of Investments, Wiley, New York, New York. https://www.doi.org/
- Nakano, M., Takahashi, A., & Takahashi, S. (2018). Bitcoin technical trading with artificial neural network. Physica A: Statistical Mechanics and its Applications, 510, 587-609. https://www.doi.org/10.1016/j.physa.2018.07.017
- Parvini, N., Abdollahi, M., Seifollahi, S., & Ahmadian, D. (2022). Forecasting Bitcoin returns with long short-term memory networks and wavelet decomposition: A comparison of several market determinants. Applied Soft Computing, 121, 108707. https://www.doi.org/10.1016/j.asoc.2022.108707
- Pintelas, E., Livieris, I. E., Stavroyiannis, S., Kotsilieris, T., & Pintelas, P. (2020). Investigating the problem of cryptocurrency price prediction: a deep learning approach. Artificial Intelligence Applications and Innovations: 16th IFIP WG 12.5 International Conference, AIAI 2020, Neos Marmaras, Greece, June 5–7, 2020, Proceedings, Part II 16. https://www.doi.org/10.1007/978-3-030-49186-4_9
- Platanakis, E., Sutcliffe, C., & Urquhart, A. (2018). Optimal vs naïve diversification in cryptocurrencies. Economics Letters, 171, 93-96. https://www.doi.org/10.1016/j.econlet.2018.07.020
- Rockafellar, R. T., & Uryasev, S. (2000). Optimization of conditional value-at-risk. Journal of risk, 2, 21-42. https://www.doi.org/10.21314/JOR.2000.038
- Samuelson, P. A. (1970). The fundamental approximation theorem of portfolio analysis in terms of means, variances and higher moments. The Review of Economic Studies, 37(4), 537-542. https://www.doi.org/37/4/537/1514593
- Saxena, A., Sukumar, T., Nadu, T., & Nadu, T. (2018). Predicting bitcoin price using lstm And Compare its predictability with arima model. International Journal of Pure and Applied Mathematics, 119(17), 2591-2600. https://www.doi.org/
- Wątorek, M., Drożdż, S., Kwapień, J., Minati, L., Oświęcimka, P., & Stanuszek, M. (2021). Multiscale characteristics of the emerging global cryptocurrency market. Physics Reports, 901, 1-82. https://www.doi.org/10.1016/j.physrep.2020.10.005
- Young, M. R. (1998). A minimax portfolio selection rule with linear programming solution. Management science, 44(5), 673-683. https://www.doi.org/10.1287/mnsc.44.5.673
|