| تعداد نشریات | 61 |
| تعداد شمارهها | 2,213 |
| تعداد مقالات | 18,002 |
| تعداد مشاهده مقاله | 55,466,265 |
| تعداد دریافت فایل اصل مقاله | 28,953,027 |
Copula-Based Risk Modeling: A Comparative Analysis of MCAViaR and Gaussian Copulas for Global Indices | ||
| Journal of Mathematics and Modeling in Finance | ||
| دوره 5، شماره 2، دی 2025، صفحه 77-106 اصل مقاله (896.51 K) | ||
| نوع مقاله: Research Article | ||
| شناسه دیجیتال (DOI): 10.22054/jmmf.2025.86227.1187 | ||
| نویسندگان | ||
| Mohammadreza Rostami؛ Fatemeh Rasti* ؛ Ebrahim Abbasi | ||
| Department of Management, Faculty of Social Sciences and Economics, Alzahra University, Tehran, Iran | ||
| چکیده | ||
| This study comparatively analyzes two advanced financial risk modeling frameworks: a copula-based Value-at-Risk (VaR) approach and the Multivariate Conditional Autoregressive Value-at-Risk (MCAViaR) model. We assess their effectiveness in capturing risk dynamics across diverse global markets, using daily log returns from January 1, 2010, to December 31, 2024, for TEDPIX, S&P 500, and BIST 100. This research addresses limitations of traditional linear correlation, especially during market stress. The copula methodology involves two stages: fitting ARMA-GARCH models with Student’s t-distributed innovations for marginal distributions, then employing Gaussian, Student’s t, and Clayton copulas to model inter-market dependence, including tail dependence. MCAViaR, conversely, directly estimates conditional quantiles, adapting to evolving market conditions. Empirical validation is performed through rigorous backtesting, including Kupiec, Christoffersen, and Dynamic Quantile (DQ) tests. Results indicate significant differences. While Student’s t and Clayton copulas effectively capture tail dependence (evidenced by degrees of freedom and positive Clayton parameters), all models—both copula-based and MCAViaR—universally failed the stringent DQ tests across all indices and quantiles. This highlights systematic misspecification in capturing dynamic risk. Despite this, MCAViaR showed a more adaptive nature to sudden market shocks and provided visually more responsive VaR estimates than static copula specifications. The study underscores the necessity of robust, tail-sensitive models for accurate risk assessment in cross-border portfolios. Practical recommendations include adopting Student-t or Clayton copulas, integrating regime-switching mechanisms into MCAViaR, and employing multi-horizon stress testing to enhance dynamic risk management and account for market-specific behaviors. | ||
| کلیدواژهها | ||
| Financial Risk Assessment؛ Copula-Based Risk Modeling؛ Analysis of MCAViaR؛ Gaussian Copula؛ Dynamic Quantile | ||
| مراجع | ||
|
[1] E. J. A. Abakah, A. K. Tiwari, I. P. Alagidede, and L. A. Gil-Alana. Re-examination of riskreturn dynamics in international equity markets and the role of policy uncertainty, geopolitical risk and VIX: Evidence using Markov-switching copulas. Finance Research Letters, 47:102535, 2022. [2] A. Abdymomunov, F. Curti, and A. Mihov. US banking sector operational losses and the macroeconomic environment. Journal of Money, Credit and Banking, 52(1):115–144, 2020. [3] H. K. Badaye and J. Narsoo. Forecasting multivariate VaR and ES using MC-GARCH-Copula model. The Journal of Risk Finance, 21(5):493–516, 2020. [4] K. H. Bae, G. A. Karolyi, and R. M. Stulz. A new approach to measuring financial contagion. The Review of Financial Studies, 16(3):717–763, 2003. [5] E. Bouy´e, V. Durrleman, A. Nikeghbali, G. Riboulet, and T. Roncalli. Copulas for finance: A reading guide and some applications. SSRN Electronic Journal, 2000. [6] E. C. Brechmann and C. Czado. Risk management with high-dimensional vine copulas: An analysis of the Euro Stoxx 50. Statistics & Risk Modeling, 30(4):307–342, 2013. [7] U. Cherubini, E. Luciano, and W. Vecchiato. Copula methods in finance. John Wiley & Sons, 2004. [8] B. Choro-Tomczyk, W. K. H¨ardle, and L. Overbeck. Copula dynamics in CDOs. Quantitative Finance, 14(9):1573–1585, 2013. [9] G. De Luca, G. Rivieccio, and S. Corsaro. Value-at-Risk dynamics: A copula-VAR approach. The European Journal of Finance, 26(23):223–237, 2019. [10] L. Deng, C. Ma, and W. Yang. Portfolio optimization via Pair Copula-GARCH-EVT-CVaR model. Systems Engineering Procedia, 2:171–181, 2011. [11] A. Dias, J. Han, and A. J. McNeil. GARCH copulas and GARCH-mimicking copulas (Version 1). arXiv, 2024. [12] J. Dissmann, E. C. Brechmann, C. Czado, and D. Kurowicka. Selecting and estimating regular vine copulae and application to financial returns. Computational Statistics & Data Analysis, 59:52–69, 2013. [13] P. Embrechts, A. McNeil, and D. Straumann. Correlation and dependence in risk management: Properties and pitfalls. Risk Management: Value at Risk and Beyond, 1:176–223, 2002. [14] P. Embrechts, A. McNeil, and D. Straumann. Correlation and dependence in risk management: Properties and pitfalls. Risk Management: Value at Risk and Beyond, 1:176–223, 2002. [15] R. F. Engle and S. Manganelli. CAViaR: Conditional autoregressive value at risk by regression quantiles. Journal of Business & Economic Statistics, 22(4):367–381, 2004. [16] O. Evkaya, . Gur, B. Yldrm K ¨ ulekci, and G. Poyraz. Vine copula approach to understand ¨ the financial dependence of the Istanbul Stock Exchange Index. Computational Economics, 64(5):2935–2980, 2024. [17] A. Farazmand, H. Danaeefard, M. Mostafazadeh, and M. R. Sadeghi. Trends in public administration research: A content analysis of Iranian journal articles (2004–2017). International Journal of Public Administration, 42(10):867–879, 2019. [18] M. R. Fathi, M. R. Sadeghi, S. Ghadimi, and S. Akhlaghpour. Identifying and ranking barriers to IoT implementation in the food supply chain: A case study of Kalleh company. Knowledge Economy Studies, 2(1):139–158, 2025. [19] E. W. Frees and E. A. Valdez. Understanding relationships using copulas. North American Actuarial Journal, 2(1):1–25, 1998. [20] Y. Gu, D. H. Zhang, Z. C. Du, and Z. X. Huang. Modeling and back testing CoES for systemic risk measure. Stat. Res., 39:132–145, 2022. [21] J. Hambuckers, A. Groll, and T. Kneib. Understanding the economic determinants of the severity of operational losses: A regularized generalized Pareto regression approach. Journal of Applied Econometrics, 33(6):898–935, 2018. [22] P. Hartmann, S. Straetmans, and C. D. Vries. Asset market linkages in crisis periods. Review of Economics and Statistics, 86(1):313–326, 2004. [23] A. Heinen and A. Valdesogo. Asymmetric CAPM dependence for large dimensions: The canonical vine autoregressive copula model. 2008. [24] L. Hu. Dependence patterns across financial markets: A mixed copula approach. Journal of Financial Econometrics, 4(1):120–135, 2006. [25] J.-J. Huang, K.-J. Lee, H. Liang, and W.-F. Lin. Estimating value at risk of portfolio by conditional copula-GARCH method. Insurance: Mathematics and Economics, 45(3):315– 324, 2009. [26] M. Karmakar. Dependence structure and portfolio risk in Indian foreign exchange market: A GARCH-EVT-Copula approach. The Quarterly Review of Economics and Finance, 64:275– 291, 2017. [27] A. Khorrami Chokami and G. Rabitti. A copula-based data augmentation strategy for the sensitivity analysis of extreme operational losses. Quantitative Finance, 25(2):1–9, 2025. [28] I. Komunjer. Quasi-maximum likelihood estimation for conditional quantiles. Journal of Econometrics, 128(1):137–164, 2005. [29] F. Longin and B. Solnik. Extreme correlation of international equity markets. The Journal of Finance, 56(2):649–676, 2001. [30] Y. Malevergne and D. Sornette. Testing the Gaussian copula hypothesis for financial assets dependences. Quantitative Finance, 3(4):231–250, 2003. [31] A. J. McNeil and R. Frey. Estimation of tail-related risk measures for heteroscedastic financial time series: An extreme value approach. Journal of Empirical Finance, 7(3–4):271–300, 2000. [32] M. Nourahmadi, F. Rasti, and H. Sadeqi. A review of research on financial time series clustering: A bibliometrics approach. Advances in Finance and Investment, 2(2):23–57, 2021. [33] M. Nourahmadi, F. Rasti, and H. Sadeqi. A comparative approach to financial clustering models: (A study of the companies listed on Tehran Stock Exchange). Iranian Journal of Finance, 6(4):31–55, 2022. [34] M. Nourahmadi, F. Rasti, and H. Sadeqi. The art of investment portfolio curation through centrality metrics (An enchanting network analysis of Tehran Stock Exchange’s top 50 companies). Budget and Finance Strategic Research, 4(4):35–61, 2023. [35] M. Nourahmadi and F. Rasti. Shaping fintech through regulations: Insights and future directions. Knowledge Economy Studies, 2(1):35–57, 2025. [36] R. Paredes and M. Vega. An internal fraud model for operational losses in retail banking. Applied Stochastic Models in Business and Industry, 40(1):180–205, 2024. [37] A. J. Patton. A review of copula models for economic time series. Journal of Multivariate Analysis, 110:4–18, 2012. [38] P. Povel, R. Singh, and A. Winton. Booms, busts, and fraud. The Review of Financial Studies, 20(4):1219–1254, 2007. [39] F. Rasti and H. Sadeqi. Development of financial networks based on cointegration concept (A study on Tehran Stock Exchange). Financial Engineering and Portfolio Management, 12(46):235–254, 2021. [40] F. Rasti, M. H. Soleimani Sarvestani, and S. Akhlaghpour. The role of fintech in shaping modern banking: A bibliometric analysis of past, present, and future. Knowledge Economy Studies, 1(2):43–63, 2024. [41] J. C. Rodriguez. Measuring financial contagion: A copula approach. Journal of Empirical Finance, 14(3):401–423, 2007. [42] L. Schloegl and D. O’Kane. A note on the large homogeneous portfolio approximation with the Student-t copula. Finance and Stochastics, 9(4):577–584, 2005. [43] M. R. Sadeghi, M. H. Soleimani Sarvestani, S. Akhlaghpour, and H. Aref. Exploring the implementation of codes of ethics in the Iranian ICT sector: A grounded theory approach. Knowledge Economy Studies, 1(1):157–178, 2024. [44] R. Shaker Mahmood. Multivariate statistical modeling and dependence structures using copula distributions. Journal of Applied Statistics, 37(6):1025–1035, 2010. [45] C. Stasinakis, G. Sermpinis, I. Psaradellis, and T. Verousis. Krill-Herd support vector regression and heterogeneous autoregressive leverage: Evidence from forecasting and trading commodities. Quantitative Finance, 16(12):1901–1915, 2016. [46] W. Wang and R. Wang. Measuring the systemic risk of clean energy markets based on the dynamic factor copula model. Systems, 12(12):584, 2024. [47] H. White, T. H. Kim, and S. Manganelli. VAR for VaR: Measuring tail dependence using multivariate regression quantiles. Journal of Econometrics, 187(1):169–188, 2015. | ||
|
آمار تعداد مشاهده مقاله: 2,525 تعداد دریافت فایل اصل مقاله: 295 |
||