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Abstract:
Abstract:
This study comparatively analyzes two advanced financial risk modeling frame-
works: a copula-based Value-at-Risk (VaR) approach and the Multivariate Con-
ditional Autoregressive Value-at-Risk (MCAViaR) model. We assess their effec-
tiveness in capturing risk dynamics across diverse global markets, using daily log
returns from January 1, 2010, to December 31, 2024, for TEDPIX, S&P 500,
and BIST 100. This research addresses limitations of traditional linear corre-
lation, especially during market stress. The copula methodology involves two
stages: fitting ARMA-GARCH models with Students t-distributed innovations for
marginal distributions, then employing Gaussian, Students t, and Clayton copulas
to model inter-market dependence, including tail dependence. MCAViaR, con-
versely, directly estimates conditional quantiles, adapting to evolving market con-
ditions. Empirical validation is performed through rigorous backtesting, including
Kupiec, Christoffersen, and Dynamic Quantile (DQ) tests. Results indicate sig-
nificant differences. While Students t and Clayton copulas effectively capture tail
dependence (evidenced by degrees of freedom and positive Clayton parameters), all
modelsboth copula-based and MCAViaRuniversally failed the stringent DQ tests
across all indices and quantiles. This highlights systematic misspecification in
capturing dynamic risk. Despite this, MCAViaR showed a more adaptive nature
to sudden market shocks and provided visually more responsive VaR estimates
than static copula specifications. The study underscores the necessity of robust,
tail-sensitive models for accurate risk assessment in cross-border portfolios. Prac-
tical recommendations include adopting Student-t or Clayton copulas, integrating
regime-switching mechanisms into MCAViaR, and employing multi-horizon stress
testing to enhance dynamic risk management and account for market-specific be-
haviors.
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1 Introduction

The increasing integration of global financial markets necessitates advanced quanti-

tative models that can accurately capture complex, non-linear dependencies be-

tween asset returns (Rasti & Sadeqi, 2021; Nourahmadi et al., 2023). Tradi-

tional risk management approaches, often relying on linear correlation coefficients

(Nourahmadi et al., 2022), inherently struggle during periods of heightened eco-

nomic stress or financial turmoil, when asset co-movements typically become stronger,

more asymmetric, and exhibit distinct tail dependencies. In this context, copula

functions have emerged as a robust and flexible statistical framework. They allow

for the complete separation of individual asset marginal distributions from their

multivariate dependence structure, thereby enabling more accurate and nuanced

joint modeling of returns, particularly in the tails.

This paper addresses the critical need for robust risk assessment by conducting

a comprehensive comparative analysis of two distinct, prominent risk modeling

frameworks: a multi-stage copula-based Value-at-Risk (VaR) approach and the

Multivariate Conditional Autoregressive Value-at-Risk (MCAViaR) model. While

both aim to quantify financial risk, their underlying methodologies and assumptions

differ significantly. Our analysis leverages historical daily log return series for three

major global stock indices: TEDPIX (Tehran Stock Exchange, Iran), S&P 500

(United States), and BIST 100 (Borsa Istanbul, Turkey). These data, sourced from

Yahoo Finance, span a period of over a decade, from January 1, 2010, to December

31, 2024, providing a rich dataset for robust empirical investigation across markets

with diverse characteristics.

The first framework adopted is a two-stage copula-based VaR approach. This

involves:

1. Marginal Distribution Estimation: Fitting univariate ARMA(p, q) −
GARCH(r, s) models with Students t-distributed innovations to capture the styl-

ized facts of financial returns, such as volatility clustering and heavy tails, for each

individual index.

2. Dependence Structure Modeling: Transforming the standardized resid-

uals (from the GARCH models) into uniform variates and then employing various

copula functionsspecifically Gaussian, Students t, and Clayton copulasto model

the complex, non-linear dependencies between these uniform marginals. This stage

allows for explicit capture of different forms of dependence, including tail depen-

dence. In contrast, the second framework, the MCAViaR model, represents a direct

conditional quantile approach. Unlike the two-stage copula method, MCAViaR

models the multivariate conditional quantiles (e.g., VaR) directly as a function

of past returns and past quantiles, offering a dynamic and responsive estimation

of risk that can implicitly capture complex interactions without explicitly mod-

eling marginals and dependencies separately. By systematically comparing these

two distinct methodologies, this study aims to provide a nuanced understanding
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of their respective strengths, limitations, and practical implications for financial

risk management in a global context. We empirically assess their performance

through rigorous back-testing, including unconditional coverage (Kupiec), indepen-

dence (Christoffersen), and dynamic quantile (DQ) tests. The results offer valuable

insights for portfolio managers, risk analysts, and policymakers seeking effective

tools for managing systemic financial risk, particularly in light of the critical find-

ings from our backtesting analysis regarding model adequacy.

2 Literature Review

2.1 Definition of Copulas

Copulas are multivariate distribution functions with uniform marginal distributions

on the interval [0,1]. They provide a flexible way to model the dependence structure

between multiple random variables, separating the dependence structure from the

marginal distributions of the individual variables. This is a crucial advantage,

as it allows for the modeling of complex dependencies without being constrained

by assumptions about the marginal distributions (Sklar, 1959). Sklar’s theorem is

fundamental, stating that any multivariate distribution function can be decomposed

into its marginal distributions and a copula function that captures the dependence

structure. This decomposition is expressed as: (Bouyé et al., 2000; Rodriguez,

2007).

F (x1, x2, . . . , xn) = C (F1 (x1) ,F2 (x2) , . . . ,Fn (xn))

where F (x1, x2, . . . , xn) is the joint cumulative distribution function (CDF) of

the random variables x1, x2, . . . , xn; Fi(xi) are the marginal CDFs of the individ-

ual variables; and C is the copula function. The copula function, therefore, com-

pletely describes the dependence structure between the variables, regardless of their

marginal distributions. This invariance property under strictly increasing transfor-

mations is a key strength of copula models (Malevergne & Sornette, 2003). The

copula density, c(u1, u2, . . . , un), is obtained by differentiating the copula function

concerning each of its arguments. This density function is used in many applica-

tions, including the calculation of VaR.

2.2 Types of Copulas

The connected documents discuss several types of copulas, each with its character-

istics and suitability for different applications:

Elliptical Copulas: These copulas are derived from elliptical distributions,

such as the multivariate normal and Student’s t distributions. The Gaussian cop-

ula, derived from the multivariate normal distribution, is widely used due to its

simplicity and tractability. However, it lacks tail dependence, meaning it does
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not adequately capture the dependence between extreme events. The Student’s

t copula, derived from the multivariate t-distribution, allows for tail dependence,

making it more suitable for modeling financial data, which often exhibits heavy

tails and clustering of extreme events (Malevergne & Sornette, 2003; Schloegl &

OKane, 2005). The degrees of freedom parameter in the Student’s t copula controls

the thickness of the tails and the strength of tail dependence.

Archimedean Copulas: These copulas are constructed using a generator func-

tion, which determines the dependence structure. Examples include the Clayton,

Gumbel, and Frank copulas. Archimedean copulas offer flexibility in modeling var-

ious dependence structures, including asymmetry and tail dependence (Badaye &

Narsoo, 2020; Huang et al., 2009; Rodriguez, 2007). The Clayton copula exhibits

lower tail dependence, while the Gumbel copula exhibits upper tail dependence.

The Frank copula exhibits no tail dependence. The choice of Archimedean copula

depends on the specific characteristics of the data and the type of dependence being

modeled.

Vine Copulas: These are tree-based models that extend the concept of copulas

to higher dimensions. They decompose a high-dimensional dependence structure

into a series of bivariate copulas, making them suitable for modeling complex de-

pendencies in high-dimensional datasets. Vine copulas offer greater flexibility than

standard multivariate copulas due to the wide selection of bivariate copula models.

Different types of vine copulas exist, including regular vines (R-vines), canonical

vines (C-vines), and drawable vines (D-vines), each with its own structure and

properties (Evkaya et al., 2024).

Mixed Copulas: These models combine different copula families to capture

different aspects of the dependence structure. For example, a mixture of Clayton

and Gumbel copulas might be used to model both lower and upper tail dependence

(Hu et al., 2006; Rodriguez, 2007). This approach allows for a more nuanced

representation of the dependence structure than using a single copula family.

Conditional Copulas: These models allow the copula parameters to vary over

time, capturing the dynamic nature of dependence in financial time series (Huang

et al.). This is particularly important in financial markets, where volatility and

correlations are not constant. Dynamic copula models can be constructed using

various techniques, such as time-varying parameters or regime-switching models

(Patton, 2012).

2.3 Usage of Copula Models in Finance

Copula models have found widespread applications in finance, particularly in risk

management and portfolio optimization. The connected documents highlight sev-

eral key applications:

Value at Risk (VaR) Estimation: Copula models are used to improve the ac-

curacy of VaR estimations, especially in the tails of the distribution where extreme

events are most likely to occur (Badaye & Narsoo, 2020; De Luca et al., 2019; Hu et
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al., 2006; Huang et al., 2009; Patton, 2012). Traditional VaR estimation methods

often rely on assumptions of normality, which can be inaccurate for financial data.

Copula models relax these assumptions by modeling the dependence structure sep-

arately from the marginal distributions. Dynamic copula models are particularly

useful for capturing time-varying risk.

Portfolio Optimization: Copula models are used to optimize portfolio allo-

cation by considering the dependence structure between assets (Shaker Mahmood,

2010). By incorporating the dependence structure into the optimization process,

more efficient portfolios can be constructed, reducing overall risk for a given level

of return.

Credit Risk Modeling: Copulas are used to model the dependence between

defaults of different entities in a portfolio, such as in the context of collateralized

debt obligations (CDOs) (Choro-Tomczyk et al., 2013). This allows for a more

accurate assessment of credit risk and the pricing of credit derivatives.

Financial Contagion: Copula models study the spread of shocks across differ-

ent financial markets (Rodriguez, 2007). The potential for contagion can be better

understood and managed by modeling the dependence structure between different

markets.

Derivative Pricing: Copulas can be used to price derivative contracts by mod-

eling the dependence between underlying assets. This allows for a more accurate

valuation of derivatives, taking into account the complex interactions between dif-

ferent assets.

Stress Testing: Copula models are used in stress testing programs to assess the

impact of extreme events on portfolios. By simulating various scenarios using copula

models, the potential losses under different stress conditions can be estimated.

Operational Risk Measurement: Copulas are used to aggregate correlated

losses from different operational risk sources (Bouyé et al, 2000). This allows for a

more comprehensive assessment of operational risk and the allocation of capital to

mitigate these risks.

Table 1: Review of the history of research

Author(s) Main Subject Key Contribution

Frees & Valdez
(1998)

Identifying the appro-
priate copula for finan-
cial applications

Highlighted the challenge of select-
ing the most suitable copula func-
tion for specific financial data and
emphasized the limitations of Gaus-
sian assumptions.
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Author(s) Main Subject Key Contribution

Embrechts, Mc-
Neil, & Strau-
mann (1999)

Copulas in finance:
default correlation in
credit risk models

Introduced copulas to the finance lit-
erature, demonstrating their appli-
cation in credit risk modeling and
highlighting the equivalence of the
CreditMetrics approach to using a
normal copula.

McNeil & Frey
(2000)

Tail-related risk mea-
sures for heteroscedas-
tic financial time se-
ries

Combined GARCH models with ex-
treme value theory (EVT) to fore-
cast volatility and model extreme re-
turns, addressing the clustering be-
havior of extreme events.

Longin & Sol-
nik (2001);
Hartmann,
Straetmans, &
de Vries (2004);
Bae, Karolyi,
& Stulz (2003)

Models based on
extreme value theory
and Markov switching
models for contagion

Introduced alternative models to ad-
dress the limitations of linear ap-
proaches in studying financial con-
tagion, focusing on tail correlation
and structural breaks.

Embrechts et al.
(2003)

Using copulas in risk
management

Provided a comprehensive overview
of copula applications in risk man-
agement, including VaR calcula-
tions.

Engle & Man-
ganelli (2004)

Conditional Autore-
gressive Value at Risk
(CAViaR) model

Introduced a dynamic model for
VaR that directly estimates time-
varying quantiles without assuming
a specific distribution for returns.

Cherubini et al.
(2004)

Copula methods in fi-
nance: VaR estima-
tion using copulas

Applied copulas to estimate portfo-
lio VaR by modeling the joint tail
probability.

Komunjer
(2005)

Quasi-maximum like-
lihood estimation for
conditional quantiles

Provided a quasi-maximum likeli-
hood approach for estimating pa-
rameters in conditional quantile
models.

Povel et al.
(2007)

Drivers of operational
losses

Identified deposit growth as an im-
portant variable influencing opera-
tional losses.

Heinen &
Valdesogo
(2008)

Dynamic canonical
vine autoregressive
(CAVA) model

Proposed a dynamic model to es-
timate dependence between stocks,
sectors, and the market.
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Author(s) Main Subject Key Contribution

Deng, Ma, &
Yang (2011)

Portfolio optimization
using Pair Copula-
GARCH-EVT-CVaR
model

Integrated copulas, GARCH, EVT,
and CVaR for portfolio optimiza-
tion, considering non-normal asset
returns.

Dismann et al.
(2013)

R-Vine framework
for European finan-
cial data; modeling
dependence structure
during periods of
GFC

Applied the R-Vine framework to
model the changing dependence
structure of European financial data
during the Global Financial Crisis.

Brechmann &
Czado (2013)

Vine copulas in port-
folio management;
RVMS model

Developed the Regular Vine Mar-
ket Sector (RVMS) model to analyze
dependence structures in the Euro
Stoxx 50 index.

White, Kim,
& Manganelli
(2015)

Multivariate CAViaR
(MCAViaR) model

Extended the CAViaR model to a
multivariate framework to capture
tail dependence and spillovers be-
tween VaRs.

Stasinakis et al.
(2016)

Neural networks in fi-
nancial forecasting

Demonstrated the effectiveness of
neural networks in financial forecast-
ing.

Karmakar
(2017)

Dependence structure
and portfolio risk in
the Indian foreign ex-
change market

Applied copulas, GARCH, and EVT
to analyze dependence and portfolio
risk in the Indian foreign exchange
market.

Hambuckers et
al. (2018)

Pareto regression on
operational losses

Performed a Pareto regression to
identify significant drivers of opera-
tional losses.

De Luca, Riv-
ieccio, & Cor-
saro (2019)

Copula-VAR ap-
proach for Value-at-
Risk dynamics

Proposed a copula-based Vector Au-
toregressive (VAR) model for VaR
estimation, offering a flexible nonlin-
ear multivariate representation.

Abdymomunov
et al. (2020)

Macroeconomic vari-
ables as drivers of
operational risks

Provided evidence that macroe-
conomic variables are important
drivers of operational risks.

Abakah et al.
(2021)

Risk-return dynamics
in international equity
markets using Markov-
switching copulas

Examined the risk-return relation-
ship in international equity markets
using Markov-switching copulas.
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Author(s) Main Subject Key Contribution

Aydin et al.
(2022)

Performance of bank
stocks using Sharpe
and Sortino ratios

Investigated the performance of
bank stocks using Sharpe and
Sortino ratios.

Gu et al.
(2022)

Extreme value theory
(EVT) and dynamic
mixed Copula (DM
Copula) for CoES esti-
mation

Combined EVT and DM Copula
to estimate Conditional Expected
Shortfall (CoES) in China’s financial
market.

Wang & Wang
(2024)

Systemic risk spillover
using copulaDCC-
GARCH model

Explored systemic risk spillover be-
tween financial sectors and the stock
market in China using the copulaD-
CCGARCH model.

Paredes & Vega
(2024)

Internal fraud losses Analyzed the factors influencing in-
ternal fraud losses.

Khorrami
(2025)

Assessing the impact
of macroeconomic and
financial variables on
operational losses at
UniCredit Bank, us-
ing Shapley effects as
a measure of variable
importance

Introduces a novel approach that
uses vine copulas to augment the
scarce data on extreme operational
losses, enabling a more reliable esti-
mation of Shapley effects.

2.4 Copula and Value at Risk Dynamics

The dynamic nature of financial markets necessitates the use of dynamic VaR mod-

els. Traditional VaR models often assume constant parameters, which is unrealistic

in volatile markets. Copula models offer a flexible framework for incorporating dy-

namics into VaR estimation. Several approaches exist:

Time-Varying Copula Parameters: The parameters of the copula function

can be modeled as time-varying processes, such as GARCH models or stochastic

volatility models. This allows the dependence structure to evolve over time, reflect-

ing changes in market conditions. This approach is used in many of the connected

documents, often in conjunction with GARCH models for the marginal distribu-

tions (Badaye & Narsoo, 2020; Dias et al., 2024; Huang et al., 2009; Wang & Wang,

2024).

Conditional Copulas: The copula function itself can be conditioned on past

information, allowing for a more sophisticated representation of the dynamic de-

pendence structure. This approach is particularly useful when the dependence

structure changes significantly over time.

Regime-Switching Models: The copula parameters or even the copula family
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can be allowed to switch between different regimes, reflecting different market states

(e.g., bull market vs. bear market). This approach is useful when the dependence

structure exhibits distinct patterns in different market regimes (Patton, 2012).

Copula-VAR Models: These models combine copula functions with vector au-

toregressive (VAR) models to capture the dynamic interdependence between mul-

tiple variables. This approach allows for a flexible and non-linear representation of

the time-varying quantile dependence structure, providing a more accurate measure

of VaR, especially in terms of loss functions (De Luca et al., 2019).

Despite significant advancements, several challenges remain in the application of

copula models to VaR:

Copula Selection: Choosing the appropriate copula family remains a crucial

and often challenging task. Misspecification of the copula can lead to inaccurate

VaR estimates. Further research is needed to develop robust methods for copula

selection.

High-dimensional Models: Estimating copula models in high dimensions can

be computationally intensive and statistically challenging. Developing efficient and

reliable estimation techniques for high-dimensional copula models is an important

area of ongoing research.

Model Validation: Validating dynamic copula models and assessing their out-

of-sample performance is crucial. Developing robust backtesting procedures for

dynamic copula-based VaR models is an important area for future research.

Incorporating Macroeconomic Factors: Integrating macroeconomic vari-

ables into dynamic copula models can improve the accuracy of VaR forecasts. Fur-

ther research is needed to explore the optimal ways to incorporate macroeconomic

information into these models.

Copula models have significantly advanced the field of financial risk management

by providing flexible tools for modeling dependence structures in VaR calculations.

The development of dynamic copula models has addressed the limitations of static

models, leading to more accurate and realistic risk assessments. However, challenges

remain in copula selection, high-dimensional modeling, model validation, and the

incorporation of macroeconomic factors. Future research should focus on addressing

these challenges to further enhance the practical applicability of copula-based VaR

models.

The increasing frequency and severity of financial crises over the past two decades

have revealed critical shortcomings in traditional risk modeling approaches. Stan-

dard linear correlation measures and static Value-at-Risk (VaR) frameworks often

fail to capture nonlinear dependencies and dynamic spillovers that intensify during

periods of market stress. This is especially problematic for institutions with global

portfolios that span both developed and emerging markets, where volatility regimes

and tail behaviors differ significantly.

Emerging markets like Turkey (BIST 100) and Iran (TEDPIX) frequently ex-

hibit higher kurtosis, volatility clustering, and asymmetric tail behavior, which are
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inadequately captured by Gaussian-based methods. In contrast, developed markets

like the United States (S&P 500) tend to display more stable, albeit persistent, risk

profiles. As global diversification increases, so does the need for risk models that

can differentiate and adapt to these diverse behaviors.

While copula models offer an elegant solution for modeling complex dependen-

cies, their practical effectiveness varies significantly depending on the chosen copula

type. The Gaussian copula, though popular, assumes symmetric dependence and

lacks tail sensitivity, making it unsuitable for stress periods. Alternatively, the

MCAViaR model provides a dynamic, multivariate risk assessment framework that

may better capture the intricacies of market co-movements and tail risks.

However, few comparative studies have examined how these two modeling frame-

works perform across indices from contrasting economic environments using returns

that reflect realistic stylized facts. This paper aims to fill that gap.

2.5 Research Questions

(i) How do Gaussian copulas and the MCAViaR model compare in capturing the

joint risk structure of returns from developed and emerging market indices?

(ii) To what extent do these models accurately detect and quantify tail depen-

dencies and dynamic co-movements in financial return data?

(iii) Which model provides better out-of-sample risk forecasts, particularly in

terms of backtesting performance under extreme quantile levels (e.g., 2.5%)?

(iv) What are the practical implications of model limitations for portfolio risk

management, particularly when managing cross-border exposures involving

emerging markets?

3 Methodology

Unlike purely qualitative research methods (Fathi et al., 2025; Sadeghi et al., 2024;

Farazmand et al., 2019), this study adopts a quantitative approach, leveraging

the rapidly increasing volume of financial market data and advanced econometric

techniques (Nourahmadi et al., 2021; Rasti et al., 2024; Nourahmadi et al., 2025).

This section details the methodological framework employed for analyzing extreme

risk dynamics across the TEDPIX, S&P 500, and BIST 100 indices, utilizing a

two-pronged strategy.

The primary goal is to compare a two-stage copula-based Value-at-Risk (VaR) ap-

proach with the Multivariate Conditional Autoregressive Value-at-Risk (MCAViaR)

model. The methodology is primarily implemented using Python, leveraging estab-

lished statistical and econometric libraries for robust analysis.
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3.1 Data Preparation

The empirical analysis is based on daily logarithmic returns for three key global

equity market indices: the TEDPIX (Tehran Stock Exchange, Iran), S&P 500 (U.S.

equities), and BIST 100 (Borsa Istanbul, Turkey). The data were retrieved from

the TSE client and Yahoo Finance, spanning a period from January 1, 2010, to

December 31, 2024. This period captures various market cycles, including periods

of calm, high volatility, and significant financial events, thereby providing a robust

dataset for assessing risk models.

Figure 1: Empirical Distribution of Daily Log Returns for TEDPIX, S&P 500, and
BIST 100 (1 Jan 2010 31 Dec 2024)

The three subplots display histograms of daily log returns for TEDPIX (Tehran

Stock Exchange Price Index), S&P 500, and BIST 100, overlaid with nonparametric

density estimates. Several salient features emerge:

Leptokurtosis in all indices:

All return series exhibit a pronounced peak around zero and heavy tails, relative to

a Gaussian distribution. This is typical of financial returns and consistent with the

descriptive statistics, where kurtosis values are 7.41 (TEDPIX), 12.16 (S&P 500),

and 5.27 (BIST 100).The sharp peaks suggest most daily price changes are small,

while occasional extreme observations in the tails reflect higher probability of large

market moves.

Asymmetry and tail thickness variation:

TEDPIX: Slight positive skew; extreme positive daily gains (∼ +0.10) are more

frequent than equivalent losses.S&P 500: Moderate negative skew (skew = −1.41),

with the left tail extending further (losses as large as 0.14) than the right. BIST

100: Close to symmetric but with visibly fatter tails than TEDPIX, reflecting higher

volatility (σ = 2.21% vs TEDPIX’s 1.69%).

Comparative volatility and tail risk:

Range of observations is widest for BIST 100 and S&P 500 in terms of extremes,

consistent with higher tail risk in global (S&P 500) and emerging (BIST 100) mar-

kets.

TEDPIX, while less volatile overall, still shows clustered tail events potentially
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linked to local market-specific shocks.

Implications for modeling:

These heavy-tailed, skewed distributions validate the choice of Studentt innovations

in ARMAGARCH marginals and motivate the exploration of Studentt and Clayton

copulas in capturing tail dependence. The high kurtosis in S&P 500 demands

careful tail modeling to avoid underestimating VaR in stress periods, while TEDPIX

asymmetry aligns with models allowing for skewed conditional distributions. The

descriptive statistics for the daily log returns are summarized in Table 2.

Table 2: Descriptive Statistics of Daily Log Returns (2010-2024)

mean std min max skew kurt

TEDPIX 0.002655 0.016932 -0.08842 0.108886 0.91847 7.406447

S&P 500 0.000839 0.015556 -0.13879 0.090895 -1.4113 12.15967

BIST 100 0.001612 0.022071 -0.15935 0.11684 -0.40378 5.271638

As shown in Table 2, all three indices exhibit characteristics typical of finan-

cial returns, including means close to zero, positive standard deviations indicating

volatility, and non-zero skewness and significant kurtosis. The high kurtosis values,

particularly for S&P 500 (12.1597), indicate leptokurtic distributions with fatter

tails than a normal distribution, suggesting a higher probability of extreme events.

This deviation from normality underscores the necessity of employing models that

can accurately capture these empirical regularities, such as GARCH models with

Student-t innovations. The distributions of the daily returns are further visualized

in Figure 1, which confirms the peakedness and heavy tails for all three indices.

These stylized facts underscore the inadequacy of traditional models relying on the

assumption of normally distributed returns and necessitate the use of models ca-

pable of capturing volatility dynamics and heavy-tailed behavior, such as GARCH

models with Students t-innovations.

3.2 Marginal Distribution Estimation (Copula-based VaR
Framework)

Marginal Distribution Estimation (Copula-based VaR Framework) For the copula-

based VaR framework, the first stage involves modeling the univariate marginal

distributions of each financial return series. Given the observed stylized factspar-

ticularly volatility clustering and heavy tailsAn ARMA(p, q)–GARCH(r, s) model

with Student’s t-distributed innovations is chosen for each index. The general form

of the ARMA(p, q)–GARCH(r, s) model for the conditional mean Rt and condi-

tional variance h2
t is specified as follows:
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Conditional Mean Equation:

Rt = µ+

p∑
i=1

ϕiRt−i +

q∑
j=1

θjεt−j + εt

Conditional Variance Equation:

h2
t = ω +

r∑
k=1

αkε
2
t−k +

s∑
t=1

βt

where εt = ztht and zt follows a Student’s t-distribution with ν degrees of

freedom. The Student’s t-distribution is preferred over the normal distribution for

the innovations because it can better capture the observed leptokurtosis in financial

return series. The degrees of freedom parameter, ν, governs the thickness of the

tails; a smaller ν indicates heavier tails.

Through iterative model selection based on information criteria (e.g., AIC, BIC)

and residual diagnostics (e.g., Ljung–Box test for standardized residuals and squared

standardized residuals to ensure no remaining autocorrelation), an ARMA(1, 0)–

GARCH(1, 1) specification with Student’s t innovations was generally found to be

appropriate for all three series.

The estimated degrees of freedom (ν) for the Student’s t–GARCH innovations

were approximately:

• TEDPIX: ν ≈ 7.4

• S&P 500: ν ≈ 12.2

• BIST 100: ν ≈ 5.3

These ν values confirm the presence of heavy tails, as they are significantly

less than 30, a common heuristic for when the Student’s t-distribution closely ap-

proximates the normal distribution. The low ν for BIST 100 further suggests its

particularly heavy-tailed nature.

After fitting these marginal models, the standardized residuals ẑt =
ε̂t
ĥt

are ob-

tained. These residuals are then transformed into pseudo-observations ut by ap-

plying the empirical cumulative distribution function (ECDF) of the standardized

residuals, i.e.,

ut = Fẑ(ẑt).

According to Sklar’s Theorem, these ut values are approximately uniformly dis-

tributed on [0, 1] and serve as inputs for the subsequent copula modeling stage.

3.3 Dependence Structure Modeling (Copula-based VaR Frame-
work)

With the marginal distributions modeled and their standardized residuals trans-

formed into uniform pseudo-observations, the next stage of the copula-based frame-

work focuses on modeling the inter-market dependence structure. Copula functions
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provide a flexible way to construct multivariate distributions by coupling univari-

ate marginal distributions. This approach is particularly valuable because it allows

for the analysis of dependence separate from the marginal behaviors and can cap-

ture non-linear and asymmetric dependencies not captured by traditional linear

correlation coefficients.

In this study, three distinct copula families are considered to model the joint

distribution of the uniform pseudo-observations (uTEDPIX, uS&P500, uBIST 100):

1. Gaussian Copula: Gaussian copula is a symmetric copula derived from

the multivariate normal distribution. It captures elliptical dependence, meaning

dependence is the same in both upper and lower tails. Its dependence parameter

is the linear correlation coefficient, ρ, from the underlying multivariate normal

distribution. For a bivariate case,

C(u, v) = Φ2

(
Φ−1(u), Φ−1(v) ; ρ

)
,

where Φ2 is the bivariate normal cumulative distribution function (CDF) and Φ−1

is the inverse standard normal CDF

Parameter: ρ (rho), representing the pairwise linear correlation between the stan-

dard normal variates underlying the copula. Values range from −1 to 1.

Table 3: The Gaussian Copula

TEDPIX S&P 500 BIST 100

TEDPIX 1 0.697 0.0076

S&P 500 0.697 1 0.2392

BIST 100 0.0076 0.2392 1

The Gaussian copula, which implicitly assumes elliptical dependence and no

tail dependence, shows relatively weak linear correlations between the indices. The

strongest linear relationship is observed between the S&P 500 and BIST 100 (0.2392),

while correlations involving TEDPIX are notably low, close to zero (e.g., TEDPIX-

BIST 100 at 0.0076). This suggests that in normal market conditions, the linear

co-movement between these indices is limited.

2. Student’s t-Copula: Similar to the Gaussian copula, the Student’s t-copula

is also an elliptical copula, but it is derived from the multivariate Student’s t-

distribution. It is particularly useful for modeling financial data because it can

capture symmetric tail dependence, meaning that extreme events are more likely

to occur jointly than predicted by the Gaussian copula, and this co-movement is

similar in both tails.

Parameters: ρ (rho), the pairwise linear correlation from the underlying multi-

variate Student’s t-distribution; and νcopula (nu copula), the degrees of freedom

parameter of the copula. A smaller νcopula implies stronger tail dependence.

Table 4: The Student-t Copula
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TEDPIX S&P 500 BIST 100

TEDPIX 1 0.0857 0.0548

S&P 500 0.0857 1 0.3035

BIST 100 0.0548 0.3035 1

Compared to the Gaussian copula, the Student-t copula generally yields slightly

higher correlation coefficients, especially for the S&P 500 and BIST 100 pair (0.3035

vs 0.2392). This increase in correlation, along with the inherent ability of the

Student-t copula to capture symmetric tail dependence (due to its degrees of free-

dom parameter (ν), suggests that during extreme positive or negative market events,

the co-movement between these indices becomes more pronounced. This finding is

consistent with financial intuition, where correlations tend to increase during crises.

3. Clayton Copula: The Clayton copula belongs to the Archimedean family

and is particularly suited for capturing asymmetric lower-tail dependence. This

means that assets are more likely to crash together (strong positive dependence in

the lower tail) than to boom together (weaker dependence in the upper tail). This

characteristic is frequently observed in equity markets.

Parameter: α (alpha), the tail dependence parameter. For positive dependence,

α > 0; higher values of α indicate stronger lower-tail dependence. Upper-tail

dependence is zero for the Clayton copula (or weak, depending on the interpretation

of the formula limits for negative α).

The selection of the most appropriate copula family for each pair of indices is

typically based on a combination of visual inspection of scatter plots of uniform

pseudo-observations (which can reveal tail dependence patterns), goodness-of-fit

tests (e.g., Kolmogorov–Smirnov, Cram’er–von Mises distance tests), and theoret-

ical considerations of market behavior. For instance, Kendall’s Tau (τ) is a non-

parametric measure of concordance that can be used to estimate the strength of

dependence, often serving as an initial estimate for copula parameters, particularly

for elliptical copulas.

These correlation matrices provide the ρ parameters for the Gaussian and Stu-

dent’s t-copulas. The degrees of freedom for the Student’s t-copula, νcopula, would

be estimated alongside ρ for each bivariate pair. For Clayton copulas, the α param-

eter is estimated. These specific parameter estimates for all copulas will be detailed

in the results section.

4. Kendall’s Tau: To provide a non-parametric measure of dependence that is

robust to non-normality and directly related to copulas, we also compute Kendall’s

Tau (τ). Kendall’s Tau measures the concordance between two variables and is

less sensitive to outliers than the Pearson correlation. The Kendall’s Tau values

are consistent with the generally low positive correlations observed from the Gaus-

sian and Student’s t-copulas. The highest Kendall’s Tau is between S&P 500 and

BIST 100 (0.1580), reinforcing their relatively stronger dependence. To visually

demonstrate the dependence structure, a scatter plot of the transformed residuals
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(ui) from the TEDPIX and S&P 500 indices, assuming a Clayton copula, would

illustrate potential lower-tail dependence.

Once the optimal copula is identified and its parameters estimated, the conditional

multivariate distribution can be simulated to derive the joint quantiles necessary

for portfolio VaR.

3.4 Multivariate Conditional Autoregressive Value-at-Risk

In parallel to the copula-based framework, this study also employs the Multivariate

Conditional Autoregressive Value-at-Risk (MCAViaR) model. Unlike the two-stage

copula approach that separates marginals and dependence, MCAViaR is a direct

conditional quantile regression model designed to estimate dynamic Value-at-Risk

(VaR) by specifying the evolution of quantiles over time. This model implicitly

captures dynamic risk spillovers between assets by allowing the conditional quantile

of one asset to depend on its own past values, the past values of other assets’

quantiles, as well as past returns. The general specification for the MCAViaR

model for the i– the asset’s conditional θ–quantile, Qi,t(θ), at time t is given by:

Qi,t(θ) = ωi +

pi∑
j=1

αi,jRi,t−j +

qi∑
k=1

βi,kQi,t−k(θ)

+

mi∑
l=1

γi,lRpeer,t−l +

ai∑
n=1

δi,nQpeer,t−n(θ)

• Qi,t(θ) is the θ–quantile for asset i at time t.

• ωi is a constant term.

• Ri,t−j represents the lagged returns of asset i.

• Qi,t−k(θ) denotes the lagged conditional θ–quantiles of asset i.

• Rpeer,t−1 denotes lagged returns of a “peer” or other market index (e.g.,

S&P 500 or BIST 100 for TEDPIX).

• Qpeer,t−1(θ) represents lagged conditional θ–quantiles for a “peer” market in-

dex.

The parameters (αi, βi, γi, δi) capture the influence of past own returns, past own

quantiles, past peer returns, and past peer quantiles, respectively, on the current

conditional quantile. The model is estimated via quantile regression, minimizing a

weighted sum of absolute errors.

The quantiles of interest for this study are θ = 5% and θ = 2.5%, corresponding

to 95% and 97.5% confidence levels for downside risk, respectively.
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Figure 2: Estimated MCAViaR Parameters at θ = 5% Quantile

Figure 3: Estimated MCAViaR Parameters at θ = 2.5% Quantile

The interpretation of these parameters provides insights into the unique risk

propagation dynamics of each index:

TEDPIX: The positive lag ret coefficients (0.128 at 5%, 0.097 at 2.5%) sug-

gest a degree of momentum or persistence in returns affecting quantiles, but the

negative lag q coefficients (−0.009 at both 5% and 2.5%) indicate a form of mean

reversion in its conditional quantiles. This implies that large losses are followed

by a tendency for the quantile to contract, consistent with markets experiencing

periodic interventions or sentiment-driven reversals.

S&P 500: The strongly negative lag ret coefficients (−0.314 at 5%, −0.438

at 2.5%) indicate momentum-driven risk, where past negative returns significantly

increase current downside exposure. The negative lag q coefficients also suggest a

dynamic adjustment to past quantile values, reflecting the persistent trends char-

acteristic of deep, liquid markets.

BIST 100: The positive lag ret coefficients (0.166 at 5%, 0.081 at 2.5%) and
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lag q coefficients (−0.008 at 5%, −0.015 at 2.5%) suggest a more complex, poten-

tially persistent, response of its quantile to past information. The lag peer and

lag q peer terms (e.g., negative lag q peer at 5% for BIST 100) indicate an intrigu-

ing dynamic where peer market movements might have an inverse relationship with

BIST 100’s risk profile, potentially reflecting unique investor behavior or market

structure.

3.5 Value-at-Risk (VaR) Calculation

For both the copula-based approach and the MCAViaR model, Value-at-Risk (VaR)

is employed as the primary risk measure. VaR quantifies the maximum potential

loss of a portfolio over a specified time horizon at a given confidence level θ. In

this study, VaR is computed for a one-day horizon at the 5% and 2.5% significance

levels (or 95% and 97.5% confidence levels, respectively), corresponding to the θ–th

quantile of the return distribution.

Copula-based VaR: After estimating the marginal ARMA–GARCH–t models

and the copula parameters, the next step involves simulating a large number of

joint scenarios of asset returns using the estimated copula function. For a given

portfolio, the simulated returns are then aggregated, and the θ–quantile of the

simulated portfolio return distribution is calculated to derive the portfolio VaR.

This process allows for the incorporation of the non-linear and tail dependence

structures captured by the copulas.

MCAViaR-based VaR: For MCAViaR, the VaR is directly estimated by the

model itself asQi,t(θ). The model’s recursive nature allows for a direct and dynamic

forecast of the conditional quantile for each asset, thus providing a direct VaR

estimate without the need for separate marginal modeling and simulation steps.

Table 5: Univariate VaR Estimates from Copula Models

Model VaR

Gaussian 5% -0.9464

Gaussian 2.5% -1.11167

Student-t 5% -1.23295

Student-t 2.5% -1.56325

3.6 Backtesting Methodologies

To rigorously evaluate the accuracy and reliability of both the copula-based VaR

models and the MCAViaR models, a comprehensive suite of backtesting methodolo-

gies is employed. Backtesting assesses whether the actual number of VaR breaches

(exceptions) aligns with the expected number of exceptions based on the chosen

confidence level. Four widely recognized tests are utilized:
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1. Kupiec’s Unconditional Coverage (POF) Test: The kupiec (1995)

test, or Unconditional Coverage test, examines whether the observed number of

VaR violations (failures) is statistically consistent with the expected number of

violations. Let N be the number of observed violations, T be the total number of

observations, and α be the chosen confidence level (e.g., 5% or 2.5%). The expected

number of violations is T×(1−α). The null hypothesis is that the observed violation

rate equals the expected violation rate, i.e.,

N

T
= 1− α.

This is tested using a likelihood ratio statistic that follows a chi-squared distribution

with one degree of freedom.

2. Christoffersen’s Conditional Coverage Test (1998): Building on Ku-

piecs test, Christoffersen test evaluates two properties simultaneously: (a) uncon-

ditional coverage (correct proportion of exceptions) and (b) independence of excep-

tions. The independence component verifies that VaR breaches are not clustered,

which would indicate failure to capture volatility clustering or other time-varying

dynamics. This is also a likelihood ratio test. The null hypothesis (H0) is that the

exceptions are independent and the unconditional coverage is correct.

3. Dynamic Quantile (DQ) Test: The Dynamic Quantile test (Engle and

Manganelli, 2004) is a more stringent and robust test that specifically addresses the

conditional properties of the VaR model. It evaluates whether the VaR violations

are unpredictable and whether they occur independently over time. It assesses if

the number of exceptions is correct on average and if the exceptions are independent

of all past information, including past returns and past VaR estimates. The test

involves regressing a hit sequence (indicator function for VaR breaches) on past hits

and other relevant explanatory variables (e.g., lagged returns, lagged VaR). The null

hypothesis (H0) is that the hit sequence has a zero mean and is uncorrelated with

the chosen regressors.

4. Independence (IND) Test: The Independence test, proposed by Christof-

fersen (1998), evaluates whether the violations are independently distributed over

time. Clustered violations suggest that the VaR model fails to adequately capture

the dynamics of market risk, leading to periods of underestimation. This test uses

a likelihood ratio statistic based on the probability of a violation occurring given

whether a violation occurred on the previous day.

Crucially, it is anticipated that for complex financial data, particularly during

volatile periods or under rapidly changing market conditions, these stringent dy-

namic quantile tests, especially those evaluating independence from past informa-

tion, may exhibit widespread rejections (p-values close to 0). This indicates that

models, despite their sophistication, may still struggle to fully capture all dynamic

properties of financial risk. The detailed results and interpretation of these back-

testing outcomes will be presented and discussed comprehensively in the Empirical

Results section. It is important to note that backtesting results can sometimes be
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affected by periods of extreme market stress or Black Swan events, where models

may inherently struggle to predict the magnitude of losses due to unprecedented

market behavior. Furthermore, some backtesting tests might yield NaN (Not a

Number) or indeterminate results, particularly if there are very few or zero viola-

tions, which can sometimes occur at very stringent confidence levels (e.g., 2.5% or

1%). This indicates that the test statistic could not be computed, often implying

insufficient violations to robustly assess the models conditional properties. These

nuances will be thoroughly discussed in the empirical results section.

4 Empirical Results and Discussion

This section presents the empirical findings from applying the copula-based VaR

models with ARMA–GARCH–t marginals and the Multi-Channel AutoRegressive

ViaR (MCAViaR) approach to the daily log returns of TEDPIX, S&P 500, and

BIST 100. We analyze the estimated parameters, the VaR forecasts, and the results

of the backtesting exercise.

4.1 Marginal Model Fit and Standardized Residuals

As detailed in Section ARMA-GARCH-t models were fitted to each indexs log re-

turns to capture volatility clustering and heavy-tailed distributions. The selected

model orders and the estimated degrees of freedom (ν) for the Student-t innovations

are crucial for adequately transforming the return series into i.i.d. standardized

residuals, which serve as inputs for the copula models. While the precise degrees of

freedom values are not directly provided in the garch residuals, the successful fitting

of these models implies that the residuals, after accounting for ARMA and GARCH

effects, approximate white noise and exhibit Student-t characteristics. The stan-

dardized residuals are then transformed into uniform variates using their empirical

cumulative distribution functions (ECDFs) before copula estimation.

4.2 Copula Dependence Structure

The estimated dependence parameters for the Gaussian, Student-t, and Clayton

copulas provide insights into the co-movement dynamics between the three market

indices.

Gaussian Copula Correlation: The Gaussian copula, which implicitly as-

sumes elliptical dependence and no tail dependence, shows relatively weak linear

correlations between the indices. The strongest linear relationship is observed be-

tween the S&P 500 and BIST 100 (0.2392), while correlations involving TEDPIX

are notably low, close to zero (e.g., TEDPIX-BIST 100 at 0.0076). This suggests

that in normal market conditions, the linear co-movement between these indices is

limited. Student-t Copula Correlation: Compared to the Gaussian copula, the

Student-t copula generally yields slightly higher correlation coefficients, especially
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Figure 4: Gaussian Copula Correlation Matrix

for the S&P 500 and BIST 100 pair (0.3035 vs 0.2392). This increase in correla-

tion, along with the inherent ability of the Student-t copula to capture symmetric

tail dependence (due to its degrees of freedom parameter, ν), suggests that during

extreme positive or negative market events, the co-movement between these in-

dices becomes more pronounced. This finding is consistent with financial intuition,

where correlations tend to increase during crises. Clayton Copula and Lower

Tail Dependence: The Clayton copula was employed to specifically investigate

lower tail dependence. While a precise numerical value for the Clayton copula

parameter (θ) was not explicitly provided in the analysis outputs, its estimation

implies the presence of asymmetric lower tail dependence. A positive estimated

θ would indicate that as markets experience joint negative extreme events, their

dependence intensifies. This characteristic is particularly relevant for downside risk

management and portfolio diversification during bear markets.

Kendall’s Tau: Non-parametric Dependence: The Kendalls Tau values of-

fer a non-parametric measure of concordance, complementing the parametric copula

correlations. The Kendalls Tau values generally align with the patterns observed

in the Gaussian and Student-t copula correlations: low dependence involving TED-

PIX, and a stronger relationship between S&P 500 and BIST 100 (0.1871). These

robust non-parametric measures confirm the overall dependence structure identified

by the copula models.
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Figure 5: Student-t Copula Correlation Matrix

Table 6: Table Kendalls Tau Correlation Matrix

TEDPIX S&P 500 BIST 100

TEDPIX 1 0.037519234 0.016523093

S&P 500 0.037519234 1 0.187126575

BIST 100 0.016523093 0.187126575 1

4.3 MCAViaR Parameter Interpretations

The estimated parameters for the MCAViaR models (Figures 2 and 3) provide

insights into the dynamic behavior of VaR for each index and how they interact.

MCAViaR Parameters for 5% Quantile (Figure 2):

TEDPIX: The positive lag ret (0.1283) suggests that higher past returns lead

to less negative (or higher) VaR, implying a certain momentum or risk-on effect

where recent gains slightly reduce the perceived risk for the next period. The

positive lag peer (0.1512) indicates a significant influence from the peer market

(likely S&P 500 or BIST 100 based on context, although specific peer assignments

are not in the file), where its positive past returns also contribute to less negative

VaR for TEDPIX. Both lag q (-0.0092) and lag q peer (0.0154) are relatively small,

with lag q being slightly negative, suggesting weak persistence of its own past VaR

level and minor influence from peers past VaR on TEDPIXs 5% VaR.
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S&P 500: A distinctly negative lag ret (-0.3142) is observed. This is a strong

indicator of mean-reversion or risk-off behavior: if the S&P 500 experiences posi-

tive returns, its 5% VaR becomes more negative (implying greater potential loss),

suggesting that recent gains might be followed by higher risk, or that large posi-

tive returns are faded. The lag peer (-0.0672) is also negative, implying a similar

dampening effect from peer market returns. The lag q (-0.0185) again shows weak

self-persistence for the S&P 500s VaR. The lag q peer (-0.0091) is also negative,

indicating that the peers past VaR has a minor negative influence on the S&P 500s

VaR.

BIST 100: Similar to TEDPIX, BIST 100 shows a positive lag ret (0.1665),

suggesting momentum where recent positive returns correspond to a less negative

5% VaR. The lag peer (-0.0170) is very small and negative, indicating minimal influ-

ence from peer returns. Both lag q (0.0081) and lag q peer (-0.0065) are very close

to zero, suggesting negligible persistence and peer VaR spillover at this quantile.

MCAViaR Parameters for 2.5% Quantile (Fig 3):

At the more extreme 2.5% quantile, the parameter behaviors show some shifts:

TEDPIX: The positive lag ret (0.0973) and lag peer (0.1301) persist, but lag q

(-0.0093) and lag q peer (0.0132) remain small. This suggests that for TEDPIX,

even at a more stringent confidence level, its 2.5% VaR is primarily driven by recent

own and peer returns rather than strong persistence or past VaR values.

S&P 500: The strong negative lag ret (-0.4384) becomes even more pronounced,

indicating that the mean-reversion or fading effect is amplified at the 2.5% quantile.

Interestingly, lag peer turns positive (0.0625), suggesting a slight positive influence

from peer returns at this extreme. The lag q (-0.0443) also becomes more negative,

implying that the S&P 500s past extreme VaR estimates are somewhat discounted

in the next period. lag q peer (0.0095) is positive, indicating a marginal positive

spillover from the peers past extreme VaR.

BIST 100: The positive lag ret (0.0812) continues to be present, but lag peer

(-0.1140) turns more significantly negative compared to the 5% quantile. This

suggests that at more extreme quantiles, negative peer returns contribute to a

more negative (higher risk) 2.5% VaR for BIST 100. Both lag q (-0.0156) and

lag q peer (0.0068) remain small.

Overall, the MCAViaR models capture diverse dynamic risk behaviors across

indices and confidence levels. S&P 500 exhibits a clear mean-reversion pattern in

its VaR estimates, while TEDPIX and BIST 100 tend to show some momentum.

The lag q parameters are generally small, suggesting that the direct persistence

of VaR from one period to the next is not the dominant factor, but rather the

influence of lagged returns and peer effects.

4.4 Value-at-Risk Forecasts

The VaR estimates generated by the copula models (Gaussian and Student-t) are

presented in Table 3.
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As identified in the methodology, these VaR values from var results.csv appear

to be single representative values, likely representing a summary (e.g., average,

or specific portfolio) rather than daily time-series VaRs for each index. If these

were daily VaR outputs, we would expect a time series. Given the context of

backtesting, for a rigorous comparison with MCAViaR (which produces dynamic

VaRs), the copula VaRs would also need to be a time series. For this report, we

interpret these values as illustrative benchmarks for the magnitude of VaR at given

confidence levels when using these copula models, distinct from the dynamic VaR

time series provided by MCAViaR.

A key observation is that the Student-t copula consistently yields larger (more

negative) VaR estimates than the Gaussian copula at both 5% and 2.5% confidence

levels. For instance, at 5%, the Student-t VaR is -1.2401 compared to -0.9520

for Gaussian, representing a significant difference. At 2.5%, the Student-t VaR

(-1.6427) is also considerably more conservative than the Gaussian VaR (-1.1358).

This difference is directly attributable to the Student-t copulas ability to model

symmetric tail dependence. By accounting for the increased likelihood of extreme

joint movements, the Student-t copula provides a more realistic and conservative

assessment of risk, especially for rare but severe events.

In contrast to these static benchmark values, the MCAViaR model generates

a time-varying VaR series for each index. These dynamic VaR estimates reflect

evolving market conditions, adjusting to recent returns and volatility. The dynamic

nature of MCAViaR is a key advantage, as it allows for a more responsive risk

management framework compared to models yielding fixed or slowly changing VaR

estimates.

4.5 Analysis of Backtesting Results

The backtesting results in all models universally fail the Dynamic Quantile (DQ)

test by Engle and Manganelli (2004).

While many models might pass the simpler Kupiec (UC) and Christoffersen (CC)

tests, which primarily check for the correct number of violations and their indepen-

dence, the DQ test is much more stringent. It specifically assesses whether the hit

sequence (binary indicators of VaR violations) is unpredictable given past informa-

tion, including past hits and past VaR estimates. The universal failure of the DQ

test implies that, despite the sophistication of these models in capturing marginal

distributions (ARMA-GARCH-t) and dependence structures (various copulas) or

directly modeling quantiles (MCAViaR), they still exhibit some form of conditional

misspecification or inability to fully capture the complex, time-varying nature of

financial risk.

Possible reasons for the universal DQ test failures: Dynamic Misspecifi-

cation: Even with GARCH and MCAViaR, the models may not fully capture all

dynamic features of the data, such as regime shifts, sudden increases in volatility

that are not adequately priced in, or more complex non-linear dependencies. The
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lag q parameter in MCAViaR, which directly captures persistence, was generally

small, suggesting limited memory in the quantile estimates.

Model Limitations in Extreme Events: The period analyzed includes significant

market events. During Black Swan events or periods of unprecedented market stress,

standard models can struggle to accurately forecast extreme losses. These rare but

impactful events can lead to clustered violations that are difficult for models to

predict, thereby failing dynamic tests.

Data Limitations: While the dataset is extensive, the underlying reality of fi-

nancial markets might be too complex for even advanced econometric models to

perfectly predict. Unexpected structural breaks or policy changes can invalidate

prior model assumptions.

NaNs in Backtesting: In some cases, particularly for the 2.5% VaR, backtesting

statistics (p-values) might yield NaN or be undefined if the number of violations

is extremely low or zero. While this superficially might seem positive (fewer viola-

tions), it indicates insufficient data points to robustly perform the statistical tests,

especially for conditional coverage. However, the consistent DQ failure across all

cases (where p-values are returned and indicate rejection) points to a fundamental

issue beyond just a lack of violations.

4.6 Comparative Performance

Despite the shared challenge with the DQ test, it is worth noting the differences

in VaR forecasts. The Student-t copula consistently produces more conservative

VaR estimates (larger in magnitude) than the Gaussian copula. This is a direct

consequence of its ability to model symmetric tail dependence, suggesting that

it provides a more cautious and potentially realistic view of risk during extreme

market movements. For risk managers, a more conservative VaR, even if it might

lead to more capital being held, is generally preferred to avoid underestimation of

risk during crises.

The MCAViaR model, by its design, offers a dynamic VaR, adapting to mar-

ket conditions. While it too failed the DQ test, its direct quantile regression ap-

proach offers an alternative to the multi-step parametric approach of copula models

(marginal fitting, copula estimation, then simulation). Its dynamic nature and the

interpretability of its parameters (e.g., mean-reversion in S&P 500 VaR) provide

valuable insights into risk drivers.

5 Conclusion and Future Work

The empirical results highlight the importance of sophisticated modeling techniques

like ARMA-GARCH-t marginals and Student-t/Clayton copulas for capturing styl-

ized facts of financial returns and complex dependence structures. The Student-

t copula generally yields higher, more conservative VaR estimates, reflecting its
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ability to capture tail dependence, which is absent in the Gaussian copula. The

MCAViaR model provides valuable insights into the dynamic drivers of VaR, cap-

turing momentum, mean-reversion, and peer effects.

However, the universal rejection by the Dynamic Quantile test across all models

and confidence levels represents a significant finding. It suggests that while these

models are advanced, they may still not fully capture all aspects of conditional

risk, particularly during periods of market stress or unpredictable events. This

underscores the continuous need for model refinement and the integration of more

adaptive techniques.

5.1 Comparison of Frameworks and Limitations

While the Gaussian copula and MCAViaR models offer different perspectives on

risk, their limitations, especially concerning extreme events, are apparent from the

backtesting results.

Gaussian Copula Limitations: As discussed, the Gaussian copula assumes el-

liptical dependence, which inherently fails to capture tail dependence. This is

problematic for financial risk management, where large losses (and gains) tend to

be more correlated than average market movements. The lower Gaussian copula

correlations compared to Students t-copula correlations (e.g., 0.2392 vs. 0.3035for

S&P 500 and BIST 100) underscore this point. During market crashes, all assets

tend to move downwards together, a phenomenon that the Gaussian copula cannot

adequately model, leading to underestimated VaR during crises.

MCAViaR Strengths and Weaknesses: The MCAViaR model offers the advan-

tage of directly modeling quantiles and incorporating peer effects. The parameter

estimates provided insights into index-specific behaviors (e.g., S&P 500 momentum,

TEDPIX mean-reversion, BIST 100 persistence and negative peer effects). How-

ever, despite its dynamic nature, its failure in the DQ test suggests it still struggles

to fully adapt to rapid shifts in market risk profiles or account for the truly ex-

treme, rare events. The reliance on lagged returns and VaR, while useful, may not

be sufficient to capture all complex non-linear dynamics and external shocks.

Overall Shortcomings: Both frameworks, in their current application, appear to

fall short of providing consistently reliable VaR estimates, particularly for regula-

tory compliance that demands stringent backtesting performance. The universal

DQ rejections imply a need for more sophisticated modeling of conditional VaR.

This study compared two advanced VaR methodologiesCopula-based VaR with

ARMA-GARCH-t marginals and the Multi-Channel AutoRegressive ViaR (MCAViaR)

modelapplied to daily log returns of TEDPIX, S&P 500, and BIST 100. Our objec-

tive was to assess their efficacy in capturing the complex dynamics and dependence

structures inherent in financial markets, particularly under the scrutiny of rigorous

backtesting.

Our findings underscore several key points. Firstly, the data exhibits typical styl-

ized facts of financial returns, including heavy tails and volatility clustering, neces-



Paper 5: Copula-Based Risk Modeling for Global Indices 103

sitating the use of ARMA-GARCH models with Student-t innovations for accurate

marginal distribution modeling. Secondly, the choice of a copula is critical for cap-

turing dependence. The Gaussian copula, assuming elliptical dependence and lack-

ing tail dependence, consistently produced less conservative VaR estimates. In con-

trast, the Student-t copula, by accounting for symmetric tail dependence, yielded

significantly higher (more negative) VaR values, for instance, approximately 30%

higher at the 5% confidence level (comparing -1.2401 vs -0.9520). This empirically

validates its superior ability to assess downside risk during joint extreme market

movements. The implicit findings from the Clayton copula estimation further high-

lighted the presence of lower tail dependence, reinforcing the need for models that

capture asymmetric extreme co-movements.

The MCAViaR model offered a distinct advantage by directly modeling the con-

ditional quantiles, providing a time-varying VaR that adapts to market conditions

and incorporating lagged own and peer returns and VaR. Its parameters revealed nu-

anced dynamic behaviors, such as mean-reversion in the S&P 500s VaR (indicated

by a strong negative lag ret parameter) and momentum/peer effects in TEDPIX

and BIST 100. This makes MCAViaR a valuable tool for understanding the drivers

of risk dynamics across markets.

However, the most striking and consistent finding across all models and confi-

dence levels was their universal failure to pass the Dynamic Quantile (DQ) test.

While some models might have satisfied simpler unconditional and independence

tests, the DQ tests comprehensive assessment of conditional coverage revealed per-

sistent model misspecification. This implies that even advanced econometric mod-

els, while capturing some aspects of market behavior, struggle to fully predict the

conditional behavior of extreme returns, especially during periods of high market

stress or Black Swan events that are inherently unpredictable by historical patterns

alone. This outcome echoes similar challenges reported in the literature, particu-

larly when dealing with highly volatile and interconnected financial markets.

5.2 Future Work

The insights gleaned from this study, particularly the universal DQ test failures,

pave the way for several promising avenues of future research:

Regime-Switching Models: Integrating regime-switching mechanisms into both

marginal and copula models (e.g., Markov-switching GARCH or regime-switching

copulas) could better capture abrupt changes in market dynamics and dependence

structures during periods of crisis or stability, potentially improving conditional

coverage.

Higher-Dimensional and Dynamic Copulas: Extending the analysis to higher-

dimensional portfolios or employing dynamic copulas whose parameters evolve over

time (e.g., using DCC-GARCH for dynamic correlation input into copulas) could

provide a more granular and adaptive representation of systemic risk.

Machine Learning Hybrid Approaches: Exploring hybrid models that combine



104 Journal of Mathematics and Modeling in Finance

econometric rigor with machine learning techniques (e.g., deep learning for volatility

forecasting or quantile regression forests for VaR estimation) could offer greater

flexibility in capturing complex, non-linear relationships and improving forecast

accuracy.

Incorporation of Macroeconomic Variables and Sentiment: Augmenting the VaR

models with relevant macroeconomic indicators (e.g., interest rates, inflation, GDP

growth) or market sentiment indices could provide additional explanatory power,

as financial risk is not solely driven by historical returns.

Liquidity-Adjusted VaR (LVaR): For a more comprehensive risk management

framework, future work could incorporate liquidity risk into VaR calculations, mov-

ing beyond market risk alone to account for potential losses arising from illiquidity

during stressed market conditions.

Multi-Horizon Stress Testing and Scenario Analysis: Beyond daily VaR, devel-

oping methodologies for multi-horizon stress testing that account for different time

scales and specific adverse scenarios (e.g., geopolitical shocks, pandemics) could

provide a more robust risk assessment.

Refinement of MCAViaR: Further investigation into the optimal specification of

MCAViaR, including different functional forms, indicator variables, and the selec-

tion of peer assets, could enhance its predictive power and robustness.

By pursuing these research directions, we aim to develop more robust and reli-

able risk management tools that can better withstand the challenges posed by the

ever-evolving complexities of global financial markets, ultimately providing more

accurate and timely risk assessments for financial institutions and policymakers.
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