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Abstract:
Abstract:
This study investigates the detailed mathematical exploration followed by its com-
putational performance of time series and deep learning models: ARIMA, RNN,
and TCN applied to foreign assets and liabilities of banking system of Nepal con-
sisting monetary authorities and various depository corporations. We analyze
trends, seasonal patterns, trajectories and their descriptive statistics to capture
underlying behaviors, identifying the optimal ARIMA order that most effectively
captures linear trend. Empirical study shows that the RNN handles non-linear
patterns which is determined by performance metrices on the training and testing
split. TCN being computationally extensive model is not able to capture robust
relation of the data due to lack of long-range dependencies and large time win-
dowed dataset for training. Based on our results, the RNN could be used as the
most suitable time series forecasting model for the foreign assets and liabilities of
Nepal as it enhances the accuracy, minimizes error, and improves effectiveness in
contributing to decision-making in banking system.
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1 Introduction

To understand the performance of Nepals foreign assets and liabilities in the bak-

ing system is mandatory for better financial planning and formulation of banking

policies. Time series analysis plays a pivotal role in this context by facilitating con-

cerned regulators to track trends in the prices, yields, and interest rates over time

for various types of bonds [7, 18]. Concise forecasting of these economic indicators

particularly in current volatile economic situation is crucial, where even a small

deviation in predictions of the securities can have substantial impacts on economic

stability [12].

The Auto Regressive Integrated Moving Average (ARIMA) model has been the
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most used in time series forecasting. It locates linear relationships from historical

data to predict the future values, keeping autocorrelation and moving averages in

consideration to minimize forecast errors [7]. However, while ARIMA is effective

for simpler data, it lacks the ability to deal with complex data patterns, such as

non-linear trends and volatility that is present in financial markets [31]. Likely,

the models performance highly relies upon on the appropriate selection of lag or-

ders, commonly measured using tools like the Autocorrelation Function (ACF) and

Partial Autocorrelation Function (PACF), along with stationarity tests like the

Augmented Dickey-Fuller (ADF) test [9], and the criteria to select the model such

as the Akaike Information Criterion (AIC) [1]. To address the persistent limita-

tions of ARIMA, Recurrent Neural Networks (RNNs) have been employed for their

ability to capture sequential dependencies and complexities in the model and non-

linear relationships amongst the parameters [16]. Unlike ARIMA, RNNs utilizes

feedback loops that allow the network to remain hidden across designated time

steps, that enhances the accuracy for prediction. However, RNNs also face the

vanishing gradient problem, that affects its ability to learn long-term dependencies

amongst the parameters [4]. As a result, RNNs may not be capable for capturing

the complications of financial time series when extended sequences with long timed

window datasets are involved.

Temporal Convolutional Networks (TCN) has been a powerful alternative to

traditional recurrent architectures like RNNs and LSTMs for the functions involving

sequence modeling. Unlike recurrent models, TCNs use causal convolutions and

dilated convolutions to capture long-range temporal dependencies that does not

require the need for sequential processing which in turn enables faster training

and better parallelization [2]. The causal nature of TCNs ensures that there is

no information leakage from future to past, which is better suited for time series

forecasting. TCNs also maintain a constant receptive field growth that allows the

model to effectively capture both the short-term and long-term dependencies in

the data that is somehow lacked by LSTM. Studies have demonstrated that TCNs

outperform RNN-based models in tasks that has financial time series prediction due

to their stable gradients and superior ability to model temporal structures [2,5].

In this study, we apply ARIMA, RNN, and TCN models using data from Nepals

foreign assets and liabilities of the banking system that consists of golds, Special

Drawing Rights (SDR), International Monetary Fund (IMF) Reserve Tranche Po-

sition with their convertible and interconvertible foreign exchanges. We derive the

mathematical foundations of these models along with their respective test proce-

dures and performance metrices like Mean Squared Error (MSE), Mean Absolute

Error (MAE), and Root Mean Squared Error (RMSE) [10]. By applying theoretical

analysis to practicality, our comprehensive study not only evaluates the accuracy

of the model but also explores the computational and deep learning efficiencies and

real-world test scenarios of each forecasting method [21,27].
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2 LITERATURE

Understanding the way of the external assets and liabilities of banking system is

essential for a sustainable financial planning in order to identify the ownership pat-

terns of monetary authorities and depository corporations. Time series analysis

helps the policymakers track changes in prices, yields, interest rates, assets and lia-

bilities. Traditional models like ARIMA have been widely used for such purposes,

advanced deep learning models such as RNNs and TCNs offer an improvised accu-

racy by capturing complex patterns in financial data. In this section, we examine

their application in net assets forecasting providing key research findings.

The ARIMA model was first introduced by George Box and Gwilym Jenkins in

the early 1970s, in their book Time Series Analysis: Forecasting and Control [7]. Its

statistical foundation was further developed by researchers like Peter Brockwell and

Richard Davis in 1991 textbook Time Series: Theory and Methods [8] presented

the mathematical foundations and formulations of ARIMA models in deeper detail

and addressed the estimation and inference procedures necessary to apply ARIMA

effectively. Brockwell’s work refined the mathematical tools for model selection

and hypothesis testing, like the use of AIC for comparison and validation and

validation of models. Researchers like Hyndman and Athanasopoulos [18] extended

the methodology for ARIMA specializing on computational process with algorithms

for model fitting and forecasting. ARIMAs strength lies in its ability to model

stationary time series data which combines autoregression, moving averages, and

differencing.

Mohammad et al. [22] applied the ARIMA model to forecast banking stock

market data, demonstrating its effectiveness in capturing trends and making short-

term predictions in financial time series. Similarly, Uddin et al. [28] conducted a

time series analysis using the ARIMAmodel to forecast the Gross Domestic Product

(GDP) of Bangladesh, serving as a foundational reference for modeling economic

indicators through statistical forecasting methods. Shogole et al. [26] review and

analyze existing methods, particularly GARCH and ARIMA models, for modeling

and forecasting bank stock prices, highlighting their applications and limitations in

financial time series forecasting. Li et al.[20] incorporated economic indicators and

market sentiment into machine learning models to enhance the prediction of U.S.

Treasury bond yields.

RNNs was introduced by Nobel laureate physicist John Hopfield in the 1980s,

based on the idea of recurrent series in mathematics and physics. Hopfield’s work

on associative memory models in neural networks laid the foundation for the archi-

tecture of RNN [17]. Understanding the behavior of networks with feedback loops

influenced concurrent developments in computational models for sequential data.

Later RNN with backpropagation through time (BPTT) algorithm, was developed

by David Rumelhart, Ronald Williams, and Geoffrey Hinton in 1980s [25]. Jeffrey

Elman further extended the RNN architecture for time series and natural language
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processing. Elmans 1990 work [11] focused on the development of simple recur-

rent networks, which included context units to capture temporal dependencies in

sequences that allowed RNNs to handle time series data effectively. Ian Goodfel-

low, Yoshua Bengio, and Aaron Courville provided theoretical foundations of deep

learning and RNN models in their 2016 textbook Deep Learning, concentrating on

optimizing neural network mathematically [15]. Fischer and Krauss [13] utilized

Long Short-Term Memory (LSTM), a variant of RNN, to forecast stock returns,

highlighting its ability to handle long-term dependencies. RNN models have been

employed to forecast liquidity demand in banks, aiding in optimizing capital allo-

cation [3]. Boustani et al. [6] review existing techniques for cross-selling consumer

loans and explore how deep learning networks can enhance predictive accuracy in

this domain. Khandani et al. [19] developed machine learning-based credit scoring

models using financial transaction histories, demonstrating that RNNs outperform

logistic regression models in predicting borrower defaults.

In the 2010s, Temporal Convolutional Networks (TCNs) started gaining atten-

tion as a strong alternative to RNNs for sequence modeling tasks. Bai et al [2]

properly shaped the TCN architecture, showing how causal and dilated convolu-

tions, along with residual connections, help in capturing long-term dependencies

without facing the vanishing gradient issue. Unlike RNNs, TCNs can process the

entire sequence in parallel, that makes its training capacity to be efficient and faster.

Oord et al. [24] already explored the use of dilated convolutions for temporal data

through their work on WaveNet. Franceschi et al. [14] extended the use of TCNs for

tasks like time series classification and forecasting. Recently, many have focused on

mixing TCNs with other models like attention mechanisms and Multivariate Adap-

tive Variable Splines (MARS) to improve both interpretability and performance,

especially in fields like finance and agriculture.

Yu et al. [30] integrates the Improved Complete Ensemble Empirical Mode De-

composition with Adaptive Noise (ICEEMDAN) technique with various machine

learning models, such as LSTM, Temporal Convolutional Network (TCN), Trans-

former, and Autoformer, to forecast China’s interbank bond transaction interest

rates over extended periods. Yao et al. [29] developed a hybrid CNN-LSTM

model to assess bond default risk, leveraging the sequential processing capabilities

of LSTM to identify financial distress patterns in banking assets. Moolchandani

[23] applied Markov Chain Monte Carlo (MCMC) techniques to enhance credit risk

assessment models, demonstrating improved predictive accuracy and robustness in

evaluating borrower default probabilities.

3 METHODOLOGY

In this study, we use ARIMA, RNN and TCN for modelling the temporal data. The

data we utilized is sourced from Nepal Rastra Bank, the central bank of Nepals

database. This study includes a modelling approach for the Net Foreign Assets
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for Monetary Authorities and the same for Other Depository Corporations of the

banking system that consists of golds, Special Drawing Rights (SDR), International

Monetary Fund (IMF) Reserve Tranche Position with their convertible and inter-

convertible foreign exchanges along with their Total Net Foreign Assets.

Our data ranges from 1966 to 2024 that holds data of above-mentioned indica-

tors. Net Foreign Assets of Monetary Authorities primarily referring to the central

bank is derived by summing four key elements: Gold reserves, Special Drawing

Rights (SDRs), IMF Reserve Tranche Position, and Foreign Exchange Reserves.

The Foreign Exchange category is further divided into Convertible and Inconvert-

ible currencies, which together form the total foreign exchange reserves. All these

components (Gold + SDRs + IMF Position + Foreign Exchange) are added to get

the overall total. From this total, Foreign Liabilities represent the country’s exter-

nal debts and are subtracted to determine the final value of Net Foreign Assets.

This structure is commonly used by central banks to report a nations international

financial position. These values specifically pertain to the monetary authorities,

that manages the countrys official reserve assets and external obligations.

The Net Foreign Assets of Other Depository Corporations (such as commercial

banks and financial institutions other than the central bank) are first calculated by

summing two components: Convertible and Inconvertible foreign currencies. These

together make up the Foreign Exchange Total. From this total, the Foreign Lia-

bilities that represent the external debts of these institutions are subtracted. The

resulting value is the of Other Depository Corporations. This classification helps

in distinguishing between the foreign assets held by the central bank (monetary

authorities) and those held by other financial institutions, giving a more compre-

hensive picture of a countrys external financial position.

We illustrate the data and provide descriptive statistics for each sub-heading.

The data analysis and modelling are conducted using the open-source programming

language Python version 3.10

Table 1: Summary Statistics of Financial Indicators

Financial
Indicators

Mean Median
Standard
Deviation

Max Min

Monetary
Authorities

252454.2 32103.9 446415.1 1918829.0 363.2

Other
Depository
Corporations

11414.643 2590.200 19447.731 72924.714 4.400

Total
Net Foreign

Assets
263868.9 37085.50 464857.6 1989279.0 367.60

Source: Authors calculation
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Over six decades from 1966 through 2024, these three indicators showcase very

different pictures of Nepals financial landscape. The mean of Monetary Authorities

is 252454 with standard deviation of 446415 which shows that enormous spike and

drop. Other Depository Corporations lies on a much smaller scale. The mean is

11414 and the standard deviation is 19447 which is larger than the mean. This

indicates that there is uncontrollable ups and downs in the Other Depository Cor-

porations throughout the time frame. The Total Net Foreign Assets resembles the

Monetary Authorities with mean 263868 and standard deviation of 464857. In all

the indicators the standard deviation is greater than mean which signifies the in-

fluence of extraneous factors playing a major role.

Evaluation Metrics

Three scientifically proven metrics, MAE, MSE, RMSE are used to evaluate the

performance of our models. We need to pre-process the data before building and

training the model. For RNN log transformation of the data is done to stabilize

the variance and reduce skewness. For TCN, Min-Max scaler is implemented to

transform the data into a desired range i.e. (0 to 1). The window size of 3 is taken

into consideration for all the economic indicators.

We forecast each of the assets using the models described. We project future

values over the n time-periods (in years), where n is determined by the total length

of the available dataset. Specifically, we set n to be one-fourth of the total data

length. This approach ensures that we retain enough data for robust model training

while still providing a meaningful forecast horizon for evaluation.

Table 2: Hyperparameters for RNN and TCN Models

Hyperparameters RNN TCN

Architecture 32-32-32 32-32-32

Epoch 100 100

Learning rate 0.001 0.001

Kernel Size NA 2

Dilation NA 1

Activation Function Rectified Linear
Unit (ReLU)

Rectified Linear
Unit (ReLU)

Optimizer Adam Adam

Loss Mean squared error Mean squared error

Source: Authors calculation
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Figure 1: Architecture of RNN and its Training Using Back Propagation Through
Time (BPTT)
Source: Author

Training RNNUsing Backpropagation Through Time (BPTT)

The training of our RNN involves adjusting its parameters Whh, Wih and bh to

minimize the loss function in which we choose mean squared error and to measure

the average squared difference between the predicted values and the actual values

and we choose mean absolute error to evaluate the accuracy of a models predictions.

The mean squared error is computed as:

MSE =
1

n

n∑
i=1

(
yi − ŷi

)2
(1)

For our training done using Backpropagation Through Time (BPTT) which is an

extension of standard backpropagation for sequential models. Its loss function is:

L =

T∑
t=1

L
(
yt, ŷt

)
(2)

The gradients of the loss function with respect to the parameters is computed using

chain rule. We have declared T = 32 neurons for each layer and the network is 3

layers deep. The gradient of L for hidden weights Whh is

∂L

∂Whh
=

∂L

∂h(T )
· ∂h(T )
∂Whh

(3)

The gradient for hidden weight with respect to the recurrent weight matrix Whh

requires backpropagation through time:

∂L

∂Whh
=

T∑
k=1

∂L

∂h(T )
· ∂h(T )
∂h(k)

· ∂h(k)
∂Whh

(4)
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Since, ∂h(k)
∂h(T ) is a chain rule, the gradient (3.3) can be written as:

∂L

∂Whh
=

T∑
t=1

(
∂h(T )

∂L

T−1∏
k=t

∂h(k)

∂h(k + 1)

∂Whh

∂h(t)

)
(5)

The gradient with respect to Wih is,

∂Wih

∂L
=

∂h(T )

∂L
· ∂Wih

∂h(T )
(6)

This process helps our RNN model learn the complex temporal dependencies in

sequential data, making it effective for tasks like time series forecasting and natural

language processing.

Figure 2: Architecture of TCN and its Training Using Standard Back Propagation
Source: Author

Training TCN Using Standard Backpropagation

Training an TCN involves minimizing a loss function using standard backpropaga-

tion. TCNs are feed-forward models with temporal (convolutional) structure and

often dilations so that errors propagate back through the layers in a single backward

pass rather than unrolling a recurrence over time. The total loss for a sequence of

length T is:

L =

T∑
t=1

L (yt, ŷt) (7)
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where L is the loss function. A TCN layer applies a 1D causal convolution. For a

kernel W ∈ Rk and dilation factor d, the output at time t is:

ht = f

(
k−1∑
i=0

Wi xt−i·d + b

)
(8)

TCNs are feed-forward, the gradients are computed by applying the chain rule over

the layers as in standard convolutional neural networks for a weight Wi at a given

position i in the convolutional filter.

The gradient of the loss with respect to the output of the TCN is then backpropa-

gated through any additional layers computed as

∂L

∂ŷt
(9)

Consider the pre-activation at time t is

zt =

k−1∑
i=0

Wi xt−i·d + b (10)

Then the gradient with respect to pre activation is

δt =
∂L

∂zt
=

∂L

∂ht
· f ′ (zt) (11)

The gradient of the loss with respect to a specific weightWi in the kernel is obtained

by summing over all time steps

∂L

∂Wi
=
∑
t∈Ti

δt · xt−i·d (12)

Ti is the set of all time indices for which the weight Wi is used in the convolution.

Similarly, the gradient for the bias term b is

∂L

∂b
=

T ′∑
t=1

δt (13)

4 COMPUTATIONAL RESULTS

ARIMA Model

We conducted ADF test to check stationary of the data whose results are given

below in Table 3.

For the monetary authorities, the ADF test yielded a statistic of 5.249. Under the
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Table 3: ADF Statistics and p-value for Each Sub-heading

Financial Indicators ADF Statistics p-value

Monetary Authorities 5.249 1.000

Other Depository Corporations 0.809 0.992

Total Net Foreign Assets 4.869 1.000

Source: Authors Calculation

null hypothesis of a unit root, the entire distribution of the ADF statistic lies to

the left of zero, even the 10 % critical value is 2.601. Because our observed value

falls completely to the right of this null distribution, the cumulative probability of

obtaining a value as large as 5.249 or larger under non stationarity is effectively

unity. Consequently, the test returns a p value of 1.00, indicating unequivocal

failure to reject the presence of a unit root in the foreign assets and liabilities

series.

For net foreign assets, the ADF test produced a statistic of 4.869. Since, under

the null hypothesis of a unit root, the distribution of the ADF statistic is entirely

to the left of zero with even the 10% critical value at 2.601 our test statistic lies

far to the right of this range. This means the probability of obtaining such a large

value under the assumption of non-stationarity is essentially 1.00. As a result, the

test strongly fails to reject the null hypothesis, confirming the presence of a unit

root in the foreign assets and liabilities series.

Since the indicators with has a p-value greater than 0.05. It signifies that the

data does not follow stationary.

ARIMA Model Identification, Results, Test and Equation for
all Financial Indicators

Table 4: ARIMA Model Performance for Financial Indicators

Indicators Models AIC Training Time

Monetary Authorities ARIMA (3,2,3) 1438.875 3.592 seconds

Other Depository Corporations ARIMA (0,1,1) 1206.672 0.440 seconds

Total Net Foreign Assets ARIMA (3,2,3) 1435.176 5.752 seconds
Source: Authors calculation

In this study, we employed the computationally efficient Auto-ARIMA method

to identify the best ARIMA model for our data. It evaluates the models using

statistical criteria, including AIC, BIC and HQIC. Here, we select the minimum

AIC criterion for model selection. Among all the implemented ARIMA models for

forecasting each indicator, we have selected the best one, as shown in the table

above. This model was chosen based on its lowest AIC and shortest training time.



Paper 7: Deep Learning and Statistics in Nepal’s Banking Foreign Assets 141

Table 5: Performance Measures Over Years

Indicators Variables Coefficients
Standard
Error

Z P > |z| 0.025 0.975

Monetary
Authorities

Intercept 7841.83 8427.3 0.931 0.352 -8675.37 2.44e+04

AR (L1) -1.6482 0.154 -10.706 0.000 -1.950 -1.347

AR (L2) -1.6640 0.245 -6.794 0.000 -2.144 -1.184

AR (L3) -0.9471 0.129 -7.324 0.000 -1.201 -0.694

MA (L1) 0.7602 0.228 3.336 0.001 0.314 1.207

MA (L2) -0.4340 0.371 -1.171 0.241 -1.160 0.209

MA (L3) -0.6167 0.128 -4.804 0.000 -0.868 -0.365

σ2 3.394e+09 0.053 6.44e+10 0.000 3.39e+09 3.39e+09
Other

Depository
Corporations

Intercept 1133.0893 1110.065 1.021 0.307 -1042.59 3308.776

MA (L1) -0.2897 0.084 -3.465 0.001 -0.454 -0.126

σ2 5.753e+07 0.062 9.3e+08 0.000 5.75e+07 5.75e+07
Total
Net

Foreign
Asset

AR (L1) -1.6399 0.144 -11.406 0.000 -1.922 -1.358

AR (L2) -1.6494 0.190 -8.673 0.000 -2.022 -1.277

AR (L3) -0.9681 0.114 -8.522 0.000 -1.191 -0.745

MA (L1) 0.9543 0.208 4.598 0.000 0.574 1.361

MA (L2) -0.3543 -0.255 -1.390 0.165 -0.845 0.145

MA (L3) -0.6152 0.169 -3.644 0.000 -0.946 -0.284

σ2 3.955e+09 1.29e-10 3.06e+19 0.000 3.95e+09 3.95e+09

Where e denotes exponential notation.
Source: Authors calculation.

The table shows that ARIMA models were fitted to each indicator with estimated

intercepts, autoregressive and moving average coefficients, their standard errors, z

statistics, p values, 95% confidence intervals, and the residual variance. With the

aid of the above table the final equation for each of the indicators are created in

the following table.

Table 6: Estimated ARIMA Equations for Financial Indicators

Indicators Equation

Monetary
Authorities

Yt = 7841.8339− 1.6482Yt−1 − 1.6640Yt−2 − 0.9471Yt−3

+ εt + 0.7602εt−1 − 0.4340εt−2 − 0.6167εt−3,

(σ2 ≈ 3.394× 109)
Other Depository

Corporations
Yt = 1133.0893 + εt − 0.2897εt−1, (σ2 ≈ 5.753× 107)

Total Net
Foreign Assets

Yt = −1.6399Yt−1 − 1.6494Yt−2 − 0.9681Yt−3

+ εt + 0.9543εt−1 − 0.3543εt−2 − 0.6152εt−3,

(σ2 ≈ 3.955× 109)

Source: Authors calculation

This ARIMA (3, 0, 3) model shows that Monetary Authorities values revert toward
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about 7841.8 but are pulled down strongly by their own recent history: the one year

and two year AR coefficients are both around 1.65, and the three year AR is 0.95,

all negative and sizable. On the MA side, the previous years shock still adds to

this year +0.76, while shocks from two and three years ago dampen current values

0.43 and 0.62. Overall, the strong negative AR feedback enforces mean reversion,

though substantial white noise volatility remains σ2 ≈ 3.4× 109.

This MA (1) model depicts that each year the Other Depository Corporations

fluctuates around a long run level of about 1133.1. In any given year, the value

moves up or down with a fresh random shock (ϵt), but it also remembers last years

shock to a small degree i.e.; about 0.29 of that earlier surprise carries over and

slightly offsets the current years value. In practice, this means unexpected ups

or downs tend to die out quickly only about 29% of a past shock tweaks todays

number but theres still some short lived smoothing from one year to the next. The

remaining fluctuations are pure white noise volatility, with a variance of roughly

5.75× 107.

This model shows that the changes in Total Net Foreign Asset each year are

driven almost entirely by past values and shocks, without a fixed baseline. If last

years or the year before values were above zero, todays value is pulled down strongly

by about 1.64 and 1.65, and theres still a downward pull from three years ago 0.97.

On the shock side, the surprise from last year mostly carries forward +0.95, but

surprises from two and three years ago slightly dampen todays figure 0.35 and 0.62.

In other words, past highs tend to reverse sharply, old shocks fade unevenly, and

the remaining movements are random noise with a variance around 3.96× 109.

Table 7: Statistical Test Results for ARIMA Models

Indicators
ARIMA
(p,d,q)

Number of
Observations

Log
Likelihood

AIC BIC HQIC

Monetary
Authorities

(3,2,3) 59 -711.438 1438.875 1455.219 1445.227

Other Depository
Corporations

(0,1,1) 59 -600.336 1206.672 1212.853 1209.080

Total Net
Foreign Assets

(3,2,3) 59 -710.588 1435.176 1449.477 1440.734

Source: Authors calculation

The table reports which ARIMA specification best captures each indicators dy-

namics and how well each model balances fit against complexity. For each of the

indicators we observe the orders of (p, d, q), the log likelihood, and three penal-

ized measures AIC, BIC and HQIC. Among competing models, the one with the

lowest AIC is preferred because it achieves the best trade off between explaining

the and keeping the number of parameters small. Similarly, BIC and HQIC give

a bigger penalty for extra parameters, so the lowest BIC or HQIC score points to

the simplest model that still fits the data well.
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Table 8: ARIMA Model Performance for Net Assets (In Million Rupees)

Performance Monetary Other Depository Total Net

Metrices Authorities Corporations Foreign Assets

MAE Train 8183.62 1414.03 10150.79

MSE Train 2.493×108 5.992×106 2.851×108

RMSE Train 15789.51 2447.85 16884.36

MAE Test 455237.78 43148.32 499622.10

MSE Test 2.718×1011 2.291×109 3.081×1011

RMSE Test 521373.28 47862.24 555084.34

The ARIMA models results for Monetary Authorities, Other Depository Cor-

porations, and Total Net Foreign Assets indicate a strong in-sample fit alongside

opportunities to strengthen out-of-sample performance. On the training set the

model achieves low errors, demonstrating that it effectively captures the core tem-

poral structure of the historical series. Test-set errors are larger, which suggests

that there is scope to improve generalization through the inclusion of exogenous

predictors.

Forecast for ARIMA

In this we forecast the future values for each economic indicators with upper and

lower confidence level and provide a graphical representation of the Total Net For-

eign Assets of Monetary Authorities. (See appendix for forecast of rest of the finan-

cial indicators.)

Table 9: ARIMA Forecast of Total Net Foreign Assets of Monetary Authorities (Million Rupees)

Year Forecast CI Lower CI Upper

2025 1,610,368 1,487,113 1,733,623

2026 1,702,289 1,498,727 1,905,850

2027 2,259,229 2,035,689 2,482,770

2028 2,158,630 1,892,339 2,424,921

2029 1,913,507 1,543,005 2,284,008

2030 2,539,708 2,129,978 2,949,437

2031 2,611,995 2,158,225 3,065,765

2032 2,295,425 1,745,574 2,845,276

2033 2,686,585 2,065,219 3,307,951

2034 3,094,778 2,430,290 3,759,265

2035 2,684,199 1,924,467 3,443,931

2036 2,903,043 2,053,006 3,753,079

2037 3,423,668 2,517,308 4,330,028

2038 3,203,938 2,215,091 4,192,785
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Figure 3: ARIMA Forecast of Total Net Foreign Assets (In Million Rupees)
Source: Author

The forecast plot shows that after a period of slow accumulation from the 1960s

through the early 2000s, Nepals net foreign assets have accelerated sharply into the

2020s and are projected by our ARIMA (3, 2, 3) model to continue rising into the

2030s. The red forecast line, which echoes the strong persistence and shockdamping

behavior captured by the AR and MA terms, climbs from roughly 1.6 million in

2024 to peaks above 3 million by the early 2030s. The widening pink bands around

that line represent 95% prediction intervals, growing from ±0.5 million in the near

term to over ±1 million by 2035, underscoring increasing uncertainty: while the

overall trend remains upward likely driven by sustained trade surpluses, reserve ac-

cumulation, and foreigninvestment inflows external shocks such as commodityprice

swings or exchangerate volatility could still meaningfully shift the actual trajectory.

Forecast for RNN and TCN models

The process of building the RNN and TCN models is carried out using a training

set of 80% and a testing set of 20% for the data included. To make this experi-

ment as fair as possible we have implemented the same number of hidden layers,

activation function, learning rate, optimizer and epoch for both the models. The

performance of the model is measured by MAE, MSE, RMSE.

The RNN models results reveal a strong ability to generalize and perform accu-

rately on unseen data. While the training errors are relatively higher, the model

demonstrates markedly lower error values on the test set. This pattern suggests

that the RNN effectively captures the essential temporal dynamics without overfit-
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Table 10: RNN Model Performance for Net Assets (In Million Rupees)

Performance Monetary Other Depository Total Net

Measures Authorities Corporations Foreign Assets

MAE Train 123,976.77 4,461.31 65,551.92

MSE Train 6.535×1010 8.326×107 1.867×1010

RMSE Train 255,645.85 9,124.63 136,620.25

MAE Test 1,125.48 813.61 419.59

MSE Test 1.721×106 737,614.26 241,145.40

RMSE Test 1,311.89 858.84 491.07

Source: Authors calculation

ting, resulting in robust predictive accuracy for out-of-sample data. These findings

underscore the RNNs capacity to model complex non-linear dependencies.

Table 11: TCN Model Performance for Net Assets (In Million Rupees)

Performance Monetary Other Depository Total Net

Metrics Authorities Corporations Foreign Assets

MAE Train 58,898.30 1,909.22 40,369.04

MSE Train 1.109×1010 2.063×107 3.900×109

RMSE Train 105,300.93 4,542.36 62,451.20

MAE Test 34,467.06 164.90 24,409.41

MSE Test 1.188×109 28,885.19 5.960×108

RMSE Test 34,468.21 169.95 24,413.14

Source: Authors calculation

The models results signify moderate performance in capturing temporal patterns

in the data. The training errors suggest that the model fits the historical series

reasonably well. On the test set, the errors remain relatively low showing that the

TCN is able to generalize to unseen data without substantial overfitting. These

results highlight the models capability to learn temporal dependencies, though its

predictive accuracy is somewhat lower than that of the RNN.

Forecast for RNN and TCN models

In this we forecast the future values for each economic indicators and provide a

graphical representation of the Total Net Foreign Assets. (See appendix for forecast

of rest of the indicators)
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Table 12: RNN and TCN Model Forecast of Total Net Foreign Assets (In Million Rupees)

Year RNN Forecast Amount TCN Forecast Amount

2025 1,633,532.38 1,463,723.88

2026 1,553,789.75 1,418,776.13

2027 1,560,243.00 2,312,384.75

2028 1,509,054.00 1,976,989.38

2029 1,463,403.88 1,276,176.25

2030 1,430,864.00 2,287,524.25

2031 1,398,419.38 2,676,418.50

2032 1,367,661.00 1,334,960.50

2033 1,340,001.12 2,014,973.25

2034 1,314,481.75 3,395,205.75

2035 1,290,814.00 1,592,118.38

2036 1,268,969.50 1,542,869.63

2037 1,248,770.62 3,897,404.25

2038 1,230,058.75 2,094,566.00

Figure 4: RNN Forecast of Total Net Foreign Assets (In Million Rupees)

The RNN model projects that Nepals net foreign assets having climbed to about

2 million in 2024 will gradually drift downward over the next decade, falling to

roughly 1.2 million by 2032. This represents a mild annualized decline of about 3

% per year, suggesting that, in the absence of fresh inflows, routine outflows (such

as debt service, import payments, or repatriated profits) may begin to outpace new

asset accumulation. Economically, this cautious trajectory implies a reversion to-

ward balance: past surpluses give way to slim or negative net additions, reflecting

steady policy frameworks but also limited externalsector dynamism.
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Figure 5: TCN Forecast of Total Net Foreign Assets (In Million Rupees)

By contrast, the Temporal Convolutional Network delivers a highly oscillatory out-

look: net foreign assets swing between roughly 1.5 million and 3.9 million from 2025

through 2040. Although the mid cycle trend edges upward implying a modest over-

all growth rate of around 12% per annum the large peaks and troughs capture the

models emphasis on recent shocks and momentum effects. Such pronounced volatil-

ity could reflect episodic capitalflow surges (e.g., major FDI projects or commodity

windfalls) followed by corrective phases (debt repayments, valuation adjustments).

In practice, while the TCNs pattern highlights the potential for strong temporary

gains, it also warns of equally sharp reversals, underscoring the economys vulner-

ability to external events and the challenge of relying solely on pastdata driven

forecasts.

From the model performance tables of both deep learning models used in this study,

we observe that RNN performs significantly better than TCN across all metrics for

the total net foreign assets. This holds true for both the training and testing data.

5 DISCUSSIONS

While comparing the performance of ARIMA, RNN and TCN in this study, we

fitted three of the models on Total Net Foreign Assets data because it is the

summation of all the economic indicators used in this study along with individ-

ual indicators of Monetary Authorities and Other Depository Corporations. This

ensures the inclusion of every foreign asset and liability of banking system of Nepal.

In the above table we have performed comparative analysis for the RNN, TCN, and

ARIMA. The models were evaluated using both training and test datasets. The

RNN model demonstrated competitive test performance, with a MAE of 419.59
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Table 13: RNN vs TCN vs ARIMA Model Performance for Total Net Foreign
Assets (In Million Rupees)

Model
MAE
Train

MSE
Train

RMSE
Train

MAE
Test

MSE
Test

RMSE
Test

RNN 65,551.92 1.867×1010 136,620.25 419.59 2.411×105 491.07

TCN 40,369.03 3.900×109 62,451.20 24,409.41 5.960×108 24,413.14

ARIMA 10,150.79 2.851×108 16,884.35 499,622.10 3.081×1011 555,084.39

Source: Authors calculation

and a corresponding RMSE of 491.07. Notably, the RNNs, outperformed both the

ARIMA model and the TCN model. Although the ARIMA model showed a com-

parable training MAE of 499622.10, its relatively higher RMSE of 555084.39 and

substantially inferior test performance suggest that its predictive capability on un-

seen data is limited. Similarly, the TCN models elevated training errors (MAE of

24409.41and RMSE of 24413.14) indicate that it may be overfitting or suggest that

the data may not have long-term dependencies due to lack of inherent complexity

and large time windowed dataset for training. Consequently, these findings high-

light the RNN models superior generalization ability, making it the most effective

option among the three models for forecasting in foreign assets and liabilities in the

banking system of Nepal.

6 CONCLUSIONS

The analysis of the foreign assets and liabilities has provided valuable insights into

their predicted trajectories. In the total net foreign assets, we observed an up-

ward growth with seasonality from the ARIMA and TCN model while RNN shows

a sharp downward curve. For net foreign assets of the monetary authorities, the

ARIMA model predicts an upgoing pattern with seasonal growth, whereas the RNN

shows an exponential growth on the net assets. The TCN projects a steady seasonal

growth trend throughout the forecast period. Importantly, model characteristics

and data constraints shaped these outcomes. The TCN a computationally inten-

sive architecture was unable to recover robust relationships from the available series,

likely because the data do not contain sufficiently long-range dependencies and the

sample available for training did not support the large time-window requirements

inherent to TCNs. This explains the TCNs relatively conservative, seasonal fore-

casts compared with the more volatile RNN outputs.

For net foreign assets of the other depository corporations, the ARIMAmodel shows

a steady linear growth trend into the future. In contrast, the RNN model indicates

a steep decline with some minute growth towards the end of the predicted years.



Paper 7: Deep Learning and Statistics in Nepal’s Banking Foreign Assets 149

The TCN model suggests a steady seasonality trying to be stationary. This offers

valuable insights into the future forecast of foreign assets and liabilities, aiding

in informed decision-making for economic policies, financial planning, and market

stability for policy makers in Nepal.
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7 Appendix

Source: Authors Calculation

ARIMA forecast of Net Foreign Assets for Monetary Authorities (In Million Rupees)

Year Forecast Amount CI Lower CI Upper

2025 1,556,403 1,442,224 1,670,582

2026 1,668,206 1,497,456 1,838,956

2027 2,195,863 2,012,321 2,379,406

2028 2,090,433 1,872,651 2,308,216

2029 1,895,187 1,597,384 2,192,991

2030 2,515,415 2,195,815 2,835,014

2031 2,548,453 2,195,229 2,901,678

2032 2,285,281 1,859,178 2,711,383

2033 2,722,904 2,252,328 3,193,480

2034 3,062,327 2,563,496 3,561,159

2035 2,685,873 2,111,919 3,259,826

2036 2,996,863 2,365,415 3,628,310

2037 3,466,850 2,800,231 4,133,468

2038 3,216,731 2,486,284 3,947,177

ARIMA Forecast of Net Foreign Assets for Other Depository Corporations (In Million Rupees)
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Year Forecast Amount CI Lower CI Upper

2025 67,459.92 52,594.13 82,325.71

2026 68,593.01 50,358.60 86,827.42

2027 69,726.10 48,654.89 90,797.30

2028 70,859.19 47,290.19 94,428.19

2029 71,992.28 46,165.94 97,818.61

2030 73,125.37 45,223.72 101,027.01

2031 74,258.46 44,425.53 104,091.39

2032 75,391.55 43,744.97 107,038.12

2033 76,524.64 43,162.87 109,886.40

2034 77,657.72 42,664.73 112,650.72

2035 78,790.81 42,239.32 115,342.31

2036 79,923.90 41,877.70 117,970.11

2037 81,056.99 41,572.62 120,541.36

2038 82,190.08 41,318.12 123,062.05

RNN Forecast of Net Foreign Assets for Other Depository Corporations (In Million Rupees)

Year Monetary Authorities Other Depository Corporations

2025 2,774,831.5 53,191.29

2026 3,886,959.0 43,503.24

2027 5,412,785.5 34,558.21

2028 70,859.19 25,470.52

2029 71,992.28 17,240.68

2030 73,125.37 9,733.64

2031 74,258.46 3,822.84

2032 75,391.55 655.62

2033 76,524.64 3,539.74

2034 77,657.72 8,267.65

2035 78,790.81 5,019.62

2036 79,923.90 4,801.11

2037 81,056.99 1,355.33

2038 82,190.08 7,975.78

TCN Forecast of Net Foreign Assets for Other Depository Corporations (In Million Rupees)

Year Monetary Authorities Other Depository Corporations

2025 1,219,332.00 44,144.17

2026 1,111,391.00 52,443.45

2027 2,019,290.00 59,595.49

2028 1,464,220.00 45,087.31

2029 927,281.00 49,062.11

2030 1,909,645.00 53,537.07

2031 1,917,156.00 45,261.57

2032 927,726.00 47,183.21

2033 1,481,494.00 50,176.91

2034 2,323,294.00 45,838.15

2035 1,120,481.00 46,351.02

2036 1,052,315.00 48,156.46

2037 2,524,499.00 45,905.27

2038 1,428,215.00 45,958.54
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ACF and PACF Tests of Net Foreign Assets for Monetary Authorities
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ACF and PACF Tests of Net Foreign Assets for Other Depository Corporations

ACF and PACF Tests of Total Net Foreign Assets

RNN Training Loss Graph Over Epoch

TCN Training Loss Graph Over Epoch
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