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Abstract:
Abstract:
In statistical modeling, prediction and explanation are two fundamental objectives,
particularly in financial time series forecasting where uncertainty quantification is
critical. This study compares traditional standard deviation–based confidence in-
tervals with similarity-based methods—Dynamic Time Warping (DTW), Longest
Common Subsequence (LCSS), Hausdorff, TWED, and Fréchet distances—using
data from 42 U.S. mega-cap companies in the technology and consumer sectors
(April 2020–April 2025). Ridge Regression with lagged features was applied to
address multicollinearity among predictors. Results show that σ-based and LCSS
methods achieved the highest coverage (95.22% and 94.61%) but at the cost of
wider intervals, while DTW, Hausdorff, and TWED provided much narrower in-
tervals (5.86–6.48) with moderate coverage (63–67%). These findings highlight
a trade-off between reliability and precision, underscoring the need for context-
aware method selection. This work adds to the literature by demonstrating that
similarity-based approaches can offer competitive, application-dependent alterna-
tives to conventional interval estimation in high-dimensional, nonstationary finan-
cial data.
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1 Introduction

Real-life situations encompass uncertainty in various domainsfrom financial invest-

ment and medical diagnosis to sporting events and weather prediction. In each

instance, the objective is to make smart decisions based on accessible information

and subject expertise amidst underlying uncertainties [1]. Scholars have suggested

numerous models, such as regression, machine learning, and neural networks, to

obtain precise predictions. Nonetheless, even the best approaches are incapable of

predicting precise values with certainty; there is always inherent uncertainty. Con-

sequently, given that predictions by such models are prone to noise and inference

error, uncertainty quantification (UQ) becomes necessary [2].
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To measure this prediction uncertainty, measures like Mean Squared Error (MSE)

and Mean Absolute Percentage Error (MAPE) are routinely employed, which cal-

culate the error between predictions and realizations. Prediction intervals (PIs) are

one of the most popular methods of uncertainty quantification (UQ) in the litera-

ture [3]. Prediction intervals (PIs) have been used to measure uncertainty for more

than 50 years extensively. A prediction interval gives a range that is expected to

cover future observations, hence quantifying prediction uncertainty. This method

overcomes the limitations of point forecasting and is now critical in economics, food

science, tourism, healthcare, energy, and even compression algorithms [4]. In spite

of their importance, evaluation and optimization of prediction intervals are still

areas worth investigating.

Optimal confidence intervals are necessary for accurate parameter estimation in

various fields, including reliability engineering, diagnostics, and economic forecast-

ing. Optimal confidence intervals (CIs) are defined by their high coverage probabil-

ity (e.g., 95%) and small width. Wider intervals reflect greater uncertainty about

the estimated parameter [5]. The bootstrap weighted-norm method provides an

effective strategy for the accurate estimation of confidence intervals for parameter

estimation [6]. For diagnostic studies, the delta method and parametric bootstraps

are suitable for post-hoc calculation of confidence intervals, depending on variables

like sample size, distribution of marker values, and model assumption validity [7].

An approach based on the moderate deviation principle also provides statistically

optimal confidence intervals for non-parametric estimates, thus guaranteeing a min-

imum mischaracterization and strong performance under a variety of models [8].

Collectively, these studies highlight the importance of tailored methods for the

development of valid confidence intervals for a spectrum of applications. Employ-

ment of time series similarity techniques in prediction tasks is not a new concept.

Wu et al. [41] used an ellipse-based similarity metric to model positional uncer-

tainty in degradation paths for the prediction of the Remaining Useful Lifetime

(RUL) of lithium-ion batteries. The proposed approach showed greater accuracy

and robustness than conventional similarity metrics like DTW, LCSS, and EDR.

Among the traditional methods, the LCSS metric performed better than DTW and

EDR but was less accurate than the proposed approach. Further, Wei et al. [10]

developed novel similarity measures for Probabilistic Interval Preference Order-

ing Sets (PIPOSs) to improve decision-making under uncertainty. The proposed

model succeeds in aggregating both probabilistic and interval-based information,

improving the robustness of decision results and mitigating the risk of misleading

rankings. Zhao et al. [11] discussed uncertainty quantification in predictive model-

ing. Similarity-based approaches (SIS, DTW, LCSS) offer a promising alternative

to classical σ-based intervals, particularly for noisy, sparse, and nonstationary data.

Results indicated that conventional approaches yield wider bounds and conservative

predictions. Additionally, Arslan et al. [12] presented an extensive review of time se-

ries forecasting approaches based on trajectory similarity with specific application
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to traffic flow forecasting. Trajectory similarity approaches are effective in both

point and interval forecasting, especially when coupled with seasonal filtering and

local regression. Literature proves that similarity-based approaches significantly

contribute to enhancing both prediction accuracy and uncertainty quantification.

This highlights a clear gap: the need to systematically develop and assess similarity-

based interval methods that balance theoretical rigor with practical performance.

The aim of this study is to employ similarity-based methods in constructing

confidence intervals, thereby avoiding the parametric assumptions usually required

by conventional approaches, founded on the importance of similarity measures in

enhancing the accuracy of predictive procedures. While we acknowledge that con-

ventional confidence intervals are statistically grounded and similarity-based inter-

vals are algorithmic in nature, a meaningful comparison remains possible when

the focus is on their practical performance in quantifying uncertainty. Specifically,

both approaches share the common objective of capturing the variability around

predictions and providing bounds within which future values are expected to fall.

Thus, even though the theoretical underpinnings differ, their outcomes can be evalu-

ated side by side in terms of coverage probability and interval widthtwo universally

accepted criteria for assessing the effectiveness of interval estimation [13].

1.1 Theoretical Foundation

Normal or approximately normal sampling distribution and constant variance are

assumptions of conventional confidence intervals. However, in real-world data, these

assumptions are often violated. Nonparametric methods, particularly distance-

based approaches, offer notable advantages by eliminating the need for strict distri-

butional assumptions, which makes them robust for real-world datasets. These

kinds of methods are highly flexible, accommodating irregular, noisy, or high-

dimensional time series, and remain valid even with small sample sizes, unlike

parametric methods that rely on large-sample approximations [11].

In regression-based forecasting, each model prediction ŷt is subject to uncertainty

due to model bias, noise in the explanatory variables, and inherent randomness in

the data-generating process. A confidence interval (CI) for a prediction is a range

[Lt, Ut] that aims to contain the true value yt with a specified probability 1− α:

P (Lt ≤ yt ≤ Ut) ≥ 1− α

In the classical framework, this range is obtained from the sampling distribution of

the prediction error

et = yt − ŷt.

The scale of this distribution, often summarized by its standard deviation σe, is

used in:

[Lt, Ut] = ŷt ± z1−α/2 · σe
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Classical confidence intervals are based on the presupposition of constant variance

combined with a normal or near-normal sampling distribution, which makes them

vulnerable to skewness, heavy tails, and small sample sizes for which the Central

Limit Theorem does not hold [14]. The substantial effect of extreme values on

variance means that even one outlier can disproportionately inflate the width of

the interval and distort the image of uncertainty [11]. In datasets with few obser-

vations, the estimation of σ is no longer reliable, while in time series that have

heteroscedasticity or nonstationarity, one global σ cannot capture local variability,

with the result being coverage inaccuracies [12]. The standard deviation also con-

denses data into a single measure of dispersion that ignores temporal structures and

local patterns of similarity, relying on particular distributional assumptions, which

makes it inappropriate when there is no reliable probabilistic model available or

when only bounded interval data are available [11].

Nonparametric and similarity-based approaches form prediction intervals with-

out making distributional assumptions; rather than estimating a universal standard

deviation (σ), these approaches compare the feature patterns in the current data

point to comparable patterns in historical datasets (e.g., Dynamic Time Warping,

Longest Common Subsequence, or Euclidean distance) to induce variability from

these similarities [12]. By concentrating on a suitably chosen subset of compara-

ble historical cases, such approaches naturally deal with heteroscedasticity, with

interval widths varying smoothly across contexts, mitigating the effect of outliers,

avoiding probabilistic assumptions, and quantifying uncertainty through mecha-

nisms such as Sub-Interval Similarity, which measures distances between predicted

and actual sub-intervals [11]. Further, these approaches preserve the temporal

structure of the data, in contrast to variance-based approaches that collapse it to

a single dispersion measure [12].

Similarity-based methods extend the confidence interval concept by replacing

the parametric error variance with an empirical scale derived from the distances be-

tween predicted sequences and their most similar historical analogs. Let S(ypred, yobs)

be a similarity measure (e.g., DTW, LCSS, Hausdorff). A similarity-based error

estimator can be expressed as:

σe,sim = g−1

(
1

k

k∑
i=1

S
(
yt−w:t, y

i
t−w:t

))
where k is the number of nearest neighbors in similarity space and g−1(0) maps

the average similarity distance to an equivalent prediction error magnitude. Under

assumptions of stationarity and ergodicity, the distribution of historical distances

provides a consistent estimator for the future error distribution.

The resulting prediction interval is therefore:

[Lt, Ut] = ŷt ± z1−α/2 · σe,sim

This specific formulation preserves the meaning of coverage probability with confi-
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dence intervals while abandoning the requirement for strict parametric assumptions.

Also, since similarity measures can capture structural differences, such as local time

shifts, non-linear warping, and geometric distortions, they can provide more robust

uncertainty bounds in complex, high-dimensional data sets [15].

Therefore, similarity-based confidence intervals are not heuristic approximations

but are based on the same probabilistic basis as conventional CIs, except that the

error scale is estimated from empirical similarity relations instead of parametric

distribution. This distribution-free characteristic renders them particularly appro-

priate for non-stationary or highly structured time series data.

2 Methodology

The methodology of this study comprises two main components: the database and

the prediction method. It further elaborates on the similarity-based methodology

and its application in measuring intervals.

2.1 Dataset

This study is grounded in the U.S. finance market, covering the period from April

7, 2020, to April 4, 2025. The closing prices of companies classified under the Mega

Market Capitalization category were used. Apples closing price was selected as the

target value because its stock performance often reflects broader market trends,

making it a strong representative of market sentiment. The data were extracted

from the NASDAQ database. Using the Stock Screener tool on the website, all

active U.S. stock market companies within the Mega Cap category were filtered,

resulting in a selection of 42 companies. The dataset spans the last five years with

daily frequency, allowing for precise analysis of market fluctuations and supporting

accurate statistical analyses and algorithmic applications.

2.2 Prediction model

Forecasting in finance involves a high number of variables, such as macroeco-

nomic data, microeconomic data, earnings reports, and technical indicators. Mul-

ticollinearity and dependencies among predictors are common in financial datasets,

which makes the use of multivariate regression models like OLS less appropriate or

reliable [16]. From a technical standpoint in linear regression with multicollinearity

issues, when the matrix XTX is singular, the standard Ordinary Least Squares

(OLS) estimators cannot be applied because they require the inverse of XTX. In

this case, the ridge version of the estimators is more stable and can overcome this

problem [17]. Multicollinearity can cause issues for each coefficient, including in-

accurate estimates, excessive growth of standard deviations, incorrect t-tests, and

inaccurate confidence intervals [18].
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Ridge estimation is a regularization technique aimed at stabilizing parameter

estimates by shrinking them or their linear combinations. This method provides

more reliable estimators with reduced variance compared to ordinary least squares,

especially in the presence of multicollinearity. By adding the parameter k (where

k > 0) to theXTX matrix, one can control the amount of shrinkage of the regression

coefficients:

β̂k = (XTX + kI)−1XTY (1)

Here, k is the shrinkage parameter, which controls the amount of shrinkage of

the regression coefficients, and I is the identity matrix [19]. As seen in Equation (5),

the ridge regression approach involves adding a small positive number (k) to the

diagonal elements of the XTX matrix. This prevents the variance of the regression

coefficients from overinflating due to multicollinearity.

2.3 Confidence intervals

Predictions are inherently associated with uncertainty. Unlike point forecasts, pre-

diction intervals (PIs) serve as a powerful tool for modeling uncertainty. By defini-

tion, a PI consists of lower and upper bounds that bracket an unknown future value

with a specified probability typically expressed as a confidence level of (1−α)% [20].

A desirable prediction method achieves narrower intervals while controlling Type I

(false positive) and Type II (false negative) error probabilities.

The traditional form of confidence intervals uses the standard deviation to eval-

uate the CI. The margin of error (ME) in a confidence interval is determined using

the Z-value, the standard deviation (SD) of the sample, and the sample size (N),

and is given by the formula:

ME = Z × SD√
N

(2)

The lower and upper bounds of a prediction interval are obtained by subtracting

and adding the margin of error (ME) to the predicted value, respectively. If ŷ is

the predicted value:

lower bound = ŷ −ME (3)

upper bound = ŷ +ME (4)

So, the prediction interval is:

PI = (ŷ −ME, ŷ +ME) (5)

The Z-value is determined by the chosen confidence level. It is important to

note that confidence intervals are statistically accurate only when sampling from a
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normally distributed population. For non-normally distributed populations, they

become approximately valid when the sample size is sufficiently large [21].

2.4 Distance-based methods

The construction of optimal confidence intervals (with minimal width and correct

coverage probability) as a statistical method relies critically on certain assumptions,

namely normally distributed data and sufficiently large samples. Violating these as-

sumptions compromises either coverage accuracy or interval efficiency. This article

introduces distribution-free methods for confidence interval estimation that do not

require parametric assumptions (e.g., normality or large-sample approximations),

instead leveraging distance-based metrics to achieve statistically valid inference.

Although we refer to the intervals generated through similarity-based methods as

”bounds” for brevity, they are not statistical confidence intervals derived from a

sampling distribution. Rather, these are heuristic intervals based on the variability

of historical instances of similar patterns. Thus, their coverage is empirical and not

supported by a probability model.

Building on the same principles underlying conventional methods for calculating

confidence intervals, distance-based approaches offer an alternative by measuring

the distance between predicted values and observed data. Time series similarity

measurement serves as the foundation for clustering and classification tasks by

quantifying distances between temporal sequences. This metric plays a critical role

in temporal pattern analysis, functioning as a fundamental tool for statistical in-

ference across datasets. The rapid proliferation of data collection has significantly

expanded time series availability, increasing demand for analytical tasks such as

regression, classification, clustering, and segmentation. These applications univer-

sally require specialized distance metrics to quantify inter-series similarity, making

methodological research in this area essential [15].

Current similarity measures can be broadly categorized into three groups:

• Step-by-step methods (e.g., pointwise comparisons)

• Distribution-based approaches (matching statistical properties)

• Geometric techniques (shape or trajectory alignment)

Stepwise Metrics

These metrics compare time-series samples one by one based on their time indices

[?]. A significant limitation of these methods is the requirement for identical sample

sizes in the time series. The most notable stepwise metrics are Euclidean Distance

and Correlation Coefficient, which are detailed below.

The Euclidean Distance calculates the shortest distance between two points in

Euclidean space. For two time series x and y of length n, it is defined as:
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Deuc =

(
n∑

i=1

(xi − yi)
2

)1/2

(6)

This distance is widely used due to its simplicity and ease of understanding.

However, a key limitation is its sensitivity to time-axis transformations, such as

scaling and shifting [22], and it cannot compare time series of different lengths.

Elastic Metrics

Elastic metrics adjust the time axis by stretching or compressing it to minimize

the effect of local variations, effectively handling non-linear distortions. The most

notable methods include Dynamic Time Warping (DTW) and Longest Common

Subsequence (LCSS).

Dynamic Time Warping (DTW) aligns sequences non-linearly by stretching

or compressing the time axis. The cumulative distance matrix is defined as:

DISTMATRIX =


d(x1, y1) d(x1, y2) . . . d(x1, ym)

d(x2, y1) d(x2, y2) . . . d(x2, ym)
...

...
. . .

...

d(xn, y1) d(xn, y2) . . . d(xn, ym)

 (7)

and recursively:r(i, j) = d(i, j) + min{r(i− 1, j), r(i, j − 1), r(i− 1, j − 1)}
DTW (x, y) = min{r(n,m)}

(8)

Longest Common Subsequence (LCSS) identifies the longest matching sub-

sequences between two time series Sx and Sy of lengths n and m:

M(i, j) =


0 i = 0 or j = 0

1 +M(i− 1, j − 1) xi = yj , i ≥ 1, j ≥ 1

max{M(i− 1, j),M(i, j − 1)} xi ̸= yj , i ≥ 1, j ≥ 1

(9)

and recursively with a tolerance ϵ:

M(i, j) =


0 i = 0 or j = 0

1 +M(i− 1, j − 1) |xi − yj | ≤ ϵ, i ≥ 1, j ≥ 1

max{M(i− 1, j),M(i, j − 1)} |xi − yj | > ϵ, i ≥ 1, j ≥ 1

(10)
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Geometric Distances

Geometric distances focus on the spatial characteristics of trajectories. Examples

include Hausdorff Distance, Discrete Frechet Distance, and SSPD (Symmetric Seg-

ment Path Distance).

The Hausdorff Distance is defined as:

Haus(X,Y ) = max

{
sup
x∈X

inf
y∈Y

∥x− y∥2, sup
y∈Y

inf
x∈X

∥x− y∥2
}

(11)

The Frechet Distance measures the minimal ”leash length” connecting two

curves:

DFrechet(T
1, T 2) = min

{
max

k
∥wk∥2

}
, wk ∈ [0, . . . , |w|] (12)

2.5 Coverage and Width Calculation

To compare the confidence intervals, the coverage and width of each interval are

calculated as evaluation metrics.

Coverage is the empirical inclusion rate of observed values within the predicted

bounds. Higher coverage indicates more accurate intervals. Let Li and Ui be the

lower and upper bounds, and yi be the true observed value. Then the coverage is

calculated as:

Coverage =

∑n
i=1 1(Li ≤ yi ≤ Ui)

n
× 100% (13)

If the condition holds, the 1(0)-function equals 1; otherwise it takes 0.

For σ-based intervals, coverage can be interpreted as an approximation of the

nominal statistical confidence level under the assumption of normality. For similarity-

based bounds (e.g., DTW-like), coverage is a purely empirical metric showing the

proportion of test observations contained within the bounds; it does not imply any

formal probabilistic guarantee, as these intervals are not derived from a sampling

distribution.

Width is computed as the average span of the predicted intervals:

Mean Width =

∑n
i=1(Ui − Li)

n
(14)

This measures precision: narrower intervals indicate higher precision but may

lead to lower coverage, while wider intervals indicate greater uncertainty represen-

tation but may be less useful for decision-making.

For similarity-based bounds, which lack a formal probabilistic model, perfor-

mance is evaluated using empirical coverage and mean interval width. Coverage

is defined as the proportion of observed values contained within the bounds, while
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Table 1: Similarity methods

Method Advantages Disadvantages Category

Euclidean Distance
• Most straight-

forward and
widely used

• No need for pa-
rameter estima-
tion

• No support for
local time shifts

• Inefficient in
high dimensions

• Sensitive to
small time axis
changes

Step-by-step

DTW (Dynamic Time Warping)
• Supports local

scaling and or-
der preservation

• Handles time se-
ries of different
lengths

• Captures local
time shifts

• Time-
consuming

• Sensitive to
noise

• High computa-
tional load

• Incorrect clus-
tering due to
outliers

• Requires pair-
ing all elements

• Not metric

Elastic

LCSS (Longest Common Subsequence)
• Robust against

noise
• Focuses on simi-

lar parts
• No need for nor-

malization

• Depends on
threshold

• Binary similar-
ity can cause
poor results

• Not metric, vio-
lates triangle in-
equality

Elastic

Hausdorff Distance
• Measures spa-

tial similarity
• Considers far-

thest point

• Not suitable for
trends

• Complex due to
all points

• Limited path
comparison

• Ignores overall
similarity

Geometric

Discrete Fréchet Distance
• Considers order

and continuity
• Lower complex-

ity with discrete
models

• Limited to path
comparison

• Max distance
overshadows
details

Geometric

width quantifies precision. This combination offers an assumption-free and directly

interpretable assessment suitable for nonparametric, data-driven methods.

3 Result

The financial dataset was used to develop prediction models. To optimize model

performance, the Ridge parameter (α) of the robust Rank Ridge Regression model
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was determined using RidgeCV, which minimizes the mean squared error (MSE).

Figure 1: Cross-Validation MSE vs Alpha (RidgeCV)

Figure 1 illustrates the optimal value of this parameter. The Ridge Regression

model was developed to forecast Apples daily closing price. To improve model

accuracy, three time-lag features were created for the closing prices of both Apple

and the predictor variables. The dataset was divided into training and test sets,

and the features were standardized to enhance model performance.

Table 2: Ridge Regression with Lag Features

Metric Train Test

R2 0.9923 0.9604

MAE 1.9130 3.2633

RMSE 2.5483 4.3133

Model accuracy was evaluated using the Mean Squared Error (MSE) and the R2

score, as presented in Table 2. The R2 and Mean Absolute Error (MAE) values

for both the training and test datasets indicate strong model performance. The

high R2 value for the test set suggests that the model generalizes well and does not

suffer from overfitting.

Based on the Ridge Regression model, Figure 2 presents the prediction results

for the AAPL test dataset. The blue line represents the actual test values, while the

orange line represents the predicted values. Since Ridge Regression is particularly

suitable for data affected by multicollinearity, the accurate predictions on the test

setillustrated in Figure 2demonstrate the strong performance of the model.

Coverage and width are the two primary properties that determine the effective-

ness of confidence intervals. In this study, the models confidence intervals were

computed using both the standard deviation and time series similarity methods to

evaluate which technique better satisfies the desired properties of accurate confi-

dence intervals.
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Figure 2: Ridge Regression with Lag Features

Traditional confidence intervals are derived from the standard deviation, assum-

ing a 95% confidence level. For the dataset used in this study, the coverage of

the conventional confidence interval is 95.22%, meaning that in 95.22% of cases

the actual value falls within the interval. Another important property for evalu-

ating the effectiveness of a confidence interval is the mean CI width; a narrower

width indicates more precise intervals. For our dataset, the mean CI width of the

conventional approach is 14.57.

Figure 3: conventional confidence interval with standard deviation

The main question of this research is: Are time series similarity methods effective

enough to construct reliable intervals comparable to those based on standard devi-

ation? To evaluate this, confidence intervals were constructed using various time

series similarity methods, including Dynamic Time Warping (DTW), Longest Com-

mon Subsequence (LCSS), Hausdorff distance, Time Warp Edit Distance (TWED),

and Fréchet distance.

Figures 4, 5, 6, 7, and 8 illustrates the intervals generated by each method,

highlighting the extent to which the actual values are covered within these intervals.

Table 3 summarizes the coverage and mean confidence interval width associated

with each method.
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Figure 4: DTW intervals.

Figure 5: LCSS intervals.

Figure 6: Hausdorff intervals.

Figure 7: TWED intervals.

4 Discussion

Table 3 highlights the trade-off between reliability (measured by coverage) and

precision (measured by mean confidence interval width) across six different methods
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Figure 8: Fréchet intervals.

Table 3: Evaluation of CI Coverage and Width Using Conventional and Time Series
Similarity Approaches

Method CI Coverage (%) Mean CI Width

Conventional 95.22 14.57

DTW-like 63.07 5.86

LCSS 94.61 59.34

Hausdorff 63.49 6.22

TWED 66.8 6.48

Fréchet 75.1 10.68

for constructing confidence intervals (CIs). This study compares the performance

of these methods in capturing true values within the estimated intervals.

The first method, a σ-based approach (commonly referred to as the conven-

tional confidence interval), demonstrates strong performance with a coverage rate

of 95.22% and a moderate mean width of 14.57. These results are consistent with

the findings of [11], which showed that traditional methods gain wider bounds and

conservative estimates. Among all the methods evaluated, this approach yields the

highest coverage, indicating that it reliably includes the actual values within the

interval. However, while reliable, its precision is only moderate compared to some

of the other methods.

The LCSS (Longest Common Subsequence) method also achieves high coverage

at 94.61%, closely matching the conventional method. [41] already showed the accu-

racy and robustness of the LCSS method. However, it produces significantly wider

intervals (mean width of 59.34), suggesting that while it captures the true value

effectively, it lacks precision and may result in overly conservative estimates.

In contrast, the DTW-like, Hausdorff, and TWED methods generate much nar-

rower confidence intervals (with mean widths of 5.86, 6.22, and 6.48, respectively),

which indicates greater precision. However, this precision comes at the cost of lower

coverageranging from 63.07% to 66.8%which implies that these methods may fail

to capture the actual values as consistently as the σ-based or LCSS methods.
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Figure 9: Figure 5. Comparison of Confidence Interval Coverage and Width Across
Conventional and Time Series Similarity

The Fréchet distance-based method offers a balance between coverage and preci-

sion, with a coverage of 75.1% and a mean width of 10.68. While not as reliable as

the σ-based or LCSS approaches, it outperforms the other similarity-based methods

in terms of maintaining a more favorable balance.

While similarity-based approachessuch as those proposed by [11], [41], [12], and

[10]provide a flexible and powerful framework for prediction and interval estimation,

they are not without limitations. These methods overcome key constraints of tradi-

tional parametric techniques by offering data-driven uncertainty assessments, but

it is critical to note that their resulting intervals are heuristic bounds rather than

formal statistical confidence intervals. Consequently, their coverage rates must be

interpreted empirically, not probabilistically.

5 Conclusion

In the realm of statistical modeling, two primary objectives—prediction and explanation—

guide the analytical process. When forecasting is the focus, it is essential to ac-

count for the uncertainties that arise in estimating unknown outcomes. Histori-

cally, confidence intervals constructed from standard deviations have provided a

structured means of quantifying this uncertainty, enabling an assessment of how

closely predicted values align with their actual counterparts. This traditional ap-

proach implicitly reflects the behavioral similarities between observed and predicted

data points. However, recent advancements in similarity-based methodologies of-

fer innovative alternatives to conventional variance-focused techniques, particularly

in contexts characterized by extensive datasets or a large number of explanatory

variables [10–12, 41]. This study seeks to explore methods that can effectively

reduce uncertainty in confidence interval estimation. By comparing both tradi-

tional and similarity-based approaches, the goal is to determine which methods can
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yield tighter confidence intervals under comparable conditions, ultimately leading

to greater precision and more informative results. Addressing uncertainty remains

paramount, as it underpins the reliability of predictions and strengthens decision-

making processes across diverse applications.

In conclusion, this study highlights the inherent trade-off between reliability and

precision in confidence interval construction methods aimed at capturing true values.

The evaluation of six distinct approaches reveals clear differences in performance

in terms of coverage rates and mean confidence interval widths. The conventional

σ-based approach emerges as the front-runner, achieving the highest coverage rate

(95.22%), thereby ensuring that true values are reliably included within the intervals.

However, this reliability comes at the cost of precision, as the intervals remain

relatively wide. The LCSS method follows closely, with a coverage rate of 94.61%,

but its considerably wider intervals result in overly conservative estimates [41].

Conversely, methods such as DTW, Hausdorff, and TWED demonstrate excep-

tional precision, producing notably narrower intervals. Yet this precision is offset

by lower coverage rates (ranging from 63.07% to 66.8%), indicating a higher risk of

excluding actual values. The Fréchet distance-based method offers a more balanced

trade-off, achieving moderate coverage (75.1%) while maintaining narrower interval

widths [11,12].

Overall, these findings underscore the importance of carefully selecting interval

construction methods based on the analytical context. Researchers and practition-

ers must weigh their priorities—whether higher reliability or greater precision—in

order to align methodological choices with forecasting objectives. This study em-

phasizes that no universal solution exists, and the effectiveness of confidence interval

estimation must be tailored to the demands of specific applications.

For future research, it would be valuable to explore advanced similarity-based

methods that may further enhance the accuracy of confidence intervals in predictive

tasks. In particular, the integration of deep learning-based similarity measures—

which have demonstrated superior performance in multiple domains—presents a

promising direction. Additionally, hybrid approaches incorporating dynamic time

warping (DTW) with advanced metric learning algorithms could improve the ability

to capture complex temporal patterns and high-dimensional relationships more

effectively.
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