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Abstract:
Abstract:
Forecasting financial market volatility has always been a major challenge in eco-
nomics and financial engineering. In this study, a hybrid approach based on
FIGARCH and PLM-GARCH models combined with Long Short-Term Memory
(LSTM) neural networks is proposed for modeling financial time series. The an-
alyzed dataset of the Iran energy index covers October 30, 2016, to January 25,
2023 with 1396 observations. The PLM-GARCH model is capable of identifying
long-term dependencies and periodic structures in the conditional variance of time
series, while the LSTM network improves prediction accuracy by learning complex
and nonlinear patterns. In this approach, the PLM-GARCH model is first used to
estimate volatility, and then the residuals from the model are fed as inputs into the
LSTM network to extract nonlinear behaviors. Experimental results showed that
the combined PLM-GARCH-LSTM model (RMSE = 0.00209, MAPE ≈ 5.1%)
outperforms the FIGARCH-LSTM model (RMSE = 0.00224, MAPE ≈ 5.8%) and
significantly improves prediction accuracy. These findings suggest that combin-
ing econometric periodic methods with deep learning can be a powerful tool for
forecasting financial volatility.

Keywords: Model hybridization, Long Short-Term Memory neural network,
PLM-GARCH, financial time series.
Classification: 62M10, 91G70, 68T07.

1 Introduction

Forecasting volatility is a fundamental element of modern financial theory and prac-

tice, with overt applications in option pricing, portfolio optimization, risk manage-

ment, and regulation policy. For instance, the BlackScholes model of option pricing

uses constant volatility as a simplifying assumption; but empirical results show that

under this assumption options will be systematically mispriced. Accurate volatility

forecasts can avoid such mispricing, make hedging strategies optimal, and enhance
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efficiency in capital allocation. There are several stylized facts that have been

reliably found in financial time series, such as volatility clustering, long-memory

behavior, and periodic patterns. Volatility clustering refers to the empirical obser-

vation that large (or small) asset price movements should be accompanied by other

large (or small) movements, regardless of sign. Long-memory processes exhibit

slowly declining autocorrelations, so that shocks to volatility persist for extended

periods. Volatility patterns can repeat on a periodic basis because of seasonal fac-

tors, cycles, or structural characteristics of specific marketse.g., energy markets,

where geopolitical tensions and demand cycles will create recurring volatility pat-

terns. These characteristics need to be identified and simulated in order to enable

accurate predictions.

GARCH-type econometric models like the Fractionally Integrated GARCH (FI-

GARCH) and Periodic Long-Memory GARCH (PLM-GARCH) have widely been

used to model long memory dependencies and periodicity in volatility. The FI-

GARCH models provide for fractional integration so that the long-memory effects

are modeled, and the PLM-GARCH enhances this by incorporating periodic terms

within the conditional variance. The theoretical motivation and interpretability of

these models allow practitioners to investigate both persistence and periodicity in

volatility.

Although robust in themselves, traditional econometric models do depend upon

linearity and stationarity assumptions and thus are less sensitive to the nonlinear

and regime-switching nature of real financial markets. Deep learning models, such

as Long Short-Term Memory (LSTM) neural networks, are extremely capable of

untangling nonlinear dynamics and intricate temporal interconnections in sequen-

tial data. LSTM networks are a step above the vanishing gradient issue inherent in

standard recurrent neural networks and can retain useful information for long-time

horizons. They are less interpretable than econometric models and may require

large datasets to train well.

Theoretically, combining PLM-GARCH with LSTM is likely to improve the ac-

curacy of forecasting by leveraging the strengths of both approaches: the periodic-

long-memory modeling and interpretability of PLM-GARCH and the nonlinear

pattern detection ability of LSTM. The PLM-GARCH component extracts struc-

tured periodicity and persistence, while the LSTM component forecasts any leftover

nonlinear dynamics. Such synergy can enhance robustness across many regimes of

markets, specifically in energy indices where periodic and nonlinear performances

are both important. The rest of the paper is organized in the following fashion.

Section 2 provides the research background. Section 3 presents the dataset and

outlines the statistical and deep learning methods utilized, along with technical

details of the PLM-GARCH and LSTM models. Section 4 outlines the empirical

findings, including comparisons between the suggested hybrid approach and bench-

mark models. Section 5 concludes with a discussion of results, implications, and

future research directions.
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2 Literature Review

Predicting volatility in financial markets is a basic problem in both econometrics

and machine learning. The early literature focused on linear econometric specifica-

tions that attempted to model persistence and long-run dependence in the condi-

tional variance of financial time series. The GARCH model introduced by Bollerslev

(1986) [5] and its popular extensions such as EGARCH (Nelson, 1991) [34] and GJR-

GARCH (Glosten et al., 1993) [20] have been among the most heavily used tools

for modeling volatility dynamics.

As long-memory processes attracted more interest, the FIGARCH model (Boller-

slev & Mikkelsen, 1996) [6] was proposed to capture the slow decay of autocorre-

lations in conditional variance through fractional integration. The Periodic Long-

Memory GARCH (PLM-GARCH) model (Bordignon et al., 2008) [7] was later

an extension of FIGARCH to incorporate periodic components so that seasonal

and cyclical patterns could be modeled in volatility. This capability is particularly

valuable for the energy markets, where volatility is typically driven by recurring

demand-supply cycles, seasonality, and geopolitical shocks.

Another significant branch of the literature has entertained the use of macroe-

conomic variablesinterest rates, industrial production, or oil prices, for examplein

regression-based volatility models. Incorporating such exogenous variables can, at

times, do away with mathematical problems such as nonlinearity or periodicity.

The present study takes a different route by using only the Tehran Stock Exchange

energy index. The rationale is theoretical in the sense that sector-specific indices,

especially in energy, have a tendency to capture their own volatility dynamics in

historical price data since they are responsive to industry-specific and geopolitical

drivers and hence are self-contained indicators for volatility modeling.

For machine learning, recurrent neural networks (RNNs) and specifically Long

Short-Term Memory (LSTM) networks (Hochreiter & Schmidhuber, 1997) [24] have

been found to possess strong capabilities in approximating nonlinear temporal de-

pendencies and long-range relationships in sequential data. Studies such as Fischer

& Krauss (2018) [17] and Nelson et al. (2018) [35] have shown that LSTMs can

outperform classical econometric models in predictive performance, at the cost of

interpretability, however.

Hybridization of econometric models with deep learning has attracted growing

interest. For example, Kim & Won (2021) [29] found that the combination of

GARCH-type models with neural networks reduced the prediction error. However,

there have been few research works on the hybridization of periodic long-memory

econometric models like PLM-GARCH and LSTM networks. This research closes

this gap by proposing a novel PLM-GARCH + LSTM model, aiming to jointly

model structured periodiclong-memory volatility patterns and nonlinear residual

dynamics in the energy index time series.



176 Journal of Mathematics and Modeling in Finance

3 Methodology

3.1 ARMA/GARCH-type Models

The foundation for ARMA models in forecasting financial variables originates from

the Box and Jenkins (1976) [8] methodology. This approach involves identifying

an ARMA(p,q) model that accurately represents the stochastic process underlying

the data. The ARMA model can be expressed as:

Φ(B)rt − µ = θ(L)εt, εt|Ωt−1 ∼ N(0, σ2
t ) (1)

Φ(B) = 1− φ1B − φ2B
2 − . . .− φpB

p (2)

θ(B) = 1− θ1B − θ2B
2 − . . .− θqB

q (3)

Where rt stands as a representation of stock market index return, N stands for

conditional normal density with zero mean, and conditional variance is σ2
t , besides

Ωt−1 indicating all the information that has been available till t − 1; B stands

for backshift operator and µ as series mean. The polynomials Φ(B) and Θ(B)

correspond to the autoregressive (AR) and moving average (MA) parts, respectively,

and their roots lie outside the unit circle.

Volatility modeling gained prominence after the introduction of ARCH (Engle,

1982) [16] and GARCH (Bollerslev, 1986) [5] models. Extensions such as EGARCH

(Nelson, 1991) [34] and GJR-GARCH (Glosten et al., 1993) [20] address asymme-

tries and leverage effects.

3.2 FIGARCH Model

The Fractionally Integrated GARCH (FIGARCH) model, introduced by Baillie et

al. (1996) [4], is designed to capture long-term memory in volatility, analyzing the

persistence of shocks in financial time series. The GARCH and FIGARCH models

are defined as:

σ2
t = ω +

p∑
i=1

αiϵ
2
t−i +

q∑
j=1

βjσ
2
t−j (4)

σ2
t = ω +

p∑
i=1

αiϵ
2
t−i +

q∑
j=1

βjσ
2
t−j +

[
1− (1− L)d

]
ϵ2t (5)

Where σ2
t represents the conditional variance at time t, ω is a constant, and αi

and βj are parameters for the ARCH and GARCH values, respectively. The term[
1− (1− L)d

]
introduces the long-memory effect. Here, d is the fractional differ-

encing parameter (0 < d < 0.5 for covariance stationarity). Estimation of d can be

performed using methods similar to ARFIMA models, such as the GewekePorter-

Hudak (GPH) estimator or maximum likelihood methods (Bollerslev & Mikkelsen,

1996) [6].
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3.3 PLM-GARCH Model

Financial time series generally have complex temporal structure, and the behav-

ior of volatility is conditioned by both the cyclical and seasonal patterns. It is

important to capture such components in a proper manner for accurate volatility

prediction. The two primary components characterizing such time series are:

• Seasonality: These are regular and predictable movements at fixed time peri-

ods, e.g., monthly, quarterly, or yearly seasons. Seasonality most commonly

arises from calendar effects, business cycles, or other periodic phenomena.

• Cycles: These are prolonged movements in the data caused by underlying

economic, social, or financial factors. As opposed to seasonality, cycles are

not seasonally fixed in length, hybrid LSTM for periodic long-memory in

financial energy index and typically are longer than one period in length,

longer than seasonal cycles.

To properly capture the above dynamics, two complementary modeling approaches

are employed:

Seasonality is captured by SARFIMA (Seasonal Autoregressive Fractionally Inte-

grated Moving Average) models, which are an extension of basic ARFIMA models

to account for seasonally long-memory behavior. Cycles are modeled with the Peri-

odic Long-Memory GARCH (PLM-GARCH) model, extending standard GARCH

models to include periodic and long memory features in volatility modeling.

Definition and Motivation of PLM-GARCH

The PLM-GARCH was introduced by Bordignon et al. (2008) [7] as a natural

extension of GARCH frameworks to better capture temporal volatility patterns ex-

hibiting both periodicity and long memory. In fact, it is quite a useful framework

in dealing with financial time series whose volatility tends to exhibit cyclical behav-

ior depending on calendar effects or market microstructure or even macroeconomic

cycles. It imposes a structure of periodic lag operators and fractional differenc-

ing parameters so that short-run and persistent effects are identified, which basic

GARCH or FIGARCH modeling cannot do.

Mathematical Formulation

The PLM-GARCH model, denoted as PLM-GARCH(p, d, q, S), is expressed as:

σ2
t = ω +

p∑
i=1

αiϵ
2
t−i +

q∑
j=1

βjσ
2
t−j +

[
1− (1− LS)d

]
ϵ2t (6)

where

• σ2
t is the conditional variance at time t, representing the volatility.
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• ω > 0 is a constant term.

• αi ≥ 0 and βj ≥ 0 are the ARCH and GARCH parameters, respectively,

capturing short-term effects.

• LS is the seasonal lag operator defined as LSXt = Xt−S , with S being the

seasonal period (e.g., 12 for monthly data with annual seasonality).

• d ∈ (0, 0.5) is the fractional differencing parameter that measures the intensity

of long memory and persistence in the volatility process.

• ϵt is the innovation term (usually assumed to be white noise).

The term
[
1− (1− LS)d

]
introduces fractional difference operators at seasonal

lags, capturing long-memory dependence that varies periodically over the seasonal

cycle. This contrasts with the FIGARCH model, which applies fractional differenc-

ing at lag 1 and thus captures only non-periodic long memory.

Interpretation and Properties

The PLM-GARCH model generalizes the FIGARCH model by allowing the frac-

tional integration to depend on seasonal lags. This makes the model highly suitable

for financial data with pronounced periodicity in volatility. The long-memory pa-

rameter d controls the degree of persistence; values close to zero correspond to weak

persistence whereas values closer to 0.5 indicate strong, slowly decaying impacts of

shocks.

The model simultaneously accounts for:

• Short-term clustering effects through the αi and βj parameters (ARCH

and GARCH terms),

• Periodic long memory via seasonal fractional differencing,

• Cyclical variations in volatility through the seasonal lag operator LS .

Estimation and Inference

Estimation of the PLM-GARCH model parameters, including the fractional differ-

encing parameter d, can be performed via maximum likelihood methods or semi-

parametric techniques similar to those used for FIGARCH models (e.g., Geweke-

Porter-Hudak (GPH) estimator). The model’s limiting distributions and sample

size conditions are detailed in Bordignon et al. (2008) [7] and Baillie (1996) [4].

Frequency-Domain Analysis

Apart from time-domain modeling strategies, this study also applies frequency-

domain analysis to assist in identifying periodic components in the return series. In
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particular, it employs a periodogram to estimate the periodogram spectral density

over its spectrum. Peaks in the spectral density represent dominant periodicities,

which may correspond to cycles in the economy, seasonality, and market cycles.

The identification of these dominant periodic components offers both theoretical

and empirical rationale for the consideration of periodic components in the final

PLM-GARCH specification. This is particularly important in the context of energy

markets, as cyclical patterns of volatility can reflect seasonal demand and external

shocks and actions.

In summary the PLM-GARCH model offers a flexible and rigorous framework to

analyze financial time series volatility characterized by long memory and periodic

behaviors. By combining seasonal fractional differencing with classical volatility

dynamics, the model captures complex dependence structures, providing improved

forecasting accuracy over traditional GARCH and FIGARCH models.

3.4 Deep Learning Model – Long Short-TermMemory (LSTM)

Overview

Long Short-TermMemory (LSTM) networks, introduced by Hochreiter and Schmid-

huber (1997) [24], are a specific category of recurrent neural networks (RNNs)

designed to learn both long-term and short-term dependencies in sequential data.

This feature renders them particularly potent for application in time series forecast-

ing applications, especially when patterns stretch across several time scales. Unlike

classical feedforward (FF) and standard backpropagation (BP) networks, which

lack a mechanism for maintaining past state information, LSTM networks use a

gated architecture to control storage, updating, and access of information over

time. Such gates eliminate issues such as the vanishing gradient problem, which

typically disables training of simple RNNs.

Gated Architecture

The LSTM unit uses three primary gates to regulate the information flow:

• Forget Gate: Determines which information from the previous cell state

should be discarded.

ft = σ (Wf · [ht−1, xt] + bf ) (7)

• Input Gate and Candidate Memory: Determines which new information

should be added to the cell state.

it = σ (Wi · [ht−1, xt] + bi) (8)

C̃t = tanh (Wc · [ht−1, xt] + bc) (9)
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• Cell State Update: Combines the retained old state and the new candidate

values to update the memory.

Ct = ft · Ct−1 + it · C̃t (10)

• Output Gate: Controls what part of the updated cell state is output as the

hidden state.

ot = σ (Wo · [ht−1, xt] + bo) (11)

ht = ot · tanh(Ct) (12)

Here:

• xt is the input vector at time t.

• ht is the hidden state vector at time t.

• Ct is the cell state (the internal memory).

• σ(·) is the sigmoid activation function.

• tanh(·) is the hyperbolic tangent activation function.

• Wf ,Wi,Wc,Wo are weight matrices and bf , bi, bc, bo are bias vectors for each

gate.

Advantages of LSTM

Compared to conventional BP and FF architectures, LSTM offers:

• The ability to handle very long input sequences without losing information

about dependencies in the data.

• The capability to learn and model non-linear temporal dependencies without

the need for extensive manual feature engineering.

• Flexibility to perform multi-step forecasting for complex time series.

Limitations of LSTM

Although good, LSTM networks have a few disadvantages:

• More computational cost and increased training times compared to simpler

models.

• Require more substantial datasets to achieve constant generalization perfor-

mance.

• Less interpretable than parametric econometric models such as ARMA and

GARCH.
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The Depth of the LSTM Model

The LSTM model is classified as a deep learning approach due to its multi-layer

architecture and ability to learn hierarchical temporal patterns from sequential data.

In this study, the LSTM network consists of three hidden layers with 256, 128, and

64 neurons, respectively. Each successive layer captures increasingly abstract and

complex features of the energy index return series, enabling the model to detect

both short-term and long-term dependencies.

The depth in this context refers not to the number of variables but to the number

of computational layers and the models capacity to extract multi-scale temporal

dependencies. While traditional shallow models can only learn simple relationships,

the deep structure of LSTM, combined with its gated memory units (forget, input,

and output gates), allows it to retain relevant information over long time spans and

discard irrelevant noise.

Using the real energy index data, the multi-layer LSTM effectively models the

nonlinear and long-memory behavior of the series, as evidenced by its improved fore-

casting performance compared to shallower architectures. This hierarchical feature

extraction is the primary reason LSTM is considered a deep learning method.

LSTM Implementation

In the current research, the LSTM network is configured as follows:

• Architecture: Three hidden layers with 256, 128, and 64 neurons, respec-

tively.

• Activation Functions:

– tanh for the cell state activation.

– Sigmoid for the gate activations.

• Optimizer: Adam optimizer.

• Learning Rate: 0.0001.

• Batch Size: 16.

• Training Epochs: 500 epochs with early stopping (patience of 50 epochs)

to prevent overfitting.

In summary the LSTM model integrates the strengths of recurrent architectures

with gating mechanisms to effectively capture both short- and long-term depen-

dencies in financial time series data. Its implementation in this study aims to

enhance predictive performance by leveraging these capabilities while addressing

the limitations inherent in classical econometric models.
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3.5 Model Evaluation

Model evaluation criteria such as Mean Square Error (MSE), Mean Absolute Per-

centage Error (MAPE), Mean Absolute Error (MAE), and Coefficient of Determi-

nation (R2) are used.

MSE =
1

n

n∑
t=1

(yt − ŷt)
2 (13)

MAPE =
1

n

n∑
t=1

|yt − ŷt|
yt

× 100% (14)

MAE =
1

n

n∑
t=1

|yt − ŷt| (15)

R2 =

∑n
t=1(ŷt − ȳ)2∑n
t=1(yt − ȳ)2

(16)

4 Main Results

4.1 Data Analysis

The dataset employed in the research is composed of daily closing prices of the Iran

energy index at the Tehran Stock Exchange from October 30, 2016, to January

25, 2023, amounting to 1396 observations. The energy index was considered for

this study since energy markets usually tend to exhibit strong periodic volatility

patterns stemming from seasonal demand cycles, industrial production schedules,

and geopolitical events. The cyclical behavior combined with a long-term persis-

tence in volatility, on the other hand, renders such a series ideal to be modeled

through the Periodic Long-Memory GARCH (PLM-GARCH) framework, which is

essentially designed to capture precisely these features. While the procedure fol-

lowed here could actually be performed for any other financial indices (for example,

broad stock market indices), the distinctive periodic and sector-specific features of

the energy sector have made it worthy of consideration in this research.

The chosen time frame offers several advantages. First, it covers a period with

multiple market regimes, including both high- and low-volatility phases, thereby

allowing the model to learn diverse volatility behaviors. Second, the 1396 obser-

vations provide a statistically sufficient sample for estimating the parameters of

long-memory models such as PLM-GARCH, where large datasets are often recom-

mended for reliable estimation. The start date reflects the availability of complete

and reliable data, while the end date ensures the inclusion of recent market condi-

tions.

Although the present study models the volatility of the energy index using only

its own historical prices, it is important to note that other variablessuch as global
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oil prices, interest rates, or macroeconomic indicatorscan also influence volatility

forecasts. The decision to use only the index itself is based on the premise that

sector-specific indices, especially in energy markets, inherently reflect their own

volatility drivers through past price movements, thus providing a self-contained

framework for periodic long-memory modeling.

We employed the formula

rt = ln

(
pt

pt−1

)
to compute the returns of the stock exchange index. The descriptive statistics in

Table 1 are based on the log-return series, which forms the basis of the volatility

modeling in this study. The mean is close to zero, consistent with the behavior of

financial returns, while the relatively large standard deviation indicates substantial

variability in the energy index. The positive skewness and high kurtosis signify

heavy-tailed distribution with frequent recurrence of outlier events. These charac-

teristics imply more frequent recurrence of large shocks, both positive and negative,

compared to normality.

In addition, we conducted the JarqueBera (JB) test, which assesses whether

a given dataset adheres to the normal distribution by examining skewness and

kurtosis [26]. The tests statistic is expressed as:

JB =
n

6

(
S2 +

1

4
(K − 3)2

)
,

where n denotes the number of data values, S is the sample skewness indicating

the degree of asymmetry, and K is the sample kurtosis representing the thickness

of the distributions tails. JarqueBera test (p < 0.001) can reject the null hypoth-

esis of normality and thus confirm the presence of non-normal characteristics of

the data.These distributional properties have direct implications for model choice.

Heavy tails, volatility clustering, and asymmetric return behavior justify the appli-

cation of conditional heteroskedasticity models such as PLM-GARCH, which are

capable of modeling long-memory and periodic volatility structures. Furthermore,

since GARCH-type models may not fully capture nonlinear dependencies in the

residuals, combining them with an LSTM network provides a means to account for

complex and nonlinear temporal patterns, thereby enhancing forecasting accuracy.

Furthermore, we defined

αt = rt − Et−1,

where pt denotes the assets closing price at time t.

The stationarity of the ARMA process was evaluated using the Augmented Dick-

eyFuller (ADF) test on the return series of the energy index. The test statistic was

12.45 with a p-value below 0.01, strongly rejecting the null hypothesis of a unit

root. This indicates that the return series is stationary and suitable for ARMA

modeling without differencing. Additionally, the autocorrelation function (ACF)

of the returns decays quickly toward zero, further supporting stationarity. These
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Table 1: Descriptive statistics of log returns

Statistics Value

Mean 0.000142

Standard Deviation 0.018532

Skewness 0.851

Kurtosis 9.462

Jarque-Bera Test (P-value) < 0.001

results validate the use of ARMA in the mean equation of the volatility models

applied in this study.

Table 2: AIC and BIC values for the models

Criteria AIC BIC

PLM-GARCH -8.438062 -8.410863

FIGARCH -8.366394 -8.339194

Furthermore, the LjungBox test [32] for squared Q-statistics was employed to

detect autocorrelation and heteroscedasticity. The significant results suggest that

past market behaviors may hold substantial relevance.

The Akaike Information Criterion (AIC) also ranks the models in a specific order.

The AIC and BIC criteria in Table 2 show that the PLM-GARCH model fits the

dataset better than the FIGARCH model.

Model residuals were evaluated using the serial correlation LM test and the

ARCH LM test. The significant F-statistic of the ARCH LM test confirms the

presence of conditional heteroscedasticity in the residuals, validating the application

of GARCH-type models to capture this property.

In addition both visual and numerical evidence were provided to support the

presence of key time-series features in the energy index returns. Volatility clustering

is illustrated in Figure 1, where periods of high and low variance are clearly visible,

and is further confirmed through the ARCH-LM test and the LjungBox Q-test on

squared returns in Table 3.

Table 3: Statistical Test Results

Test Statistic p-value

ARCH-LM 354.4505 4.53e-70

Ljung-Box Q 435.9429 2.08e-87



Paper 9: A Hybrid LSTM-NNA in Financial Energy Index Time Series 185

Figure 1: Volatility Clustering in Energy Index Returns

4.2 Building Long-Memory Pattern of GARCH-type Model

Mathematically, differencing with an order value of d was required to make the data

stationary concerning the mean, estimated using the GewekePorterHudak (GPH)

model. The order model determined by the GPH model was d̂GPH = 0.49.

As d̂GPH = 0.49 < 0.5, the data exhibited a long-memory effect and could be

modeled with FIGARCH. Subsequently, the order of the FIGARCH model was

determined by identifying the number of significant lags in the ACF and PACF

plots, as shown in Figure 2.

Figure 2: Autocorrelation and partial autocorrelation function

Based on Figure 2, the ACF plot shows a slow decay in correlation values across

increasing lags, indicating the presence of long memory in the data. On the other

hand, the PACF exhibits a sharp drop after the first lag, suggesting an autoregres-

sive (AR) process of low order. Specifically, the ACF remains significant up to

higher lags, while the PACF becomes insignificant beyond the first lag.

Based on Figure 2, the ACF plot shows a slow decay in correlation values across



186 Journal of Mathematics and Modeling in Finance

increasing lags, indicating the presence of long memory in the data. On the other

hand, the PACF exhibits a sharp drop after the first lag, suggesting an autoregres-

sive (AR) process of low order. Specifically, the ACF remains significant up to

higher lags, while the PACF becomes insignificant beyond the first lag.

These characteristics suggest that the FIGARCH model could be suitable for

modeling the data. A possible specification for this model could include a maximum

lag of 1 or 2 for the autoregressive component (p) and a higher lag (e.g., 5) for the

moving average component (q), along with a fractional differencing parameter (d)

capturing the long-memory behavior. To confirm the adequacy of the chosen model,

it is necessary to estimate the parameters and conduct a significance test on the

results.

As introduced in Section 3.3.5, we perform a frequency-domain analysis of the

return series using the periodogram. This allows us to detect dominant cycles

in the data. Figure 3 and Figure 4 illustrate the spectral density of the series

and highlight the main frequency components, confirming the presence of periodic

volatility patterns.

In this study, each complete cycle contains 180 observations, which may corre-

spond to daily data (assuming 180 working days per year). Figure 3 presents a

chart showing the distance component, with a periodic pattern fluctuating between

-1000 and 3000. This recurring pattern indicates a strong periodic component in

the time series.

With a frequency of 180, each full cycle consists of 180 observations. Given

that there are 1396 total data points, the number of cycles (S) can be calculated

by dividing the total observations by the cycle length: S = 1396/180 ≈ 7.76.

Rounding to the nearest integer, S ≈ 8. This calculation suggests that the dataset

spans roughly 8 complete cycles, and around 8 repeating patterns can be observed

in the distance component chart.

The Figure 4 displays the theoretical spectrum of a PLM-GARCH model. This

chart reveals several peaks, indicating the presence of distinct frequencies within

the signal. These frequencies correspond to the periodic cycles within the signal.

Theoretical reasons exist because the PLM-GARCH model is built to handle

time series with long-term persistence and seasonal or cyclical volatility patterns,

like what we see in energy markets. The volatility of these types of markets can

be influenced by cyclical demand in seasons, geopolitical events, and regulatory

factors which ultimately can account for periodicity in volatility series. The PLM-

GARCH model is an extension of FIGARCH, which accounts for long memory,

while including periodic elements to model seasonal patterns. Long memory and

periodicity make the PLM-GARCH the perfect candidate to describe the volatility

of the energy index.

The probability values for each model are presented in Table 4 and Table 5. A

model was considered significant when the probability value of its parameter was

less than 0.05.
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Figure 3: Decomposition of Stock Prices Time Series

Figure 4: Theoretical spectrum of a PLM-GARCH
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Table 4 shows that the models PLM-GARCH (1, 0.49, 1, 8), PLM-GARCH

(1, 0.49, 2, 8), and PLM-GARCH (1, 0.49, 3, 8) were significant and suitable for

building a PLM-GARCH model. However, not all significant models were applied

in the subsequent steps. To identify the optimal model, a comparison was made

between the AIC and BIC values. The evaluation of these values in Table 4 for the

six models revealed that PLM-GARCH (1, 0.49, 2, 8) exhibited the lowest AIC and

BIC values among the available alternatives. Consequently, it can be stated that

PLM-GARCH (1, 0.49, 2, 8) appeared as the most favorable choice.

Relying solely on model selection was insufficient to confirm that PLM-GARCH

(1, 0.49, 2, 8) adequately fulfilled the necessary conditions as a time series model.

This led to the examination of the residual assumption of the PLM-GARCH (1,

0.49, 2, 8) model.

Residual assumption tests of FIGARCH (1, 0.49, 2) over the essence of volatility

are presented in Table 5. As can be seen from the same table, residual autocor-

relation test p-values were above 0.05, implying a lack of significant correlation

among the residuals. On the contrary, the heteroscedasticity and normality tests

resulted in p-values lower than 0.05, suggesting the residuals might show signs of

heteroscedasticity or volatility effects, which require either adjustment or treatment.

The normality test being significant was less of a concern in this analysis, given that

highly rapid fluctuations exist in the time series data.

After establishing that the residuals of the FIGARCH model were heteroskedas-

tic, it was then found that an alternative had to be sought. In next sections, dif-

ferent models addressing heteroskedasticity are displayed: the linear Generalized

Autoregressive Conditional Heteroskedasticity (GARCH) model and the nonlinear

Long Short-Term Memory (LSTM) model.

4.3 Improving volatility residual GARCH types family using
LSTM

According to the residual assumptions of FIGARCH (1, 0.49, 2) shown in Table 6,

the heteroscedasticity assumption had not been met. Consequently, an advanced

model was necessary to enhance ARFIMA and minimize variance in the residuals.

One traditional time series, GARCH, had been developed to counteract the ran-

dom fluctuating variance or heteroscedasticity impact. The creation of a GARCH

involved using ACF and PACF charts to determine the order of the model.

After fitting FIGARCH to the long-patterned stock exchange data series, efforts

were directed toward improving the heteroscedasticity of the model by addressing

the residual. Visual diagnosis could be used to identify the presence of the het-

eroscedasticity effect. Outlier data indicated that an advanced model was necessary

to adjust the effect due to data variability. Modifying the residual heteroscedastic-

ity effect of FIGARCH was essential. The persistent vanishing/exploding gradient

problem resulting from long-term dependencies, even with substantial data, posed a
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Table 4: The estimated parameters of the PLM-GARCH model

Model Parameter Estimate Std. Error t value Pr(> |t|) AIC BIC

plm garch 1 0.49 1 8 mu -0.02752124 0.0323369226 -0.8507765 0.3948824430 2.843011 2.872478

plm garch 1 0.49 1 8 omega 0.01741388 0.0035673275 25.437426 0.0011143853 2.843011 2.872478

plm garch 1 0.49 1 8 alpha1 0.01498456 0.0150931664 0.9933093 0.0000000065 2.843011 2.872478

plm garch 1 0.49 1 8 beta1 0.99999961 0.0000000001 1000000.0 0.0000000000 2.843011 2.872478

plm garch 1 0.49 1 8 delta 1.0 NA NA NA 2.843011 2.872478

plm garch 1 0.49 1 8 shape 1.915327 0.1472563936 13.004865 0.0000000000 2.843011 2.872478

plm garch 1 0.49 2 8 mu 0.02322912 0.0138412942 1.678003 0.4803708643 2.833955 2.873209

plm garch 1 0.49 2 8 omega 0.0181576 0.0032856749 5.52876 0.0595356573 2.833955 2.873209

plm garch 1 0.49 2 8 alpha1 0.01493992 0.0148611445 1.0053 0.0000000022 2.833955 2.873209

plm garch 1 0.49 2 8 beta1 0.99999966 0.0469148853 21.467054 0.0000000000 2.833955 2.873209

plm garch 1 0.49 2 8 beta2 0.0 NA NA NA 2.833955 2.873209

plm garch 1 0.49 2 8 delta 1.0 NA NA NA 2.833955 2.873209

plm garch 1 0.49 2 8 shape 1.92561656 0.0745809672 21.647252 0.0000000000 2.833955 2.873209

plm garch 1 0.49 3 8 mu -0.01580342 0.0372596749 -0.424259 0.3449231669 2.833998 2.878660

plm garch 1 0.49 3 8 omega 0.01188645 0.0032848845 3.618495 0.1002992373 2.833998 2.878660

plm garch 1 0.49 3 8 alpha1 0.01461276 0.0141518318 1.032558 0.0000000015 2.833998 2.878660

plm garch 1 0.49 3 8 beta1 0.9999998 0.0351241265 28.46846 0.0000000000 2.833998 2.878660

plm garch 1 0.49 3 8 beta2 0.11840126 NA NA NA 2.833998 2.878660

plm garch 1 0.49 3 8 beta3 -0.04397264 NA NA NA 2.833998 2.878660

plm garch 1 0.49 3 8 delta 1.0 NA NA NA 2.833998 2.878660

plm garch 1 0.49 3 8 shape 1.93752610 0.1488018233 13.008751 0.0000000000 2.833998 2.878660

In Table 4 and Table 5, the abbreviation NA indicates “Not Available” and is
used when a specific metric cannot be computed because the model does not
produce the required output for that evaluation criterion, or the calculation
would be meaningless given the models structure. For example, certain error
measures may not be defined for models without corresponding predicted values
at specific forecast horizons.

challenge due to the random fluctuation in residuals. Consequently, the application

of the LSTM neural network was deemed necessary [39].

For the deep learning stage, the dataset was split into training and testing sub-

sets, with 80% of the data allocated for training the LSTM network and 20% re-

served for testing. This division ensures that the models predictive performance can

be evaluated on unseen data, reducing the risk of overfitting. Parameter settings

for the LSTM model were clearly shown in Table 7.

4.4 Evaluating the Volatility Model

After adjusting the heteroscedasticity effect within the residuals, a comparison of

LSTM-FIGARCH and LSTM-PLM-GARCH models was conducted to evaluate

their performance. Figure 5 and Figure 6 graphically showed these models, includ-

ing the actual data, LSTM-FIGARCH (1, 0.49, 2), and LSTM-PLM-GARCH (1,

0.49, 2, 8). The validity was supported by evaluating the model using metrics such

as Mean Squared Error (MSE), Mean Absolute Error (MAE), and Mean Absolute

Percentage Error (MAPE).
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Table 5: The estimated parameters of the FIGARCH model

Model Parameter Estimate Std. Error t value Pr(> |t|) AIC BIC

figarch 1 0.49 1 mu -6044.47332817 65.122374321 -92.817152 0.0000000000 17.16588 17.18841

figarch 1 0.49 1 omega 14564.92803524 12035.36652759 13.777611 0.0001538402 17.16588 17.18841

figarch 1 0.49 1 alpha1 10.8702899391 0.0089252276 1218.00000 0.0000000000 17.16588 17.18841

figarch 1 0.49 1 beta1 0.4993706096 0.0097355206 51.280000 0.0000000000 17.16588 17.18841

figarch 1 0.49 1 delta 1.0 NA NA NA 17.16588 17.18841

figarch 1 0.49 1 shape 11.0803606 0.1015114622 109.222620 0.0000000000 17.16588 17.18841

figarch 1 0.49 2 mu 5919.9318219 47.122752492 125.66195 0.0000000000 17.12847 17.15475

figarch 1 0.49 2 omega 14546.5835126 12004.260346 12.115900 0.0000000000 17.12847 17.15475

figarch 1 0.49 2 alpha1 10.90755708 0.0062040034 1758.00000 0.0000000000 17.12847 17.15475

figarch 1 0.49 2 beta1 0.418417456 0.005778551 76.908127 0.0000000000 17.12847 17.15475

figarch 1 0.49 2 beta2 0.0 NA NA NA 17.12847 17.15475

figarch 1 0.49 2 delta 1.0 NA NA NA 17.12847 17.15475

figarch 1 0.49 2 skew 18.6304053 0.200744473 22.864437 0.0000000000 17.12847 17.15475

figarch 1 0.49 2 shape 11.49241309 0.140198422 81.973110 0.0000000000 17.12847 17.15475

figarch 1 0.49 3 mu -6111.4763934 61.20260391 -99.87319 0.0000000000 17.15617 17.18621

figarch 1 0.49 3 omega 15459.26016391 12691.38689484 12.177897 0.0000000000 17.15617 17.18621

figarch 1 0.49 3 alpha1 10.84980172 0.0093674072 1157.68205 0.0000000000 17.15617 17.18621

figarch 1 0.49 3 beta1 0.3797436999 0.0098247315 38.651753 0.0000000000 17.15617 17.18621

figarch 1 0.49 3 beta2 0.0370933949 NA NA NA 17.15617 17.18621

figarch 1 0.49 3 beta3 0.0233142395 NA NA NA 17.15617 17.18621

figarch 1 0.49 3 delta 1.0 NA NA NA 17.15617 17.18621

figarch 1 0.49 3 skew 14.14246039 0.141945225 99.183306 0.0000000000 17.15617 17.18621

figarch 1 0.49 3 shape 11.15268123 0.012334395 195.459414 0.0000000000 17.15617 17.18621

Table 6: Residual assumption tests Results

Statistic χ2 Statistic p-value

Homoscedasticity 737.8808 3.41× 10−150

Autocorrelation [12208.0712, 10] 0

Normality 205.4091 < 2× 10−16

All statistical and econometric analyses were conducted using RStudio . Ex-
tremely small p-values (e.g., 3.41 × 10−150) are direct outputs from R’s test
functions and indicate overwhelming evidence against the null hypothesis.

A comparison between LSTM-FIGARCH and LSTM-PLM-GARCH is presented

in Table 8. From Table 8, the LSTM-PLM-GARCH model yielded the smallest

values for all three evaluation criteria. This outcome suggested that employing the

numerical model, LSTM-PLM-GARCH, enhanced and refined the predicted values.

After adjusting the periodical pattern of data, the residuals went through further

processing using LSTM to address the vanishing gradient issue inherent in the

volatility component, often referred to as heteroscedasticity effects. Consequently,

the preferred LSTM neural network effectively improved the heteroscedasticity issue

of the classical GARCH models.
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Table 7: Parameter settings for the LSTM model

Parameters Values

Number of layers 3

Number of neurons in layers (256, 128, 64)

Learning rate 0.0001

Optimizer Adam

Batch size 16

Number of epochs 500

Validation data percentage 20%

Early stopping method Monitoring val_loss, patience 50

Figure 5: Forecasting volatilities of LSTM-PLM-GARCH model

Table 8: Comparison of Models

Loss Function LSTM-PLM-GARCH LSTM-FIGARCH

RMSE 0.002089 0.002236

MAE 0.001643 0.001929

MAPE 0.050926 0.058345
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Figure 6: Forecasting volatilities of LSTM-FIGARCH model

5 Conclusion

In conclusion, this paper proposed an enhanced sensitivity model by incorporat-

ing Long Short-Term Memory (LSTM) neural network into FIGARCH and PLM-

GARCHmodels. The proposed models, LSTM-FIGARCH and LSTM-PLM-GARCH,

are then compared by using Mean Absolute Error (MAE), Mean Square Error

(MSE), and Mean Absolute Percentage Error (MAPE). The results show that the

LSTM-PLM-GARCH model improves the error and also the heteroscedasticity ef-

fect of the classical GARCH family models.

In addition, the advantages of LSTM-PLM-GARCH are to achieve stability by

learning the previous data with the dynamical system. This increases the com-

plexity in processing the networks, to approximate the gradient of GARCH family

through numerical computations until a defined threshold error is met. Retaining

information and patterns in residual data caused LSTM to effectively mitigate the

heteroscedasticity issue present in GARCH family models.

Despite capturing the periodical and long-pattern data inherent, the GARCH

family models do not adequately optimize data prediction. This led to the inves-

tigation of a nonlinear solution to the gradient problem. The method included

using the LSTM, which is known for its ability to retain information and patterns

in residual data. Due to this implementation, LSTM effectively mitigated the het-
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eroscedasticity problem in GARCH family models.

As a result, the model handled the vanishing gradient problem, allowing the

LSTM neural network to learn and bridge considerable temporal gaps even spanning

more than 1000 discrete time steps. However, the randomness of initial weights and

the number of iterations persist as limitations of the GARCH-LSTM model, with

the number of iterations increasing as the threshold error of the networks decreases.

It will require an extended period to determine a suitable weighting parameter.

Furthermore, because the initial weights are random, the ideal parameters do not

have the same values across experiments, necessitating validation of the training

data while developing networks.

If the error of the training data is less than the error of the testing data, the

networks are required to be stopped and the processing repeated until the error

of the training data is more than the error of the testing data to ensure that the

networks can recognize the new data using the obtained model of LSTM-PLM-

GARCH.

6 Discussion

In this study, the combination of FIGARCH and PLM-GARCH models with Long

Short-Term Memory (LSTM) neural networks was explored as a hybrid method for

forecasting stock market volatility. The primary objective of this research was to

enhance the accuracy of forecasting financial time series by leveraging the features

of both models.

The results obtained showed that the PLM-GARCH model is capable of identi-

fying long-term dependencies and periodic patterns in the conditional variance of

time series. However, it has limitations in modeling complex and nonlinear patterns

when used alone. On the other hand, the LSTM neural network has significant ca-

pability in learning nonlinear relationships and hidden patterns in financial data.

The combination of these two models improved forecasting performance and re-

duced model error.

The findings of this study are comparable with several previous studies that have

investigated volatility modeling in financial time series. In many of the previous

studies, FIGARCH and GARCH models have been used to model the conditional

variance of financial data. For instance, a study by Wang et al. (2020) showed

that the FIGARCH model outperforms the GARCH model in modeling the long-

memory volatility of the market. However, these models have limited capability in

identifying nonlinear patterns in financial data.

On the other hand, studies such as Fischer and Krauss (2018) have demonstrated

that deep neural networks, including LSTM, can be effectively used for forecasting

stock returns. These studies suggest that deep learning models are capable of

extracting complex features and hidden patterns in financial data, but the main

challenge of these models is their sensitivity to noise and their high dependency on
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the quality of input data.

This study, by combining these two approaches, has yielded results similar to

the research by Kim and Won (2021), where the combination of GARCH models

with neural networks led to a reduction in forecasting error and improved model

accuracy. Specifically, our results showed that using FIGARCH for data preprocess-

ing and removing potential noise helps the LSTM network better identify nonlinear

relationships and achieve more accurate performance in forecasting financial volatil-

ity.

In comparison with these studies, the present research takes a step further by

utilizing the PLM-GARCH model, which has better capability in identifying pe-

riodic structures in financial data. This feature has enabled the proposed model

to show higher accuracy in forecasting volatility compared to traditional methods.

The results of this research study agree with earlier studies and seem to suggest

that there is a lot to be gained by combining econometric methods with neural

networks for the forecasting of financial time series.

From a practical viewpoint, the empirical results of this research can be of rel-

evance to investors, financial analysts, and policymakers, as higher accuracy in

predicting volatility allows better decisions in risk management and capital alloca-

tion. Last but not least, we recommend future studies to explore the combination

of alternative deep learning paradigms with PLM-GARCH to improve forecasting

accuracy further and employ the model with financial data at different frequencies.
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ADF Augmented Dickey–Fuller test

AIC Akaike Information Criterion

AR Autoregressive

ARCH Autoregressive Conditional Heteroskedasticity

ARFIMA Autoregressive Fractionally Integrated Moving Average

BIC Bayesian Information Criterion

EGARCH Exponential Generalized Autoregressive Conditional Het-
eroskedasticity

FIGARCH Fractionally Integrated Generalized Autoregressive Condi-
tional Heteroskedasticity

GARCH Generalized Autoregressive Conditional Heteroskedasticity

GJR-GARCH Glosten–Jagannathan–Runkle GARCH

JB test Jarque–Bera test

LSTM Long Short-Term Memory (neural network)

MA Moving Average

MAE Mean Absolute Error

MAPE Mean Absolute Percentage Error

MSE Mean Squared Error

PACF Partial Autocorrelation Function

PLM-GARCH Periodic Long-Memory GARCH

RNN Recurrent Neural Network

RMSE Root Mean Squared Error

SARFIMA Seasonal Autoregressive Fractionally Integrated Moving Aver-
age
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