[1] N. Blomqvist, On a measure of dependence between two random variables, The Annals of
Mathematical Statistics, 21:593–600, 1950.
[2] I. M. Chakravarti, R. G. Laha, and J. Roy, Handbook of methods of applied statistics,
New York: Wiley, 1967.
[3] J. D. Church, B. Harris, The Estimation of Reliability from Stress–Strength Relationships,
Technometrics, 12:49–54, 1970.
[4] F., Domma, S. Giordano, A copula-based approach to account for dependence in stress–
strength models, Statistical Papers, 54:807–826, 2013.
[5] M. Emile, J. Gumbel ´ , Distributions des valeurs extremes en plusieurs dimensions, In Annales de l’ISUP, 9:171–173, 1960.
[6] R. C. Gupta, M. E. Ghitany, and D. K. Al-Mutairi, Estimation of Reliability from a
Bivariate Log-Normal Data, Journal of Statistical Computation and Simulation, 83:1068–
1081, 2012.
[7] C. Genest, A. Carabar´ın-Aguirre, and F. Harvey, Copula parameter estimation using
Blomqvist’s beta, Journal de la Soci´et´e Fran¸caise de Statistique, 154:5–24, 2013.
[8] N. Hakamipour, Gumbel copula-based reliability assessment to describe the dependence of
the multicomponent stress–strength model for Pareto distribution, Journal of Mathematics
and Modeling in Finance, 4:1–17, 2024.
[9] N. Hakamipour, Stress–strength reliability estimation of s-out-of-k multicomponent systems based on copula function for dependent strength elements under
progressively censored sample, International Journal of General Systems, 2024,
https://doi.org/10.1080/03081079.2024.2405687.
[10] N. Hakamipour, Copula for Dependent Competing Risks Model in ProgressiveStress Accelerated Life Tests, Quality and Reliability Engineering International, 2025,
https://doi.org/10.1002/qre.3811.
[11] P. Hougaard, A class of multivanate failure time distributions, Biometrika, 73:671–678,
1986.
[12] J. Hu, Y. Zhuang, and C. Goldiner, Fixed-Accuracy Confidence Interval Estimation of
P(X < Y ) under a Geometric–Exponential Model, Japanese Journal of Statistics and Data
Science, 4:1079–1104, 2021.
[13] Y. F. Jamilu, A. U. Adamu, Y. Aliyu, and I. I. Aliyu, The Inverse Lomax distribution with applications, In Royal Statistical Society Nigeria Local Group Annual Conference
Proceedings, pages 105–112, 2025..
[14] H. Joe, Multivariate Models and Dependence Concepts Monographs on Statistics and Applied Probability, Chapmann & Hall London, 1997.
[15] M. Jovanovic, V. Raji ´ c´, Estimation of P(X < Y ) for Geometric-Exponential Model Based
on Complete and Censored Samples, Communications in Statistics – Simulation and Computation , 46:3050–3066, 2017.
[16] M. Jovanovic, V. Raji ´ c´, Estimation of P(X < Y ) for gamma exponential model, CYUJOR
, 24:283–291, 2014.
[17] S. Nadarajah, Reliability for Some Bivariate Beta Distributions, Mathematical Problems
in Engineering, 2:101–111, 2005.
[18] R. B. Nelsen, An Introduction to Copulas, Springer, New York, 1999.
[19] D. Patil, U. V. Naik-Nimbalkar, and M. M. Kale, Effect of Dependency on the Estimation of P[Y < X] in Exponential Stress–strength Models, Austrian Journal of Statistics,
51:10–34, 2022.
[20] D. Patil, U. V. Naik-Nimbalkar, and M. M. Kale, Estimation of P[Y < X] for dependence of stress–strength models with Weibull marginals, Annals of Data Science 11:1303–1340,
2024.
[21] F. Schmid, R. Schmidt, Nonparametric inference on multivariate versions of Blomqvist’s
beta and related measures of tail dependence, Metrika, 66:323–354, 2007.
[22] S. Sengupta, Unbiased Estimation of P(X > Y ) for Two-Parameter Exponential Populations Using Order Statistics, Statistics, 45:179–188, 2011.
[23] A. Sharma, P. Kumar, Estimation of Density and Reliability Function of Inverse Lomax
Distribution under Type-II Censoring and the Sampling Scheme of Bartholomew, International Journal of Applied Mathematics and Statistics, 59:129–150, 2020.
[24] S. K. Singh, U. Singh, and D. Kumar, Bayes estimators of the reliability function and
parameter of inverted exponential distribution using informative and non-informative priors,
Journal of Statistical computation and simulation, 83:2258–2269, 2013.
[25] A. Sklar, Fonctions De Repartition´e n Dimensions Et Leurs Marges, Publications de
l’Institut de Statistique de l’Universit´e de Paris, 8:229–231, 1959..
[26] A. H. Tolba, D. A. Ramadan, E. M. Almetwally, T. M. Jawa, and N. Sayed-Ahmed,
Statistical inference for stress–strength reliability using inverse Lomax lifetime distribution
with mechanical engineering applications, Thermal Science, 26(Spec. issue 1):303–326, 2022.
[27] A. Wong, Interval Estimation of P(Y < X) for Generalized Pareto Distribution, Journal
of Statistical Planning and Inference, 142:601–607, 2012.
[28] T. Xavier, J. K. Jose, Stress–strength reliability estimation involving paired observation
with ties using bivariate exponentiated half-logistic model, Journal of Applied Statistics,
49:1049–1064, 2012.