[1] E. Amiri. Modeling and forecasting volatility in a bayesian approach. In Maximum Simulated
Likelihood Methods and Applications, pages 323–356. Emerald Group Publishing Limited,
2010.
[2] O. E. Barndorff-Nielsen, E. Nicolato, and N. Shephard. Some recent developments in stochastic volatility modelling. Quantitative Finance, 2(1):11, 2002.
[3] D. S. Bates. Jumps and stochastic volatility: Exchange rate processes implicit in deutsche
mark options. The Review of Financial Studies, 9(1):69–107, 1996.
[4] D. S. Bates. Post-’87 crash fears in the S&P 500 futures option market. Journal of Econometrics, 94(1-2):181–238, 2000.
[5] C. Broto and E. Ruiz. Estimation methods for stochastic volatility models: a survey. Journal
of Economic Surveys, 18(5):613–649, 2004.
[6] H. Dargahi and R. Ansari. Improved neural network forecasting models for foreign exchange
rates using volatility indices. Journal of Economic Research (Tahghighat-E-Eghtesadi), 43(4),
2009.
[7] D. Duffie and K. J. Singleton. Simulated moments estimation of Markov models of asset
prices. 1990.
[8] D. Duffie, J. Pan, and K. Singleton. Transform analysis and asset pricing for affine jumpdiffusions. Econometrica, 68(6):1343–1376, 2000.
[9] B. Eraker. Do stock prices and volatility jump? Reconciling evidence from spot and option
prices. The Journal of Finance, 59(3):1367–1403, 2004.
[10] B. Eraker, M. Johannes, and N. Polson. The impact of jumps in volatility and returns. The
Journal of Finance, 58(3):1269–1300, 2003.
[11] A. Gelman and D. B. Rubin. Inference from iterative simulation using multiple sequences.
Statistical Science, 7(4):457–472, 1992.
[12] A. Gelman, J. B. Carlin, H. S. Stern, and D. B. Rubin. Bayesian Data Analysis. 2025.
[13] R. Heybati, S. Samadi, and M. Vaez Barazani. The importance of regression equations
specification in measuring uncertainty of macroeconomic variables. Journal of Economic
Research (Tahghighat-E-Eghtesadi), 52(4):963–996, 2017.
[14] M. D. Hoffman and A. Gelman. The No-U-Turn sampler: adaptively setting path lengths in
Hamiltonian Monte Carlo. Journal of Machine Learning Research, 15(1):1593–1623, 2014.
[15] S. B. Imandoust, S. M. Fahimifard, and S. Shirzady. Iran’s exchange rate forecasting using
ANFIS, NNARX and ARIMA models (2002-2008). Monetary and Financial Economics,
16(28), 2010.
[16] E. Jacquier, N. G. Polson, and P. E. Rossi. Bayesian analysis of stochastic volatility models.
Journal of Business & Economic Statistics, 20(1):69–87, 2002.
[17] E. Jacquier, N. G. Polson, and P. E. Rossi. Bayesian analysis of stochastic volatility models
with fat-tails and correlated errors. Journal of Econometrics, 122(1):185–212, 2004.
[18] M. Johannes and N. Polson. MCMC methods for continuous-time financial econometrics. In
Handbook of Financial Econometrics: Applications, pages 1–72. Elsevier, 2010.
[19] R. E. Kass, B. P. Carlin, A. Gelman, and R. M. Neal. Markov chain Monte Carlo in practice:
a roundtable discussion. The American Statistician, 52(2):93–100, 1998.
[20] H. Khodavaisi and A. Molabahrami. Modeling and prediction Iranian exchange rate based on
stochastic differential equations. Journal of Economic Research (Tahghighat-E-Eghtesadi),
47(3):129–144, 2012.
[21] F. H. Knight. Risk, Uncertainty and Profit. Houghton Mifflin, 1921.
[22] J. S. Liu. Monte Carlo Strategies in Scientific Computing. Springer, 2001.
[23] O. A. Martin, R. Kumar, and J. Lao. Bayesian Modeling and Computation in Python.
Chapman and Hall/CRC, 2021.
[24] A. Melino and S. M. Turnbull. Pricing foreign currency options with stochastic volatility.
Journal of Econometrics, 45(1-2):239–265, 1990.
[25] M. M. Momenzadeh, M. Nilchi, and M. Rostami. Measuring the volatility persistence of the
Tehran Stock Exchange using stochastic volatility models with jump in return. Journal of
Asset Management and Financing, 11(4):121–140, 2023.
[26] D. B. Nelson. Conditional heteroskedasticity in asset returns: A new approach. Econometrica,
59(2):347–370, 1991.
[27] F. Black. Studies of stock price volatility changes. In Proceedings from the American Statistical Association, Business and Economic Statistics Section, page 177, 1976.
[28] J. Pan. The jump-risk premia implicit in options: Evidence from an integrated time-series
study. Journal of Financial Economics, 63(1):3–50, 2002.
[29] J. Salvatier, T. V. Wiecki, and C. Fonnesbeck. Probabilistic programming in Python using
PyMC3. PeerJ Computer Science, 2:e55, 2016.
[30] S. K. Tayebi, N. Movahednia, and M. Kazemeyni. A comparison of artificial neural networks
(ANN) with econometrics methods for forecasting economic variables: An application to the
Iran’s exchange rate. 2008.
[31] S. J. Taylor. Modelling Financial Time Series. 1986.
[32] A. Vehtari, A. Gelman, D. Simpson, B. Carpenter, and P.-C. Burkner. Rank-normalization, ¨
folding, and localization: An improved Rˆ for assessing convergence of MCMC (with discussion). Bayesian Analysis, 16(2):667–718, 2021.