[1] Barro, D., Consigli, G., & Varun, V. (2022). A stochastic programming model for dynamic
portfolio management with financial derivatives. Journal of Banking & Finance, 140, 106445.
[2] Bauder, D., Bodnar, T., Parolya, N., & Schmid, W. (2021). Bayesian meanvariance analysis:
optimal portfolio selection under parameter uncertainty. Quantitative Finance, 21(2), 221–
242.
[3] Campbell, S., & Wong, T. K. L. (2022). Functional portfolio optimization in stochastic
portfolio theory. SIAM Journal on Financial Mathematics, 13(2), 576–618.
[4] Cui, T., Bai, R., Ding, S., Parkes, A. J., Qu, R., He, F., & Li, J. (2020). A hybrid combinatorial approach to a two-stage stochastic portfolio optimization model with uncertain asset
prices. Soft Computing, 24, 2809–2831.
[5] Dai, T. S., Chen, B. J., Sun, Y. J., Yang, D. Y., & Wu, M. E. (2024). Constructing Optimal
Portfolio Rebalancing Strategies with a Two-Stage Multiresolution-Grid Model. Computational Economics, 1–26.
[6] Dai, Y., & Qin, Z. (2021). Multi-period uncertain portfolio optimization model with minimum
transaction lots and dynamic risk preference. Applied Soft Computing, 109, 107519.
[7] Doaei, M. (2024). A bi-level optimization heuristic for solving portfolio selection problem.
International Journal of Finance & Managerial Accounting, 11(41), 123–138.
[8] Doaei, M., Dehnad, K., & Dehnad, M. (2024). A hybrid approach based on multicriteria decision making and data-driven optimization in solving portfolio selection problem.
OPSEARCH, 1–36.
[9] He, F., & Qu, R. (2014). A two-stage stochastic mixed-integer program modelling and hybrid
solution approach to portfolio selection problems. Information Sciences, 289, 190–205.
[10] Krokhmal, P., Palmquist, J., & Uryasev, S. (2002). Portfolio optimization with conditional
value-at-risk objective and constraints. Journal of Risk, 4, 43–68.
[11] Markowitz, H. M. (1991). Foundations of portfolio theory. The Journal of Finance, 46(2),
469–477.
[12] Ramedani, A. M., Mehrabian, A., & Didehkhani, H. (2024). A two-stage sustainable uncertain multi-objective portfolio selection and scheduling considering conflicting criteria. Engineering Applications of Artificial Intelligence, 132, 107942.
[13] Taleb, N. N. (2008). The impact of the highly improbable. Penguin Books Limited.
[14] Topaloglou, N., Vladimirou, H., & Zenios, S. A. (2008). A dynamic stochastic programming
model for international portfolio management. European Journal of Operational Research,
185(3), 1501–1524.
[15] Yadav, S., Gupta, P., Mehlawat, M. K., & Kumar, A. (2024). A multiobjective multiperiod
portfolio selection approach with different investor attitudes under an uncertain environment.
Soft Computing, 28(13), 8013–8050.
[16] Zahmati Iraj, M., & Doaei, M. (2024). A Hybrid Decision-Making Model for Optimal Portfolio Selection under Interval Uncertainty. Iranian Journal of Accounting, Auditing and Finance, 8(4), 1–24.
[17] Zandieh, M., & Mohaddesi, S. O. (2019). Portfolio rebalancing under uncertainty using metaheuristic algorithm. International Journal of Operational Research, 36(1), 12–39.
[18] Zolfaghari, S., & Mousavi, S. M. (2021). A novel mathematical programming model for multimode project portfolio selection and scheduling with flexible resources and due dates under
interval-valued fuzzy random uncertainty. Expert Systems with Applications, 182, 115207.