References
Alaagib, S. B., Alamri, Y., Alhashim, J., & Alduwais, A. A. (2025). The ecological footprint of AI: Informing sustainable development in agriculture. Journal of Experimental Biology and Agricultural Sciences, 5(1), 101–115.
Ali, S. (2023). Explainable Artificial Intelligence (XAI): What we know and recent techniques. Article in scientific journal, 12(4), 45–58.
Bernini, F., & La Rosa, F. (2024). Research in the greenwashing field: Concepts, theories, and potential impacts on economic and social value. Journal of Management & Governance, 28(2), 405–444.
Bernstein, M. S., Levi, M., Magnus, D., Rajala, B., Satz, D., & Waeiss, C. (2021). ESR: Ethics and Society Review of Artificial Intelligence Research. ArXiv, abs/2101.01234(1), 1–20.
Bühlmann, M., Fill, H.-G., & Curty, S. (2025). Blockchain Data Analytics: A Scoping Literature Review and Directions for Future Research. Journal of Financial Technology Review, 10(3), 200–215.
De Freitas Neto, S. et al. (2020). Concepts and forms of greenwashing: A systematic review. Environmental Sciences Europe, 32(1), 19.
Du, B., Hu, J., & Peng, Y. (2022). An empirical study on the impact of corporate greenwashing on financial performance. BCP Business & Management, 45(1), 112–128.
European Securities and Markets Authority (ESMA). (2023). The financial impact of greenwashing controversies. ESMA Reports, 15(2), 1–50.
Feghali, K., Najem, R., & Metcalfe, B. D. (2025). Greenwashing in the era of sustainability: A systematic literature review. Corporate Governance and Sustainability Review, 9(1), 18–31.
Fiandriano, S., Monastrello, A., & Costantini, V. (2023). Research on greenwashing: Concepts, theories, and potential impacts on economic and social value. Journal of Management and Governance, 27(3), 601–620.
Jabbar, A., Akhtar, P., & Ali, S. I. (2024). The interplay between blockchain and big data analytics for enhancing supply chain value creation in micro, small, and medium enterprises. Annals of Operations Research, 330(1), 55–78.
Jandaghi, M., Naderi Bani, M., Tabatabaeenasab, S. M., & Sabokro, M. (2022). Analysis of the intellectual structure of greenwashing studies and corporate social responsibility based on articles indexed in Web of Science. Journal of Business Ethics, 180(4), 1001–1015.
Järvenpää, H., Lago, P., Bogner, J., Lewis, G., Muccini, H., & Özkaya, İ. (2024). A synthesis of green architectural tactics for ML-enabled systems. Proceedings of the 46th International Conference on Software Engineering: Software Engineering in Society. ICSE-SEIS, (24), 130–141.
Khan, A. A., Badshah, S., Liang, P., Niazi, M., Akbar, M. A., & et al. (2021). Ethics of AI: A Systematic Literature Review of Principles and Challenges. ArXiv, abs/2105.05000(2), 1–35.
Kim, S. W. (2022). Recent Advances of Artificial Intelligence in Manufacturing: Review and Future Prospects. Springer AI Series, 8(2), 75–92.
Kogo, A., & Sima, S. (2021). Green, blue or black: what characteristics determine greenwashing?. Environment, Development and Sustainability, 24(10), 4024–4045.
Li, Y., Zhou, G., & Huang, R. (2023). Greenwashing in corporate social responsibility: A dual analysis of the impact on employees’ trust and identity. Sustainability, 15(22), 15693.
Lin, W. L., Chong, S. C., Pek, C. K., Yong, J. Y., Lee Yong Ming, K., & Leow, N. (2025). The impact of greenwashing: Risks and implications for corporate performance and stakeholder trust. Advances in Social Science, Education and Humanities Research, (889), 77–94.
Liu, J., Yeoh, W., Qu, Y., & Gao, L. (2022). Blockchain-based Digital Twin for Supply Chain Management: State‑of‑the‑Art Review and Future Research Directions. IEEE Transactions on Digital Twins, 3(1), 50–65.
Manaswi, K. (2025). Is Blockchain-Backed Corporate Governance the Way Forward? A Review and Future Research Agenda. ACR Journal, 1(1), 1–15.
Moodaley, W., & Telukdarie, A. (2023). Greenwashing, sustainability reporting, and artificial intelligence: A systematic literature review. Sustainability, 15(2), 801–819.
Mu, H., Luo, Y., & Xie, Y. (2023). Greenwashing in corporate social responsibility: A dual-pathway model of trust and employee–company identification. Sustainability, 15(22), 15693.
Ngai, X. et al. (2023). Application of Artificial Intelligence in the Healthcare Sector: A Systematic Review of Benefits, Challenges, Methodology, and Practices. International Journal of Healthcare Systems, 7(3), 200–220.
Pachot, A., & Patissier, C. (2022). Towards sustainable artificial intelligence: An overview of environmental protection uses and issues. arXiv.org, (arXiv:2212.11738).
Pachot, A., & Patissier, C. (2022). Towards Sustainable Artificial Intelligence: An Overview of Environmental Protection Uses and Issues. AI Ethics Journal, 4(3), 300–315.
Padmaja, C. V. R., Narayana, S. L., Anga, G. L., & Bhansali, P. K. (2024). The rise of artificial intelligence: a concise review. IAES International Journal of Artificial Intelligence, 13(2), 2226–2235.
Palaiokrassas, G., Bouraga, S., & Tassiulas, L. (2024). Machine Learning on Blockchain Data: A Systematic Mapping Study. IEEE Access, 12, 50001–50015.
Papagiannidis, E. et al. (2025). Responsible artificial intelligence governance: A review and conceptual framework. Journal of Business Ethics / Technical Journal, 90(1), 1–25.
Peretz‑Andersson, E. (2022). Empirical AI Transformation Research: A Systematic Review of Organizational Change. E‑Informatica, 18(4), 401–420.
Poiriazi, E., Zournatzidou, G., Konteos, G., & Sariannidis, N. (2025). Analyzing the interconnection between environmental, social, and governance (ESG) criteria and corporate corruption: Revealing the significant impact of greenwashing. Administrative Sciences, 15(3), 100.
Polcumpally, A. T., Pandey, K. K., & Bandrana, A. K. (2024). Blockchain Governance and Trust: A Multi-Sectors Thematic Systematic Review and Exploration of Future Research Directions. Heliyon, 10(12), e22290.
Raihan, A., Paul, A., Rahman, M. S., Islam, S., Paul, P., & Karmakar, S. (2024). Artificial Intelligence (AI) for environmental sustainability: A concise review of technology innovations in energy, transportation, biodiversity, and water management. Journal of Technology Innovations and Energy, 3(2), 64–73.
Ren, X., Hu, S., Sun, X., & Zhou, D. (2025). The impact of artificial intelligence on corporate greenwashing: Evidence from the Chinese listed firms. Journal of Accounting Literature, 50(1), 1–19.
Rohde, F., Wagner, J., Meyer, A., Reinhard, P., Voss, M., Petschow, U., & Möllen, A. (2024). Broadening the perspective for sustainable artificial intelligence: Sustainability criteria and indicators for Artificial Intelligence systems. Current Opinion in Environmental Sustainability, 66, 101411.
Rosen, M. A. (2025). Artificial intelligence and sustainable development. European Journal of Sustainable Development Research, 9(1), em0275.
Rothbacher, N., Rodolfa, K. T., Bhaskar, M., Maneri, E., Tsang, C., & Ho, D. E. (2025). Artificial Intelligence in Environmental Protection: The Importance of Organizational Context from a Field Study in Wisconsin. ArXiv, abs/2503.01122(1), 1–25.
Saeed, W., & Omlin, C. (2021). Explainable AI (XAI): A Systematic Meta-Survey of Current Challenges and Future Opportunities. ArXiv, abs/2107.07000(3), 1–40.
Seele, P., & Schultz, M. (2022). From Greenwashing to Machinewashing: A Model and Future Directions Derived from Reasoning by Analogy. Journal of Business Ethics, 181(3), 703–718.
Shen, L., Li, Z., Liang, Y., Feng, Y., & Zhang, Z. (2025). Artificial intelligence adoption and corporate ESG performance: Evidence from a refined large‑language model. Frontiers in Artificial Intelligence, 8, 1691468.
Singla, D., Soni, V., Gautam, N., Bhattarai, S., Sharma, A., Sharma, A., & Kaur, N. (2023). A Review of Recent Advances in Artificial Intelligence and Machine Learning. SSRN Electronic Journal, (2), 1–50.
Su, Y., Liang, Y., & Wang, H. (2023). The impact of corporate greenwashing on employees’ environmental performance: From the perspective of individual and organizational value alignment. Sustainability, 15(4), 3498.
Telukdarie, A., & Moodaley, W. (2023). Greenwashing, sustainability reporting and artificial intelligence: a thematic and bibliometric analysis. Sustainability, 15(11), 9001.
Vinuesa, R., Azizpour, H., Leite, I., Balaam, M., Dignum, V., Domisch, S., … Nerini, F. F. (2019). The role of artificial intelligence in achieving the Sustainable Development Goals. ArXiv, abs/1907.02286(1), 1–30.
Wafirli, A., Wijayanti, P., Kartikasari, L., & Shodiq, M. J. (2025). Peran Artificial Intelligence terhadap Praktik Greenwashing dalam Sustainability Report: Systematic Literature Review. Jurnal Akuntansi dan Audit Syariah (JAAiS), 6(1), 1–14.
Woon, W. L., & Johl, S. K. (2025). The impact of greenwashing: Risks and implications for corporate performance and stakeholder trust. International Journal of Corporate Risk, 2(1), 50–65.
Wright, D., Igel, C., Samuel, G., & Selvan, R. (2023). Efficiency is not enough: A critical perspective of environmentally sustainable AI. ArXiv, abs/2311.05000(1), 1–18.
Yang, Z., Nguyen, T. T. H., Nguyen, H. N., Nguyen, T. T. N., & Cao, T. T. (2020). Greenwashing behaviors: Causes, classification and consequences based on a systematic literature review. Journal of Business Economics and Management, 21(5), 1486–1507.
Zhan, X., Lian, X., & Dai, S. (2025). Correcting or Concealing? The Impact of Digital Transformation on the Greenwashing Behavior of Heavily Polluting Enterprises. Sustainability, 17(1), 356.