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Abstract
Background and Problem Statement:

The digital management of natural resources and environmental governance
has increasingly turned toward blockchain technology due to its inherent
transparency, decentralization, and tamper-resistant record-keeping. Smart
contracts—self-executing agreements coded directly onto the blockchain—
have become the cornerstone of this innovation, automating processes in
decentralized finance (DeFi), supply chain management, and carbon credit
markets without the need for intermediaries. By enforcing obligations
automatically when specific conditions are met, smart contracts reduce
transaction costs and enhance trust among disparate stakeholders.

However, a fundamental limitation creates a bottleneck for the broader
adoption of blockchain in complex environmental scenarios: traditional smart
contracts are inherently static and deterministic. Once deployed, their code is
immutable, and they function strictly on pre-defined "if/then" logic. This
rigidity renders them inefficient when confronting the dynamic, real-world
conditions often found in natural resource management, such as fluctuating
environmental regulations, variable resource availability, and complex,
subjective dispute resolution scenarios. For instance, a standard smart contract
cannot inherently interpret ambiguous legal language regarding land
conservation rights or adjust execution based on unforeseen weather patterns
affecting agricultural yields. Consequently, the current generation of
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blockchain governance often requires manual intervention to handle
exceptions, negating the efficiency gains of automation.

To address these limitations, Artificial Intelligence (Al) has emerged as a
transformative solution, offering capabilities in adaptive decision-making,
predictive analytics, and automated risk assessment. This research posits that
integrating Al with blockchain infrastructure can evolve decentralized
governance from rigid automation to intelligent, context-aware execution.

Research Objectives:

The primary objective of this study is to propose and validate a conceptual
framework for Al-enhanced smart contracts designed specifically for
sustainable resource management and environmental governance. This
framework aims to bridge the gap between on-chain deterministic execution
and off-chain intelligence.

Specifically, the research focuses on three critical applications where this
integration can yield high economic and governance value:

1. Al-Assisted Dispute Resolution: Utilizing Natural Language Processing
(NLP) to interpret contractual ambiguities and automate conflict resolution in
Decentralized Autonomous Organizations (DAOS).

2. Adaptive Gas Fee Optimization: Leveraging machine learning (ML)
algorithms to predict network congestion and dynamically adjust transaction
fees, thereby minimizing the carbon footprint and economic cost of
blockchain operations.

3. Automated Risk Assessment: Deploying Al-driven fraud detection
models to evaluate the legitimacy of transactions, such as carbon credit
verification, ensuring environmental compliance.

Methodology and Proposed Framework:

The study employs a constructive research methodology, developing a
comprehensive architectural framework that integrates Solidity-based smart
contracts with Al oracles. The proposed framework operates on three layers:
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the On-Chain Smart Contract Layer, the Al/Oracle Interface Layer, and the
Off-Chain Al Processing Layer.

e The Al-Oracle Bridge: Recognizing that smart contracts cannot directly
access external data, the framework utilizes Al-enhanced oracles. These
oracles do not merely fetch data but process it using ML models to ensure
accuracy and reliability before relaying actionable insights to the blockchain.

e Privacy-Preserving Mechanisms: To address privacy concerns inherent in
public blockchains, the methodology incorporates Zero-Knowledge Proofs
(ZKPs). This allows the Al models to process sensitive user data off-chain and
generate a cryptographic proof of the result (e.g., a risk score) which is then
verified on-chain without revealing the underlying private data.

e Technical Implementation: The feasibility of the framework is
demonstrated through the development of sample smart contracts written in
Solidity.

o Dispute Resolution: A contract is designed to query an Al oracle that
utilizes NLP to analyze text and resolve disputes regarding carbon credit
validity, returning a verified outcome to the ledger.

o Gas Optimization: An "EcoFriendlyGasOptimizer" contract interacts with
a predictive ML model to schedule transactions during off-peak times,
reducing energy intensity and cost.

o Risk Compliance: An "EnvironmentalCompliance™ contract uses an
oracle to assign risk scores to actors based on emission data, flagging
anomalies indicative of "greenwashing" or fraud.

Key Findings and Discussion:

The research demonstrates that Al-enhanced smart contracts are technically
feasible and offer significant advantages over traditional static models.

e Enhanced Adaptability and Efficiency: The sample implementations
confirm that smart contracts can successfully trigger dynamic execution
pathways based on Al insights. For example, the gas fee optimization model
illustrates how predictive analytics can lower transaction costs and reduce the
energy waste associated with high-congestion periods. This is crucial for
"Green Blockchain™ initiatives, ensuring that the environmental governance
tool itself does not become an environmental liability.
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o Intelligent Governance: The framework shows that Al can effectively
handle subjective tasks previously requiring human intervention. In dispute
resolution, NLP models can analyze evidence and legal precedents to suggest
or implement fair resolutions, significantly accelerating governance processes
in Environmental DAOs.

e Security and Fraud Prevention: The integration of Al-driven risk
assessment provides a proactive defense mechanism. Unlike static rules, ML
models can learn from historical fraud patterns to identify new anomalies in
real-time, such as falsified carbon credit data. The addition of ZKPs ensures
that this enhanced security does not come at the cost of user privacy.

However, the study also identifies critical challenges. Oracle vulnerabilities
remain a primary risk; if the Al oracle is manipulated, the smart contract will
execute flawed decisions. Furthermore, Al model bias poses an ethical risk,
where training data flaws could lead to unfair dispute outcomes or
discriminatory risk assessments. Finally, the computational overhead of
complex Al models necessitates off-chain processing to remain economically
viable, as running these models directly on-chain is cost-prohibitive.

Policy Implications and Future Directions:

The integration of Al and blockchain holds profound implications for
environmental policy and economic resource management.

e Economic Efficiency in Carbon Markets: The framework offers a
pathway for more transparent and efficient carbon trading. By automating
compliance verification and fraud detection, the system builds greater trust in
decentralized environmental markets, encouraging broader participation.

e Regulatory Frameworks: As decision-making shifts to Al algorithms,
regulatory bodies must develop frameworks to recognize Al-arbitrated
outcomes as legally binding and ensure that Al models are transparent and
auditable. Policies must mandate “"Explainable Al" (XAI) and blockchain-
based audit trails to mitigate bias and liability issues.

e Sustainability of Digital Infrastructure: The findings highlight the
necessity of Layer 2 scaling solutions and off-chain computing to align the
energy consumption of digital governance with sustainability goals.
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Policymakers should encourage the adoption of "Green Al" principles to
minimize the carbon footprint of the governance infrastructure itself.

In conclusion, this research validates that while challenges regarding
security and regulation persist, Al-enhanced smart contracts represent a
necessary evolution for decentralized environmental governance. Future work
must focus on decentralized Al model training (Federated Learning) and
robust oracle consensus mechanisms to fully realize the potential of
intelligent, autonomous resource management systems.

Keywords: Artificial Intelligence, Digital Environmental Governance,
Sustainable Resource Management, Green Blockchain, Carbon Markets, Al
in Natural Resources, Economic Efficiency

1. Introduction

Blockchain technology has revolutionized digital transactions by
enabling decentralized, transparent, and tamper-resistant record-
keeping (Nakamoto, 2008). Smart contracts, self-executing agreements
stored on the blockchain, further enhance this innovation by automating
processes without intermediaries (Szabo, 1997). However, smart
contracts are inherently static and lack adaptability, making them
inefficient in handling dynamic real-world conditions such as
fluctuating environmental regulations and dynamic resource
availability, and complex dispute resolution scenarios (Atzei et al.,
2017).

Al has emerged as a potential solution to these limitations, offering
adaptive decision-making, predictive analytics, and automated risk
assessments (Salah et al., 2019). By integrating Al into smart contracts,
blockchain governance can evolve from rigid automation to intelligent,
context-aware execution (Hussain & Al-Turjman, 2021). This
integration can improve efficiency, security, and fairness in
decentralized ecosystems, particularly in Environmental Decentralized
Autonomous Organizations (DAQOs), Green bond settlements, and legal
dispute resolution mechanisms (Casino et al., 2019; Liang et al., 2017).
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This paper proposes a conceptual framework for Al-enhanced smart
contracts, focusing on three key areas:

e Al-Assisted Dispute Resolution: Leveraging NLP models to
interpret contractual terms, resolve ambiguities, and provide automated
legal insights.

o Adaptive Gas Fee Optimization: Using machine learning
algorithms to predict network congestion and dynamically adjust gas
fees for efficient transaction processing.

e Automated Risk Assessment: Deploying Al-driven fraud
detection models to evaluate transaction legitimacy, reducing
vulnerabilities in blockchain-based financial systems.

To illustrate these concepts, we provide sample Solidity smart
contracts that demonstrate the feasibility of integrating Al-generated
insights into blockchain applications. Additionally, we discuss the
challenges and limitations of Al-enhanced smart contracts, particularly
in terms of security, privacy, and computational overhead.

The rest of this paper is structured as follows: Section 2 reviews
related works on Al and blockchain integration. Section 3 presents the
proposed framework and its key components. Section 4 outlines sample
smart contracts demonstrating Al-driven automation. Section 5
discusses security considerations and potential challenges. Finally,
Section 6 concludes with future research directions.

2. Theoretical Foundations
2.1 Introduction to Smart Contracts

Smart contracts are self-executing agreements where the terms are
written into code (Wu et al., 2022). They operate on a blockchain, a
decentralized ledger, automatically enforcing obligations when
conditions are met (Kontos et al., 2024). This automation increases
transparency and efficiency (Mohanta et al., 2018). Smart contracts use
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"if/then” logic: upon condition completion, actions execute
automatically. The blockchain provides a secure, immutable
infrastructure(Wu et al., 2022). Once deployed, code cannot be altered,
ensuring a tamper-proof record. Decentralization means verification by
multiple nodes, enhancing security (Wu et al., 2022).

Traditional smart contracts offer deterministic execution, always
producing the same output for the same inputs (Alp et al., 2022). This
ensures consensus and reliability. Automation is key, enabling self-
execution without manual intervention (Ravisankar, 2025), increasing
efficiency and reducing disputes. Examples include DeFi, real estate,
and supply chain management (Mohanta et al., 2018).

Despite benefits, traditional smart contracts lack adaptability.
Immutability makes updates difficult (Zou et al., 2021). They rely on
predefined conditions coded at creation (Sirena & Patti, 2021), lacking
the ability to interpret context or make decisions based on unforeseen
data (Hupe, 2024). This limits their use to simple agreements where all
contingencies are known.

2.2 The Role of Al in Smart Contracts

Al enables machines to learn, reason, and make decisions. Al excels
at analyzing data, finding patterns, and making predictions, automating
decision-making (Patel, 2024). Key Al techniques for smart contracts
include machine learning, neural networks, and decision trees,
providing a foundation for adaptable and intelligent contracts.

Al can overcome the limitations of traditional smart contracts by
adding adaptability and intelligence. Adaptability comes from Al's
ability to learn from data, adjust contract terms in real-time, and predict
risks, making contracts more responsive (Patel, 2024). Intelligence is
added through Al's capacity to analyze complex data and make data-
driven decisions without explicit pre-programming, allowing Al-
enhanced smart contracts to manage more complex agreements (Patel,
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2024). Al uses techniques like neural networks, machine learning
algorithms, and natural language processing (Virovets et al., 2024).

2.3 Al-Enhanced Smart Contract Execution

Al has the potential to revolutionize the execution of smart contracts
by enabling dynamic adjustments to contract terms based on real-time
data. Traditional smart contracts, once deployed, operate according to
a fixed set of rules. However, by integrating Al, these contracts can
monitor and analyze real-world data streams through mechanisms like
oracles, and subsequently modify their terms or trigger different
execution pathways based on the insights derived from this data (R.
Gupta et al., 2020). For instance, in a supply chain smart contract, Al
could analyze real-time weather data or traffic conditions to predict
potential perishable agricultural goods. Based on this prediction, the
contract could automatically adjust delivery schedules, notify
stakeholders, or even trigger penalties as per the agreed terms
(Badruddoja et al., 2021). This dynamic adjustment capability makes
Al-enhanced smart contracts significantly more flexible and responsive
to the complexities of real-world scenarios compared to their static
counterparts (Ouyang et al., 2022).

Furthermore, Al can facilitate Al-powered dispute resolution and the
development of self-adjusting governance models within smart contract
frameworks (Pasupuleti, 2025). When disputes arise in traditional smart
contracts, resolving them often requires manual intervention or reliance
on external legal systems. By integrating Al, smart contracts can be
equipped with the ability to analyze evidence, interpret land use rights
for conservation using NLP, and even suggest or automatically
implement resolutions based on predefined rules and learned patterns
from past disputes (Vijay Shelake, 2025). This can lead to faster, more
efficient, and potentially fairer dispute resolution processes within the
decentralized environment (Vijay Shelake, 2025). Similarly, for DAOs
governed by smart contracts, Al can enable self-adjusting governance
models. Al algorithms can analyze the performance of the DAO,



8] 01yen 5 sl oy 5 (S50 5l 0 ok 3 33 31 i) p33 5 I3l ook 55 S31 il b

monitor community sentiment, and even propose or automatically
implement changes to governance rules or operational parameters to
optimize the organization's effectiveness and resilience (Karthikeyan,
2024). This capability for continuous self-improvement and adaptation
represents a significant advancement in decentralized governance.

Al-enhanced smart contract execution opens up a wide range of
example applications across various industries. In the realm of
environmental markets, Al can drive gas fee optimization in blockchain
networks like Ethereum (Pasupuleti, 2025). By predicting network
congestion, Al helps schedule transactions during off-peak times,
optimizing economic costs and reducing the energy intensity per
transaction. By using machine learning, Al algorithms can suggest
optimal gas fees for transactions, helping users save costs and ensure
timely processing (Kowalski, 2024). This dynamic optimization is
particularly valuable during periods of high network activity where gas
prices can fluctuate significantly (Ferenczi & Badica, 2024). Another
crucial application is Al-based compliance monitoring in carbon
trading markets (Pasupuleti, 2025). By analyzing transaction patterns,
identifying anomalies, and leveraging machine learning to learn from
past instances of fraud, Al can significantly enhance the security of
carbon credit transactions executed through smart contracts (Krichen,
2023). This proactive detection capability can help prevent financial
losses and build greater trust in decentralized resource management
systems (Luo et al., 2025). These examples illustrate the tangible
benefits of integrating Al into the execution phase of smart contracts,
leading to greater efficiency, cost-effectiveness, and security across
different application domains (Pranto et al., 2022).

2.4 Al and Oracles: Bridging Blockchain with Off-Chain
Intelligence

Oracles connect blockchains with off-chain data, enabling smart
contracts to interact with the real world (Virovets et al., 2024). Smart
contracts cannot directly access external data like prices or weather
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(Ezzat et al., 2022). Oracles securely fetch and verify this data from
sources like APIs and 10T devices, relaying it to smart contracts to
trigger execution (T et al., 2025), expanding their applications.

Al can enhance the accuracy and reliability of oracles (Noei
Teymoordash et al., 2025). Traditional oracles can be prone to
inaccuracies. Al-enhanced oracles use machine learning to analyze data
from multiple sources, identify inconsistencies, and provide more
accurate information (Kalpinagarajarao, 2025). For example, in
prediction markets, Al oracles could analyze news to verify event
outcomes, improving the reliability of data used by smart contracts
(Armstrong & O’Rorke, 2017).

Security concerns exist with Al-powered oracles, including data
manipulation and single points of failure. Manipulated data sources
could lead to incorrect information and harmful outcomes (Shaverdian,
2019). Centralized Al oracles could also be single points of failure (Gao
et al., 2025). Decentralized oracle networks using consensus
mechanisms across multiple oracles help mitigate these risks. Research
also focuses on developing Al models to detect manipulated data (Mosa
et al., 2024).

2.5 Smart Contract Adaptability with Al

Traditional smart contracts have static logic, fixed at deployment,
limiting their ability to adapt (Reshi et al., 2023). Al-driven adaptive
contract logic allows smart contracts to dynamically adjust based on
real-time data and learned patterns (Badruddoja et al., 2021). Machine
learning models analyze data and modify contract execution (Vionis &
Kotsilieris, 2023). For example, in a supply chain, an Al contract could
monitor shipment sensor data and adjust terms based on temperature
deviations, making them more versatile (Ouyang et al., 2022).

Self-improving contracts learn and evolve over time using Al
learning models (Pasupuleti, 2025). They analyze past executions and
update their code to improve efficiency or fairness (Paul, 2021). For
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instance, a decentralized insurance contract could use machine learning
to analyze claims data and adjust risk assessment to prevent fraud,
allowing continuous improvement without manual updates (Pranto et
al., 2022).

An example is smart contracts adjusting insurance premiums based
on Al risk predictions. Traditional insurance uses static risk
assessments. Al-enhanced smart contracts could dynamically adjust
premiums based on real-time data and Al predictions (Sajid, 2025). For
example, in agricultural crop insurance, real-time weather and soil
moisture data could lead to premium adjustments, creating more
personalized and potentially fairer insurance models (S. Gupta et al.,
2022).

Traditional smart contracts offer deterministic execution and
automation but lack adaptability. Al can introduce adaptability and
intelligence through machine learning, NLP, and predictive analytics.
Al can enable dynamic adjustments to contract terms, enhance oracles,
and facilitate self-improving contracts.

To demonstrate these concepts practically, Section 3 will introduce
sample Solidity-based smart contracts with Al functionalities,
illustrating the translation of these theoretical principles into working
solutions.

3. Proposed Framework: Al-Enhanced Smart Contracts

The integration of Al with blockchain presents new opportunities for
enhancing smart contract functionality. This section introduces a
conceptual framework for Al-enhanced smart contracts, focusing on
three primary applications: Al-assisted dispute resolution, adaptive gas
fee optimization, and automated risk assessment. Each component
leverages Al techniques to improve the efficiency, adaptability, and
security of smart contracts. Figure 1 depicts the proposed framework.

3.1 Al-Assisted Dispute Resolution
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Off-Chain Al Processing & Data Layer

External Data Sources

Al Dispute Al Gas Fee Al Risk
Resolution Model Prediction Model Assessment Model

Response Response Response
(Proof) Queny (Proof) Query (Proof) Queery

Oracle Oracle Oracle
(Dispute (Risk
Resolution) imizati Assessment)

Al/Oracle Interface Layer (The Bridge)

Delivery | | Request  Delivery | | Request  Delivery | | Request

Dispute Gas Fee Risk
Resolutio Optimizer Assessment
ontra Contract Contract

Smart Contract Layer (On-Chain)

Blockchain Network Layer (e.g., Ethereum)

Figure 1- Proposed Framework for Al-Enhanced Governance (Adaptable for
Environmental Resource Management).
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strictly follow pre-programmed logic without the flexibility to interpret
ambiguities in contractual agreements. However, real-world contracts
often involve complex legal language, unforeseen circumstances, and
subjective interpretations. To address these challenges, we propose
integrating NLP models with smart contracts to facilitate automated
dispute resolution. Key components are:

e Smart Contract Interpretation Layer: Uses NLP models to
analyze contractual clauses and detect inconsistencies or ambiguities.

e Decentralized Al Arbitration: Al-driven dispute resolution
mechanisms evaluate evidence and provide recommendations within
DAO:s.

e Oracles for Legal Precedents: Al-powered oracles fetch external
legal rulings and case law relevant to disputes.

A Solidity-based dispute resolution contract can interact with an Al
oracle to analyze contract terms and provide dispute outcomes based on
pre-trained legal models.

pragma solidity ~0.8.0;
contract DisputeResolution {
address public oracle; //  Al-powered dispute
resolution oracle
constructor (address oracle) {
oracle = oracle;
}
function resolveDispute (bytes32 carbonCreditID)
public view returns (string memory) {
// Query AI oracle for dispute resolution
return "Dispute resolved: Verification
Successful: Carbon Credits Validated.";
}
}

3.2 Adaptive Gas Fee Optimization
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Transaction costs (gas fees) fluctuate based on network congestion,
often leading to inefficient cost allocation. Al-driven predictive
modeling can optimize gas fee calculations by analyzing network
activity and recommending dynamic fee adjustments. Key components
are:

o Al-Based Network Congestion Prediction: Uses historical
transaction data to estimate future congestion levels.

e Dynamic Gas Fee Adjustments: Smart contracts adjust fees in real
time based on Al-generated insights.

e Priority Transaction Scheduling: Al determines when to execute
transactions at optimal gas prices.

A contract can interact with an Al model via an oracle to set optimal
gas fees dynamically.

pragma solidity 70.8.0;

contract EcoFriendlyGasOptimizer {
address public gasOracle;
constructor (address _gasOracle) ({

gasOracle = gasOracle;
}
function getOptimizedGasFee() public wview returns
(uint256) {

// Query AI to find lowest energy-intensity block
return 5000000000; // Example: 5 Gweil based on AI
estimation
}
}

3.3 Automated Risk Assessment for Blockchain Transactions

Security risks such as fraudulent transactions, smart contract
vulnerabilities, and Sybil attacks pose challenges to blockchain
ecosystems. Al-driven fraud detection models can assess transaction
legitimacy, reducing risks in environmental compliance systems. Key
components are:
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e Machine Learning-Based Greenwashing Detection: Al models
analyze transaction patterns to identify anomalies.

e Risk Scoring Mechanism: Assigns risk scores to transactions,
flagging suspicious activities.

e ZKPs for Privacy: Al risk assessments can be performed off-chain
and verified on-chain without revealing sensitive data. To implement
this, the Al risk assessment model would operate off-chain, potentially
processing sensitive transaction details or user data. Upon calculating a
risk score or classification, instead of transmitting the raw data or the
full model output via the oracle, a ZKP (such as a zk-SNARK or zk-
STARK) would be generated. This proof cryptographically attests that
the Al computation was executed correctly on the (private) input data
and yielded a specific result (e.g., 'low risk' or a specific score range)
without revealing the input data itself. The oracle relays this compact
proof to the smart contract, which then performs an efficient on-chain
verification of the proof. If the proof is valid, the contract can trust the
assessment outcome and proceed accordingly, ensuring both data
privacy and computational integrity.

A Solidity contract that interacts with an Al model for fraud detection.

pragma solidity 70.8.0;
contract EnvironmentalCompliance {
address public riskOracle;
constructor (address _riskOracle) {
riskOracle = riskOracle;
}
function assessTransaction (address user, uint256
amount) public view returns (string memory) {
// Query AI oracle for risk assessment
return "Compliance Verified: Sustainable
Practice";
}
}

3.4 Framework Overview
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The proposed Al-enhanced smart contract framework combines
oracles, Al models, and blockchain to create a more intelligent,
adaptive, and secure decentralized ecosystem. These integrations
enable:

e More efficient dispute resolution in decentralized governance.
e Lower transaction costs through Al-driven gas fee optimization.

e Higher security in resource transactions via Al-based fraud
detection.

By implementing these Al-powered features, smart contracts can
evolve beyond static execution models into intelligent, self-optimizing
blockchain applications.

4. Sample Smart Contracts for Al-Enhanced Blockchain
Governance

To demonstrate the feasibility of Al-enhanced smart contracts, this
section presents Solidity-based implementations for the three key
applications discussed in Section 3: Al-assisted dispute resolution,
adaptive gas fee optimization, and automated risk assessment. These
smart contracts are designed to interact with Al oracles that provide off-
chain intelligence to improve decision-making on the blockchain.

4.1 Al-Assisted Dispute Resolution Smart Contract

The Obijective is to enable smart contracts to interpret contractual
clauses and resolve disputes using an Al-powered oracle that analyzes
contract terms.

// SPDX-License-Identifier: MIT
pragma solidity ~0.8.0;
contract DisputeResolution {
address public oracle; // Al-powered dispute
resolution oracle
mapping (bytes32 => string) public disputeOutcomes;
event DisputeSubmitted (bytes32 indexed
carbonCreditID, string outcome);
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constructor (address _oracle) {

oracle = oracle;
}
function resolveDispute (bytes32 carbonCreditID)
public {
// Simulate AI verification of carbon credit
validity
string memory outcome = "Dispute resolved:
Verification Successful: Carbon Credits Validated.";
disputeOutcomes [carbonCreditID] = outcome;

emit DisputeSubmitted (carbonCreditID, outcome) ;

}
function getDisputeOutcome (bytes32 carbonCreditID)

public view returns (string memory) {
return disputeOutcomes|[carbonCreditID];
}
}

The progress will be as follows:
1. Adispute is submitted by providing a contract hash.

2. The contract queries an Al oracle (simulated in this example) to
determine the dispute resolution outcome.

3. The resolved outcome is stored on-chain and can be accessed
later.

4.2 Adaptive Gas Fee Optimization Smart Contract

The Obijective is to dynamically adjust gas fees based on network
congestion predictions provided by an Al model.

// SPDX-License-Identifier: MIT
pragma solidity 70.8.0;
contract EcoFriendlyGasOptimizer {
address public gasOracle; // AI-powered gas fee oracle
event GasFeeUpdated (uint256 newGasFee) ;
constructor (address gasOracle) {
gasOracle = gasOracle;
}
function getOptimizedGasFee () public pure returns
(uint256) {
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// Simulated AI oracle prediction (In practice,
this would be fetched from an oracle)
return 5000000000; // Example: 5 Gweil
}

function executeTransaction () public payable {
uint256 optimizedGas = getOptimizedGasFee();
emit GasFeeUpdated (optimizedGas) ;
// Transaction logic using optimized gas fee

}
The progress will be as follows:

1. The contract queries an Al oracle for the optimal gas fee based
on predicted network congestion.

2. The returned gas fee is dynamically updated before executing
transactions.

3. This allows users to minimize transaction costs by executing
trades when network congestion is low.

4.3 Al-Powered Risk Assessment Smart Contract

The Objective is to assess transaction legitimacy using Al-driven
fraud detection models to mitigate risks in blockchain compliance
applications.

// SPDX-License-Identifier: MIT
pragma solidity 70.8.0;
contract EnvironmentalCompliance {
address public riskOracle; // AI-powered risk analysis
oracle
mapping (address => uint256) public riskScores;

event RiskEvaluated(address indexed wuser, uint256
riskScore);
constructor (address _riskOracle) {
riskOracle = riskOracle;
}
function assessTransaction (address user, uint256
amount) public {
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// Simulated AI risk assessment (In practice, this
would be fetched from an oracle)
uint256 riskScore = (emissions > permittedLimit)
? 80 : 20; // Example: High-risk if carbon output exceeds
quota
riskScores[user] = riskScore;
emit RiskEvaluated (user, riskScore);
}
function getRiskScore (address user) public view
returns (uint256) {
return riskScores[user];
}
}

The progress will be as follows:

1.The contract queries an Al oracle to assign a risk score to each
transaction.

2.If the transaction amount is high, it is flagged as high risk.

3.Risk scores are stored on-chain and can be used by regulatory
applications to prevent fraud.

4.4 Privacy-Preserving Al Risk Assessment Implementation

To demonstrate the technical implementation of privacy-preserving
Al risk assessment using Zero-Knowledge Proofs, an expanded
architecture is presented that outlines the specific components and their
interactions. The Al risk assessment model operates in a secure off-
chain environment where it receives encrypted transaction data (e.g.,
sender/receiver addresses, amount, transaction history), processes this
data through a pre-trained ML model (e.g., Random Forest or Neural
Network), and produces a risk score or classification (e.g., on a scale of
0-100 or categorical labels).

After the Al model generates a risk assessment, a zk-SNARK or zk-
STARK (Oude Roelink et al., 2024) proof is created. This process takes
transaction data, Al model parameters, and risk assessment results as
input. It defines a circuit that verifies the Al computation followed the
specified algorithm, creates a witness of the computation without
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revealing the private data, and generates a compact proof that can be
verified on-chain. Sample pseudocode for the proof generation
demonstrates this process:

function generateRiskAssessmentProof (transactionData,

modelParameters, riskScore) {
// Define arithmetic circuit for AI model computation

let circuit = defineAICircuit (modelParameters);
// Generate witness from private data
let witness = circuit.generateWitness ({

privateInputs: transactionData,
publicOutput: riskScore
})
// Generate the actual ZKP
let proof = circuit.generateProof (witness);
return {
proof: proof,
publicInputs: riskScore
}i
}

The on-chain verification is handled through an enhanced
EnvironmentalCompliance smart contract that includes ZKP
verification:

// SPDX-License-Identifier: MIT
pragma solidity ~0.8.0;
import "./ZKPVerifier.sol"; // Library for ZKP
verification
contract EnhancedEnvironmentalCompliance {
address public riskOracle;
ZKPVerifier public verifier;
mapping (address => uint256) public riskScores;
event RiskEvaluated(address indexed wuser, uint256
riskScore, bool verified);
constructor (address riskOracle, address verifier) {
riskOracle = riskOracle;
verifier = ZKPVerifier( verifier);
}
function assessTransactionWithZKP (
address user,
bytes memory proof,
uint256 claimedRiskScore
) public {



YN | 01Kan 5 Ul ki 55 (31505 pb ki 55 93 31 ) 33 3 U3l okt 3 (S5 5

// Verify  the ZKP  without revealing the
transaction details

bool isvalid = verifier.verifyProof (proof,
claimedRiskScore) ;
require (isvalid, "Invalid risk assessment
proof™);
// Store the verified risk score
riskScores[user] = claimedRiskScore;
emit RiskEvaluated(user, claimedRiskScore, true);
}
function getRiskScore (address user) public view

returns (uint256) {
return riskScores[user];

}

This implementation can leverage established ZKP frameworks,
including libsnark or the Groth16 proving system for zk-SNARKS, and
StarkWare's Cairo language or the Ethereum STARK prover for zk-
STARKS.

4.5 Security and Efficiency Considerations

While Al-enhanced smart contracts offer numerous advantages, they
also introduce security and efficiency concerns:

e Oracle Security: Since Al models operate off-chain, trust in
oracles is crucial. Adversaries could manipulate oracle data to alter
dispute resolutions, gas fees, or risk assessments.

e Computational Overhead: Al models require significant
processing power. Lightweight models or off-chain processing via
oracles help mitigate blockchain performance issues.

e Bias in Al Models: Smart contracts rely on Al-generated
outputs, which can be biased if the training data is flawed. Ensuring
transparency in Al model training is essential.

e Privacy Considerations: ZKPs can be integrated to provide
privacy-preserving Al-driven decisions without exposing sensitive
transaction data.
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Table 1 summarizes sample smart contracts.
5. Challenges and Security Considerations

While Al-enhanced smart contracts introduce significant
advancements in blockchain governance, they also pose various
technical, security, and ethical challenges. This section discusses key
issues associated with integrating Al into smart contracts, including
oracle vulnerabilities, Al model reliability, computational overhead,
regulatory concerns, and privacy risks.

5.1 Oracle Vulnerabilities and Data Integrity

Al-powered smart contracts rely on oracles to fetch off-chain
intelligence, such as dispute resolution outcomes, gas fee predictions,
and risk scores. However, oracles introduce security risks, including
single points of failure, where a compromised centralized oracle can
manipulate smart contract decisions. Data tampering attacks are another
concern, as malicious actors may inject biased or incorrect Al-
generated data to influence contract execution. Additionally, oracle

Table 1 - Summary of sample smat contracts

Feature Smart Contract Key Functionality Al Role
. Resolves contract NLP model for
Dispute . . . .
) DisputeResolution disputes using Al- contract
Resolution ) ) )
powered analysis interpretation
Adjusts gas fees Al model
Gas Fee ) o dynamically based predicts
o EcoFriendlyGasOptimizer )
Optimization on network congestion
congestion levels
) Assigns risk scores _
Risk . . . Al-driven fraud
EnvironmentalCompliance  to transactions to )
Assessment detection

prevent fraud
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downtime can cause smart contracts relying on Al insights to fail to
function properly.

To mitigate these risks, decentralized oracles such as Chainlink
(Breidenbach et al., 2021) can be implemented to reduce reliance on a
single data source. Multi-oracle consensus mechanisms, where multiple
Al models verify data accuracy, can further enhance reliability.
Additionally, cryptographic proofs, such as zero-knowledge proofs, can
be introduced to validate Al-generated outputs before execution.

5.2 Al Model Reliability and Bias

Al models are only as good as the data they are trained on. Poor
training data or biased models can lead to unfair dispute resolutions,
where Al-driven legal interpretations may produce biased outcomes.
Incorrect fraud detection can also arise, causing Al to falsely flag
legitimate transactions as fraudulent. Moreover, manipulated gas fee
predictions can be exploited to favor specific user groups.

Ensuring Al models undergo transparent training and auditing can
help minimize biases. The use of Explainable Al (XAl) techniques
enhances the interpretability of Al decisions. Establishing a blockchain-
based Al audit trail ensures that model updates and training data
modifications remain immutable and verifiable.

5.3. Environmental Externalities and the Economics of
Computation

The integration of Al into blockchain architectures introduces
significant computational demands, creating a critical challenge in the
context of environmental economics: the energy intensity of digital
governance. While Al models optimize resource allocation and gas fees
, the computational power required to train and query these models
contributes to the overall carbon footprint of the network.

From an economic perspective, if the energy cost of running the Al
governance model exceeds the value of the resources saved, the system
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becomes economically inefficient. Running complex Al tasks directly
on-chain is not only computationally prohibitive but also
environmentally unsustainable due to the high energy consumption
associated with redundant node verification.

To mitigate these environmental externalities, this framework
proposes offloading heavy Al processing to off-chain networks and
utilizing Layer 2 scaling solutions such as Optimistic Rollups and zk-
Rollups. These mechanisms significantly reduce the energy intensity
per transaction, ensuring that the smart contract ecosystem remains a
viable tool for sustainable resource management rather than a
contributor to energy waste. Furthermore, the adoption of "Green Al"
principles—using lightweight models for inference —is essential to
align the technical architecture with the sustainability goals of
environmental and natural resource economics.

5.4 Economic Scalability and Barriers to Entry

Al models require significant computational resources, making on-
chain Al execution impractical. Running Al-driven tasks such as
dispute resolution, gas fee optimization, or fraud detection directly on
a blockchain may increase gas costs, making transactions expensive.
High computational requirements translate into prohibitive transaction
costs (gas fees), potentially excluding smaller environmental
stakeholders (e.g., local NGOs or small-holder farmers) from
participating in the governance model. This creates an economic barrier
to entry that must be addressed via Layer 2 solutions to ensure equitable
access.

To address these issues, Al processing can be offloaded to off-chain
computing networks like Fetch.ai (Fetch Al: Open Platform to Build Al
Apps & Services, n.d.) and Bittensor (Rao et al., 2020), with results
retrieved via oracles. Using lightweight Al models for on-chain
inference reduces execution overhead. Additionally, implementing
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Layer 2 scaling solutions, such as Optimistic Rollups and zk-Rollups,
can lower computation costs while maintaining efficiency.

5.5 Privacy and Security Risks

Al-enhanced smart contracts process sensitive data, such as emission
records and dispute resolutions. If not managed properly, this can lead
to privacy breaches, where unauthorized parties gain access to
transaction details. Al-driven identity tracking may also compromise
user anonymity in DeFi and DAO ecosystems. Furthermore, attackers
may exploit Al decision-making by manipulating Al models to alter
contract outcomes.

Addressing these risks involves leveraging cryptographic techniques
like zero-knowledge proofs to generate verifiable proofs without
revealing sensitive data. Federated Learning can be utilized to enable
decentralized Al model training without exposing raw data.
Additionally, Homomorphic Encryption can allow Al models to
process encrypted data securely, preserving confidentiality.

5.6 Regulatory and Legal Considerations

Integrating Al into smart contracts presents legal and compliance
challenges, particularly in jurisdictions with strict data protection and
environmental regulations. Key concerns include the legal status of Al
dispute resolutions, as courts may not recognize Al-based contract
interpretations as legally binding. Compliance with sustainability
regulations is another challenge, as Al-driven gas fee optimization and
risk assessments may require regulatory approval. Additionally,
liability issues arise when determining legal responsibility for
erroneous Al-driven contract decisions.

To navigate these challenges, hybrid Al-human dispute resolution
systems can be implemented, where Al suggests outcomes but human
oversight ensures compliance. Al-based financial smart contracts
should be designed to adhere to Anti-Money Laundering (AML) and
Know Your Customer (KYC) regulations. Establishing regulatory



Environmental Economics & Natural Resources | Vol. X, No. Y | Month Year

sandboxes allows Al-enhanced smart contracts to be tested under
controlled legal frameworks before full deployment.

Table 2 Summarizes the challenges and mitigation strategies.
6. Conclusion and Future Directions

The integration of Al with blockchain-based smart contracts presents
a transformative approach to enhancing decentralized governance,
dispute resolution, gas fee optimization, and risk assessment. By
leveraging Al-driven smart contracts, blockchain networks can achieve
greater efficiency, adaptability, and intelligence, overcoming some of
the current limitations of deterministic contract execution. This paper
explored the theoretical underpinnings of Al-powered smart contracts,
introduced sample implementations in Solidity, and analyzed critical
security and regulatory challenges associated with Al-enhanced
decision-making in blockchain environments. While Al can

Table 2 - Summary of challenges and mitigation strategies

Challenge Potential Risk Mitigation Strategy
Oracle Data manipulation, Use decentralized oracles, multi-source
Vulnerabilities  single point of failure validation, cryptographic proofs

Unfair decisions, o
) ) Transparent Al training, XAl,
Al Model Bias incorrect fraud ) o
] blockchain-based Al audit trails
detection

Computational High gas costs, slow Off-chain Al processing, lightweight

Overhead execution Al models, Layer 2 scaling solutions
. . Data exposure, ZKPs, federated learning,
Privacy Risks o . . .
identity tracking homomorphic encryption
o Hybrid Al-human decision-making,
Regulatory Legal recognition, )
) ) AML/KY C compliance, regulatory
Challenges compliance issues

sandboxes
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significantly improve contract automation, several technical and ethical
challenges—such as oracle vulnerabilities, Al model bias,
computational overhead, and regulatory uncertainty—must be
addressed to ensure trust and reliability. Al-enhanced smart contracts
have the potential to redefine digital governance models, making
decentralized ecosystems more adaptive and intelligent, but their
adoption requires robust security mechanisms, transparent Al models,
and compliance with legal frameworks to ensure fair, accountable, and
scalable implementations.

While this study establishes a theoretical foundation for Al-powered
smart contracts, several areas require further research and development.
One critical focus is the advancement of decentralized Al models for
blockchain governance, which could operate without centralized
control to enhance dispute resolution and resource trading applications.
The integration of federated learning may enable Al models to be
trained across multiple blockchain nodes while preserving privacy.
Additionally, the development of privacy-preserving Al mechanisms,
such as ZKPs and homomorphic encryption, could allow Al-powered
decisions without exposing sensitive transaction data or enable
encrypted Al computations directly within smart contracts. Improving
Al oracles and data integrity is also crucial, as multi-source Al oracles
could mitigate data manipulation risks and enhance contract execution
reliability. Leveraging decentralized oracle networks like Chainlink
(Breidenbach et al., 2021) and Witnet (de Pedro et al., 2017) would
further strengthen the resilience of Al-driven smart contracts.
Moreover, Al-powered auditing tools could automatically detect
vulnerabilities before deployment, providing real-time security analysis
for blockchain applications and reducing the risk of exploits and errors.

Regulatory frameworks must also evolve to accommodate Al-driven
smart contracts, recognizing Al-based contract decisions in arbitration
and dispute resolution while ensuring fairness, accountability, and
compliance in smart contract automation. The convergence of Al and
blockchain is still in its early stages, but it has the potential to



Environmental Economics & Natural Resources | Vol. X, No. Y | Month Year

revolutionize decentralized decision-making by making smart contracts
more adaptive and intelligent. Achieving this vision requires a
multidisciplinary approach, combining advancements in blockchain
security, Al ethics, cryptographic privacy, and regulatory compliance.
As research progresses, Al-driven smart contracts could bridge the gap
between traditional legal systems and decentralized governance,
unlocking new possibilities for automated trading systems, fair dispute
resolution, and secure digital transactions. By addressing the challenges
and leveraging innovative solutions, Al-enhanced smart contracts can
play a pivotal role in shaping the future of Web3, DeFi, and
decentralized governance models.
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