[1] Christian Bayer, Peter Friz and Jim Gatheral, Pricing under rough volatility, Quantitative Finance, Routledge, 16 (June 15, 2016), no.~6, 887--904, doi:10.1080/14697688.2015.1099717, URL: https://doi.org/10.1080/14697688.2015.1099717.
[2] Peter K. Friz and Nicolas Victoir, Multidimensional Stochastic Processes as Rough Paths: Theory and Applications, Cambridge University Press, (May 24, 2010), ISBN: 978-0521118996.
[3] Rama Cont, Empirical properties of asset returns: stylized facts and statistical issues, Quantitative Finance, 1 (February 1, 2001), no.~2, 223--236, doi:10.1088/14697688/1/2/304, URL: https://doi.org/10.1088/1469-7688/1/2/304.
[4] Jim Gatheral, Thibault Jaisson and Mathieu Rosenbaum, Volatility is rough, arXiv preprint, arXiv:1410.3394 (October 13, 2014), q-fin.ST, URL: https://arxiv.org/abs/1410.3394.
[5] Roshan Shah, American Option Pricing Under Time-Varying Rough Volatility: A Signature-Based Hybrid Framework, arXiv preprint, arXiv:2508.07151 (August 14, 2025), q-fin.MF, URL: https://arxiv.org/abs/2508.07151.
[6] Giuseppina Orefice, Decoding the ATM Skew with Rough Volatility Models and Machine Learning, SSRN Electronic Journal, (May 12, 2025), doi:10.2139/ssrn.5369191, URL: https://ssrn.com/abstract=5369191.
[7] Antoine Jacquier, Claude Martini and Aitor Muguruza, On VIX futures in the rough Bergomi model, Quantitative Finance, Routledge, 18 (January 2, 2018), no.~1, 45--61, doi:10.1080/14697688.2017.1353127, URL: https://doi.org/10.1080/14697688.2017.1353127.
[8] Qinwen Zhu, Grégoire Loeper, Wen Chen and Nicolas Langrené, Markovian Approximation of the Rough Bergomi Model for Monte Carlo Option Pricing, Mathematics, MDPI, 9 (March 1, 2021), no.~5, 528, ISSN: 2227-7390, doi:10.3390/math9050528, URL: http://dx.doi.org/10.3390/math9050528.
[9] Ryan McCrickerd and Mikko S. Pakkanen, Turbocharging Monte Carlo pricing for the rough Bergomi model, Quantitative Finance, Routledge, 18 (November 2, 2018), no.~11, 1877--1886, doi:10.1080/14697688.2018.1459812, URL: https://doi.org/10.1080/14697688.2018.1459812.
[10] Changqing Teng and Guanglian Li, Neural option pricing for rough Bergomi model, arXiv preprint, arXiv:2402.02714 (February 5, 2024), q-fin.CP, URL: https://arxiv.org/abs/2402.02714.
[11] Eduardo Abi Jaber, Shaun and Li, Volatility models in practice: Rough, Path-dependent or Markovian?, arXiv preprint, arXiv:2401.03345 (January 5, 2025), q-fin.MF, URL: https://arxiv.org/abs/2401.03345.
[12] Antoine Jacquier, Adriano Oliveri Orioles and Zan Zuric, Rough Bergomi turns grey, arXiv preprint, arXiv:2505.08623 (May 15, 2025), q-fin.PR, URL: https://arxiv.org/abs/2505.08623.
[13] Léo Parent, The EWMA Heston model, Quantitative Finance, Routledge, 23 (January 2, 2023), no.~1, 71--93, doi:10.1080/14697688.2022.2140699, URL: https://doi.org/10.1080/14697688.2022.2140699.
[14] Abe Webb, Siddharth Mahajan, Mateo Sandhu, Rohan Agarwal and Arjun Velan, Adaptive fractal dynamics: a time-varying Hurst approach to volatility modeling in equity markets, Frontiers in Applied Mathematics and Statistics, 11 (January 20, 2025), ISSN: 2297-4687, doi:10.3389/fams.2025.1554144, URL: https://doi.org/10.3389/fams.2025.1554144.
[15] Mike G. Tsionas, Bayesian analysis of static and dynamic Hurst parameters under stochastic volatility, Physica A: Statistical Mechanics and its Applications, 567 (May 1, 2021), 125647, ISSN: 0378-4371, doi:10.1016/j.physa.2020.125647, URL: https://doi.org/10.1016/j.physa.2020.125647.
[16] Yicun Li and Yuanyang Teng, Estimation of the Hurst Parameter in Spot Volatility, Mathematics, MDPI, 10 (May 14, 2022), no.~10, 1619, ISSN: 2227-7390, doi:10.3390/math10101619, URL: https://www.mdpi.com/2227-7390/10/10/1619.