مقایسه توانایی پیش‌بینی مدل‌های عصبی (ANN) تفاوت‌های جهانی نفت اوپک

دکتر شهرام گلستانی، مصطفی گرگی و فاطمه حاج‌عبادی

تاریخ دریافت: 7 خرداد 1391
تاریخ پذیرش: 4 آبان 1391

آگاهی از میزان تفاوت‌های آتی نفت به منظور تهیه اولویت‌ها و انتخاب سیاست‌ها در راستای دستیابی به رشد و توسعه اقتصادی، برای کشورهای عضو اوپک ضروری است. یوژه‌های حاضر، میزان تفاوت‌های نفت اوپک با استفاده از الگوهای سری زمانی شامل مدل برداری خوردرگویی (VAR)، مدل خودپوششی جمعی میانگین متحرک (ARIMA) و الگوی جایگزین، شده عصبی مصنوعی با بکارگیری داده‌های ماهانه‌ای از ماه اول 2001 تا ماه دهم 2010 پیش‌بینی می‌کند. در همین راستا برای سنجش توانایی قدرت پیش‌بینی الگوهای سری زمانی استفاده‌ی می‌باشد. نتایج بدست‌آمده نشان می‌دهد که الگوی VAR به ارزشی خصوصاً در محدوده مجموع مجموعه مربوط خط، میانگین قبلاً خط و میانگین میانگین در محدوده خط از سه می‌باشد. در مجموع میانگین قبلاً خط در محدوده میانگین در محدوده میانگ

واژه‌های کلیدی: اوپک، تفاوت‌های جهانی نفت، پیش‌بینی

طبقه‌بندی: JEL: C22, C45, C52, C53, Q47

shahram_golestani@yahoo.com
gorgimi2010@gmail.com
abbasif1988@gmail.com

* استادیار دانشکده مدیریت و اقتصاد دانشگاه شهید باهنر کرمان
** دانشجوی کارشناسی ارشد اقتصاد دانشگاه شهید باهنر کرمان
*** دانشجوی کارشناسی ارشد آماده دانشگاه شهید باهنر کرمان
1. مقدمه

در اقتصادهای وابسته به درآمد‌های فنی از جمله ایران و سایر اعضای اوریک، تحقیق بر روی مدل‌های بلندمدت، میان مد و تنظیم بودجه‌های سالانه سرمایه بین‌شیبی‌های تحت‌اندازه هزینه‌های تولیدی و نیت‌های جهانی برای درآمد و همچنین پیش‌بینی نوسانات قیمت آن است. این پیش‌بینی‌های این امکان را در انتخاب دست‌نادگیری قرار می‌دهد تا بتوانند با انتخاب پیش‌بینی شده از درآمد‌های نتیجی، برآوردهای اقتصادی خود را در راحتی دستیابی به رشد و توازن بازارها و با پیش‌بینی‌های اجرای نماید. بر این اساس، دقت پیش‌بینی‌های انجام‌گرفته در این چارچوب نقش کلیدی و مهم را ایفا می‌کند.

روش‌های مختلفی برای پیش‌بینی متغیر‌های اقتصادی وجود دارد که از مهم‌ترین آنها می‌توان به پیش‌بینی‌های صورت گرفته در جایگزین تحلیل‌های سری‌های زمانی اشاره نمود. در حالی که روش‌های پیش‌بینی سری زمانی را می‌توان به دو دسته خلوق و غیرخلوق تقسیم‌بندی کرد، با این حال باید نکته در مورد چگونگی تشکیل و روش‌های فراکش ARIMA و VAR بیان شود. به علاوه، امرورزی توجه به استفاده از سیستم‌های هوشمند در پیش‌بینی متغیر‌های اقتصادی معلول شده است. شکل‌های عصبی مصنوعی که در زمینه تجربه و تحلیل و مدل‌سازی روابط غیرخطی کیک از ابزارهای قدرتمند به حساب می‌آیند، کیکی از مفاهیم سیستم‌های هوشمند محصولی می‌گردد که برای پیش‌بینی متغیر‌های اقتصادی بکار گرفته می‌شود.

VAR، ARIMA و ANN در این مقاله تحلیل‌های جهانی برای نفت اوپک در قالب سه گروه مورد پیش‌بینی قرار گرفته است. سپس با استفاده از سه میانگین مربعات خطا (MAPE)، میانگین مربع طول ضایع (MSE) و خطا (MAE) قرار گرفته است.

توانایی و دقیقه کدام از این گروه‌ها در پیش‌بینی دقیقه‌ای برای نفت اوپک محاسبه شده است و بهترین گروه در پیش‌بینی دقیقه‌ای نفت انتخاب خواهد شد. نهایتًا تحلیل نتیجه‌گیری برای پیش‌بینی از نظر اینکه برگردد در دو سناریو یکی برای سال 2012 و دیگری نسبی‌پایان 2015 مورد پیش‌بینی قرار گرفته است.
مقایسه تووانایی پیش‌بینی مدل‌های ARIMA، VAR و شبکه‌های ...

2. ادبیات موضوع

موافقین شبکه‌های عصبی به عنوان ابزاری قدرتمند برای مدلسازی و تحلیل داده‌ها، موجب شده تا توجه اقتصاددانان نیز به این روش پیش‌بینی‌گر جلب شده و در اواخر دهه ۸۰ میلادی، مدل‌های مختلفی جهت پیش‌بینی متغیرهای اقتصادی ساخته شود. در زمانی پیش‌بینی‌پذیری متغیرهای اقتصادی بوسیله شبکه‌های عصبی مصنوعی و مقایسه نتایج با روش‌های دیگر، تحقیقات متعدد و متعددی انجام شده است.

کاربرد شبکه‌های عصبی مصنوعی در اقتصاد و اقتصادسنجی با مطالعه وایت در پایان‌های مالی و پیش‌بینی قیمت سهام شرکت IBM آغاز شد. نتایج این مطالعه نشان داد که الگوریتم‌های محدود سازی استفاده شده در اقتصادسنجی بهتر از الگوریتم‌های شبکه عصبی است.

نتایج مطالعه وو لو نشان داد که در پیش‌بینی کوتاه مدت قیمت سهام آمریکا شبکه عصبی مصنوعی با روش آماری شبکه عصبی پیش‌بینی‌های دقیق‌تری ارائه می‌نماید، اما در بلندمدت ARIMA توانایی پیش‌بینی در پیش‌بینی دارد.

فرآیند توانایی پیش‌بینی دو توصیف وجود دارد. نتایج حاصل یافتهای این آزمون به بررسی‌بینی شبکه عصبی مصنوعی بهتر از سایر روش‌ها عمل می‌کند.

که‌هندی و دی‌گران (۱۹۹۵) معاملات سلفی ذرت را به روش شبکه‌های عصبی و مدل ARIMA را پیش‌بینی کردند. نتایج در این تحقیق نشان داد که خطای پیش‌بینی با شبکه عصبی ARIMA مصنوعی ۱۸ تا ۴۰ درصد کمتر از خطای پیش‌بینی با است. مطالعه پروتوگال در پیش‌بینی تولید ناخالص بخش صنعت در برلین با استفاده از داده‌های سری زمانی دوره زاونیه ۱۹۸۱ تا دسامبر ۱۹۹۲ نشان داد که فرآیند برتری پیش‌بینی بر ARIMA مدل شبکه عصبی دارد.

در انگلیس نیز یافته‌های مطالعه چرچ و کرمو نشان داد که روش‌های اقتصادسنجی بهتر از شبکه عصبی مصنوعی مخارج مصرف کننگان انگلیس‌را پیش‌بینی می‌کند.

2. Wu and Lu (1993)
5. Church and Curram (1996)
نظریه تولید ناخالص داخلی واقعی آمریکا را با استفاده از شیکه‌های عصبی مصنوعی و رگرسیون خطي مورد بررسی قرار داده است. نتایج حاصل بانگر این بود که شیکه‌های عصبی مصنوعی در پیش‌بینی بهتر عمل می‌کنند.

زبان و دیگران در مقاله خودشان در مورد پیش‌بینی ورشکستگی با استفاده از مدل شیکه عصبی و رگرسیون لاگنتیک نشان دادند که دقت کلی پیش‌بینی شیکه‌های عصبی از رگرسیون لجستیک بیشتر است.

مثيری و کامرون عملکرد شیکه‌های عصبی مصنوعی با سایر روش‌های اقتصادسنجی و سری زمانی را برای پیش‌بینی تخمین نشان دادند. آنها مدلهای شیکه عصبی مصنوعی را برای مدل‌های ساختاری ARIMA و BVAR و VAR برای افق‌های زمانی مختلف (پیک، سه و دوazaده ماه بعد) می‌پرسند. میزان پیش‌بینی این گروه شده در این پژوهش، به‌عنوان ریشه میانگین مربع خطا (RMSE) و میزان معقده نقطه خط (MAE) نشان داد که شیکه‌های عصبی برای پیش‌بینی تخمین نشان داده‌ها بهتر عمل می‌کنند.

هارلنگ و وانگ در مدل ساده شیکه‌های عصبی مصنوعی برای مدل‌های ARMA سری‌های زمانی استفاده کردند. آنها نتیجه گرفتند که هنگامی از داده‌های غيرخطی و پیچیده استفاده می‌کنید، مدل شیکه‌های عصبی مصنوعی قادر به مدلهای معقدتری برای داده‌ها بوده و این در حالی است که مدل‌های خطی ARMA چنین قابلیتی برای داده‌های غیرخطی ندارند. همچنین مطالعه نکاشف در زمینه پیش‌بینی تولید ناخالص داخلی کانادا نشان داد که شیکه عصبی مصنوعی تناها در افق‌های زمانی کمتر از 12 ماه دارای خطای پیش‌بینی کمتری در مقایسه با فرآیند خود رگرسیون است و در دوره‌های بیشتر از یک سال مدل VAR جواب‌های دقیق‌تری ارائه می‌کند.

اوولسون و ماسون از شیکه عصبی برای پیش‌بینی، در گروه‌بندی بازارهای مالی استفاده نمودند. در این مطالعه شیکه عصبی مصنوعی پس از اندازه‌گیری خطا با مدل لجستیک و روش حداقل مربعات معنی‌دار (OLS) مقایسه شد. داده‌های بکار رفته در این پژوهش با داده‌های سهام 250 شرکت

1. Fu (1998)
4. Hwang and Wong (2001)
5. Tkacz (2001)
7. Logit
مقایسه توانایی پیش‌بینی مدل‌های ARIMA, VAR و شبکه‌های...

کانادایی برای دوره ۱۹۷۶ تا ۱۹۹۳ است. نتایج نشان می‌دهد که شبکه عصبی توانایی بیشتری در شناسایی روابط غیرخطی بین متغیر وابسته و مستقل دارد و لذا پیش‌بینی‌های دقیق‌ترین تیز تولید می‌نماید. همچنین شبکه عصبی دقت‌تر از سایر روش‌ها، شرکت‌ها را براساس بازدهی گروه‌هایی نتیجه گرفت.

هرودی و دیگران (۱) نتایج شبکه عصبی مصنوعی را با یک فرایند خود‌گردش (AR) در پیش‌بینی تولیدات صنعتی سه کشور اروپایی آلمان، فرانسه و انگلیس مورد مقایسه قرار داده‌اند. برای این منظور از معیار ریشه میانگین مربع خطای استفاده کردند. تماشای مطالعه نشان داد که شبکه عصبی مصنوعی در افکارهای زمانی کمتر از ۱۲ ماه دارای خطای پیش‌بینی کمتری در مقایسه با فرایندهای گرایشی است.

لیوگرو و همکاران (۲) اقتصادسنجی را برای پیش‌بینی قیمت نفت خام در سه گروه اصلی مدل‌های مختلف و معنی‌دار، سی و زمانی و مالی طبقه‌بندی کرده‌اند و سپس با استفاده از مدل‌های توانایی پیش‌بینی قیمت توسط هر یک از این مدل‌ها با افکارهای مختلف زمانی (سالانه، فصلی، ماهانه و روزانه) برداخته‌اند. نتایج بررسی‌ها حاکی از آن بود که افکارهای تصادفی خطای مالی پیش‌بینی‌های دقیق‌تری از قیمت نفت خام ارائه نمی‌دهند و افکارهای پیش‌نهادی لیوگرو، تحت عنوان «مدل‌های معنی‌دار» به‌وجود و در یک رفتار مشابه با توجه به داده‌ها و معیارهای ارزیابی پیکار رفتار در مطالعه، به عنوان گذشته برتر شناخته شدند.

از مطالعات داخلی انجام گرفته در این زمینه می‌توان به کارهای مشری و فروتن (۲۰۱۳) اشاره کرد که به پیش‌بینی قیمت نفت خام با مدل آماری مصنوعی و ARMA غیرخطی در دوره چهارم آوریل ۱۹۹۳ تا ۱۳ زلوهی ۲۰۰۳ پرداخته‌اند. نتایج بدست آمده نشان می‌دهد که مدل شبکه عصبی مورد استفاده نسبت به مدل‌های دیگر از قدرت پیش‌بینی بهتری پرداخته است.

بژیون و تک‌آبادی (۲۰۱۵) با استفاده از سیستم معادلات همواره و شبکه‌های عصبی، عوامل مؤثر بر مصرف فرآورده‌های نفتی را، تحلیل و نقش‌بازی در آن‌ها را در دوره از ۱۳۸۶ تا ۱۴۰۰ ارزیابی کردند. در این مطالعه نتایج در مورد پیش‌بینی رشد مصرف بنزین، نفت

150 فصلنامه اقتصاد محیط زیست و انرژی سال اول شماره 4

گاز، نفت و سفید و نفت کوره، براساس میزان تغییرات، به ترتیب معادل 8/9/99/90 و 1/11/8/12 درصد و براساس مدل شبکه عصبی فازی معادل 10/7/11/7/7/11/8 درصد است.

فازی و مفاهیم ها را به‌ثبت به‌پایان اندازه‌گیری کرد. ما را از مطالعات اخیر آنها در زمینه نفت می‌توان به مطالعات زیر اشاره کرد.

ابراهیمی و همکاران (1389)، اشاره کرد که قیمت گازولای خلیج فارس را مبنای بر تحلیل تکنیکی و شبکه عصبی-گوسایدی و پیش‌بینی نمودند.

مهرآرا و همکاران (1389) امکان افزایش عادی حاصل از ناکارایی‌های در بازار آن آن نفت خام را با استفاده از شبکه عصبی بررسی کرده‌اند.

مهرآرا و همکاران (1389)، به پیش‌بینی و حساب‌رسی قیمت‌های استفاده از شبکه عصبی براساسه GMDH²

3 موردی بر مبنای نظری مدل‌های پیش‌بینی

یکی از اهداف اساسی در تخمین یک مدل رگرسیون این است که بتوان تغییرات متغیر درون‌زا را با مقدار معنی‌دار از متغیر برون‌زا پیش‌بینی کرد. پیش‌بینی فرآیندی است که با استفاده از یک مدل عینی یا دهی‌بیان یک متغیر را برای گذشته‌ها یا آینده برآورد نمود. برای پیش‌بینی یک متغیر اول می‌باشد متغیر را در داخل نمونه پیش‌بینی کرد و به‌ترین روش‌های انتخاب نمود. سپس متغیر را براساس بهترین مدل برای آینده پیش‌بینی کرد.

پیش‌بینی عمده‌ای به دو دسته تقسیم می‌شود: پیش‌بینی در داخل نمونه و پیش‌بینی خارج از نمونه. در پیش‌بینی داخل نمونه می‌توان مدل رگرسیون براساس یک مدل ریاضی با کیفیت برآورد نمود و سپس آن را با متغیر واقعی مقایسه کرد. این امر که بهترین مقادیر را پیش‌بینی خارج از نمونه برآورد نمود از رای دو‌جهتی آن را با وظایف درزهای آن را انجام داد:

- پیش‌بینی توسط مدل‌های عینی مانند مدل‌های ریاضی، آماری و اقتصادی

1. Group Method of Data Handling
2. In Sample Forecasting
3. Out of Sample Forecasting
مقایسه توانایی پیش‌بینی مدل‌های ARIMA, VAR و شیک‌های ...

- پیش‌بینی توسط مدل‌های ذهنی مانند روش‌های دلیلی، کارشناسی، استفاده از تجربیات و اطلاعات خبرگان و ...

در روش ذهنی تیزه به ارائه مدل ریاضی نیست و به صورت کیفی متغیر مورد نظر برآورد می‌شود.
اما معمولاً برای انجام فرآیند پیش‌بینی متغیرهای اقتصادی، بین یک مدل تقریبی یک مقدار اقتصادی در آن‌های از مدل‌های ریاضی و آماری استفاده می‌گردد. به بیان دیگر در روش ذهنی ارائه مدل ضروری است. روش کمی (عینی) با استفاده از سه تکنیک زیر انجام می‌شود:

1. روش اقتصادسنجی با ساختاری
2. روش سری زمانی با غیرخلاقیت
3. روش شیک‌های عصبی

در روش اول ابتدا یک مدل اقتصادسنجی به صورت زیر برآورد می‌شود:

\[Y = f(X) \]

که متغیر وابسته و \(X \) متغیرهای مستقل است. \(f \) از تشکیل توابع با در دست داشتن \(Y \) متغیر وابسته و \(X \) متغیرهای مستقل است. این امر عمده‌ا برای پیش‌بینی یک متغیر با استفاده از تغییرات شتاب متغیرها صورت می‌پذیرد. به عنوان مثال در برنامه‌های علوم اقتصادی اگر تابع سرمایه‌گذاری برآورد شود و تابع \(f(X) \) در سال‌های آتی تهیه گذاشته شود، می‌توان متغیر سرمایه‌گذاری (Y) را پیش‌بینی کرد.

روش دوم که روش غیرساختاری نام دارد یک مدل متغیر به تنهایی و صرفأ براساس تحولات گذشته خودش قابل پیش‌بینی است و نیاز به متغیر دیگری نیست. در این روش معمولاً کارشناسی و نظرات خبرگان یا برای بیان‌گری توسط شیک‌های غیرساختاری استفاده می‌شود.

در روش شیک‌های عصبی، اینکه یک متغیر از چه نوع مدلی تعبیه می‌شود و به کمک یک تحقیق تبیین صدها که متغیر مورد نظر چگونه در حرکت است و آن را برای دوره‌های آتی پیش‌بینی می‌کند. با ایجاد یک مدل دیگر که به‌همراه حالت برای پیش‌بینی یک متغیر استفاده از تمام روش‌ها است و پس از پیش‌بینی می‌توان روش‌ها را با مقایسه‌های مقیده‌ای پیش‌بینی مقایسه کرد و به‌همین روش را انتخاب و از آن برای پیش‌بینی استفاده کرد.
102

3-1. مدل VAR

مدل VAR یک منابع با تعداد متغیرهای درونمایه‌ای درون‌ساز داریم، اما هر متغیر درون‌ساز یا استفاده از متغیرهای خود و مقادیر باوقوف از تمامی متغیرهای درون‌ساز ای مدل توضیح داده می‌شود. معمولاً هیچ گونه متغیر برون‌زاپیسی در مدل وجود ندارد. به علاوه مدل VAR رفتار کوئنتینت متغیرها را با دیگر متغیرها و مقادیر باوقوف خود متغیر را تعیین می‌کند. در یک فرآیند خوردگرایی مدلی که تخمین می‌زنیم عبارت است از

\[
y_t = \alpha + \sum_{j=1}^{p} \beta_j y_{t-j} + \sum_{i=1}^{q} \gamma_i y_{t-i} + U_t
\]

که در آن \(U_t\) چنین جملاتی تصادفی بوده که در مدل VAR به عکسعملی‌ها تغییر ناگهانی می‌شود.

3-2. مدل ARIMA

فرآیند برای متغیر \(x\) را می‌توان به صورت رابطه زیر نشان داد:

\[
y_t = f(x) + \sum_{i=1}^{p} \phi_i y_{t-i} + \sum_{i=0}^{q} \theta_i \varepsilon_{t-i} + \varepsilon_t
\]

\[
y_t = \Delta^d x_t = (1 - L)^d x_t
\]

در فرآیند (\(p, d, q\))، ARIMA(p,d,q) به ترتیب بیانگر تعداد وقوع‌های خوردگرایی، مربیت تفاضل‌گیری و تعداد جملات مبتنیه‌گرکش است. در صورتی که \(d\) برای با صفر گردید، فرآیند ARIMA (برای نمونه، ARIMA) می‌شود. معمولاً برای تخمین الگوی ARIMA تبدیل به فرآیند ARIMA از روی باکس-جنکر استفاده می‌شود که در نمایه‌ای مدل‌های مارکه‌سازی، تخمین و تشخیص دقت پردازش است.

تعادل جملات خوردگرایی و تعداد جملات مبتنیه‌گرکش معمولاً با استفاده از توابع خوردگرایی (PAC) براساس مراحل باکس-جنکر محاسبه می‌شود.

1. AR: Auto Regressive
2. Auto Coloration
3. Partial Auto Correlation
مقایسه توکانی بین مدل‌های ARIMA و شیک‌های ... 153

می‌شود، اما از آنجایی که ممکن است مدل‌های بهینه‌تری وجود داشته باشنده که بر الگوی مذکور ترجیح داده شوند، این مدل‌ها توسط معیارهای آکاکی، و یا شوارتز-پیوین و بازیتی می‌شوند.

3-3-مدل شیک‌های عصبی (ANN)

شکل‌های عصبی از دهه 50 شناخته شده‌اند،اما تنها در اواسط دهه 80، و بود که آگاهی‌نامه‌ها و روش‌های مربوط به شکل‌های عصبی مصنوعی به درجه‌ای از پیشرفت رسیده‌ن که در حل مسائل واقعی از آنها استفاده شده. شکل ساده شکل‌های عصبی مصنوعی (ANN) یک پایه‌ریزی ورودی و یک پایه خروجی دارد. لازم به ذکر است که منیف‌های ورودی از قبل تعیین شده‌اند. لازم به ذکر است که منیف‌های نیز شامل منیف‌های خروجی زیادی است از قبیل $x_1, x_2, x_3, \ldots, x_n$ هر ورودی x_i به پایه خروجی $F_{i,n}$ تعلیق یافته است. در حالت کلی، شکل عصبی مصنوعی، جمع‌آوری از تونه‌های به هم مصلح در لایه‌های مختلفی دارند که اطلاعات را برای یکدیگر ارسال می‌کند. تونه‌های مصنوعی واحدهای ساده بردارش اطلاعات هستند، بنابراین تعیین زیادی از این تونه‌ها یک شکل عصبی را می‌سازند. نمودار 1 ساختار یک تونه تک ورودی در نظر گرفته شده است.

ورودی را نشان می‌دهد. اسکالر p به ترتیب ورودی و خروجی هستند.

این ترتیب تأثیر موثر مقدار q به وسیله مقدار اسکالر a, تعیین می‌شود. ورودی دیگری که به مقدار ثابت 1 است، در جمله یا با b ضرب شده، سپس با a جمع می‌شود. این حاصل جمع، ورودی خالص برای تابع محور f خواهد بود. بدین ترتیب، خروجی ترون با معادله زیر تعریف می‌شود:

$$ q = f(a p + b) $$

(4)

نمودار 1. تعریف ساختار یک ترون تک ورودی
نکته‌ای که باید به آن توجه داشت اهمیت و تأثیر جملهٔ پایانی است. این جمله را می‌توان مانند وزن a در نظر گرفته باشیم تصور که b میزان تأثیر ورودی ثابت 1 را روي نرخ متعکس می‌سازد. با توجه به داشتن که پارامترهای a و b قابل تنظیم هستند و تابع محرک f نیز توسط طراحی انتخاب می‌شود. براساس این انتخاب و نوع الگوریتم پادگان‌گری پارامترهای a و b تنظیم می‌شوند. پادگان‌گری بین معادله‌ها که a و b طوری تغییر می‌کند که رابطه ورودی و خروجی نرود با هدف خاصی مطلوب نماید. ۱. در نوع متغیرات از شبکه‌های عصبی تشخیص داده شده است:

۱. شبکه عصبی پیش خور
۲. شبکه عصبی پس خور

با توجه به این که در مقاله حاضر، از شبکه عصبی پیش خور استفاده شده است، به توضیح در مورد آن بسنده می‌کنیم. یک شبکه عصبی نوعی از لایه‌هایی تشکیل شده است. در یک شبکه دو لایه، یک لایه ورودی از منبع نرود و یک لایه خروجی از نرودها وجود دارد. یک شبکه عصبی چند لایه، یک یا چند لایه پنهان از نرود‌ها را نیز علاوه بر لایه ورودی و خروجی دارد.

نمونه‌ای از شبکه عصبی ۴ لایه‌ای را نمایش می‌دهم.

نمودار ۲. نمایش شبکه عصبی با ۴ لایه ورودی و خروجی

ساختار شبکه عصبی نشان داده شده در نمونه‌ای ۱ دارای یک لایه لایه ورودی، یک لایه خروجی و یک لایه بین آن‌ها که مستقیماً به داده‌های ورودی و نتایج خروجی متصل نیست، است. در حقیقت، این لایه را مخفی یا پنهان می‌نامند.

۱. آقایی (۱۳۸۵)، ص ۱۳۶
۲. Feed Forward
۳. Recurrent
۴. گرگانی، ایران، دانشگاه صنعتی شریف که در این مقاله تعداد این‌ها در نظر گرفته شده است.
۵. Hidden Layer
مقایسه نواحی پیشینی مدل‌های ARIMA و VAR

در ادبیات شیبکه عصبی، به جای اصطلاح تخمین ضرایب از اصطلاح پادگیری یا آموزش برای پیدا کردن ارزش وزن‌های شیبکه استفاده می‌شود. چگونگی برقراری ارتباط لایه ورودی و خروجی یک شیبکه از طریق آموزش شیبکه انجام می‌شود، به عبارت دیگر، در جریان پادگیری وزن‌های شیبکه از تغییر و تنظیم می‌شوند. تا در نهایت شیبکه قادر به انجام وظیفه خود در ارتباط با پردازش داده‌های ورودی باشد.

در جریان پادگیری اگر در پاسخ شیبکه، خطایی وجود داشت باشد، وزن‌های شیبکه به طریقی تغییر می‌کند که در مرحله بعد خطا کاهش یابد و این عمل تا جایی که خطای در حداق قبلی فیزیولوژی باشد، ادامه خواهد داشت. رفتار سیستم‌های پادگیری توسط آموزش‌های پادگیر توسط گویندگی‌های به کنترل بینایی می‌شود. به همین خاطر به این گویندگی‌ها، انجام پادگیری می‌گویند و عموماً توسط معادلات تغییر شامل دیرانسیل. این گویندگی‌ها اطلاعات موجود را پردازش می‌کند تا باعث نشان‌گر ارجاعی (هدف پرودوکسی پادگیری) به‌هیچ‌گاه. با این کار نفقات اطلاعات اولیه جریان می‌شود.

مزیات پادگیری شیبکه به درجه کامل بودن اطلاعات بستگی دارد. در حالت کلی در نوع پادگیری وجود دارد که عبارت‌اند از پادگیری تحت نظرات و پادگیری بدون نظرات. در پادگیری با نظرات ارزش‌های متغیر هدف که شیبکه باید براساس ارزش‌های متغیرهای ورودی از طریق محاسبات، آن‌ها دوباره تولید کند، مشخص است. در نتیجه خطای پیش‌بینی برای هر مشاهده را می‌توان به‌وسیله محاسبه اختلاف خروجی شیبکه ارزش‌های متغیرهای هدف اندازه‌گیری کرد و سپس به استفاده از گویندگی‌های مختلف تکرار که مشهورترین آن‌ها گویندگی پوست از طریق است. وزن‌های شیبکه را تعیین کرد (اصطلاحاً شیبکه آموزش داده می‌شود) به گوناگونی که خطای پیش‌بینی داخل نمونه که بسیار مجموع مرحله خطا با تغییر خطای مطلق حداق خود. وقتی که وزن‌ها با هر تغییر می‌کند، اصطلاحاً گفته می‌شود که شیبکه در حال پادگیری است.

مهم‌ترین مزیت شیبکه عصبی، توانایی در پادگیری از داده‌های ورودی است، بنابراین پتانسیل عمومی با محاسبه شیبکه عصبی وجود می‌آید. به عبارت دیگر یک خروجی قابل قبول برای داده‌های ورودی دیده شده قبلاً ایجاد می‌کند. اهمیت این موضوع در پیش‌بینی زیبای است. ارزش دیگر این شیبکه طبیعی غیرخطی بودن آن است. به این ترتیب تعداد زیادی از مسائل

1. Supervised Learning
2. Unsupervised Learning
3. Error Back Propagation
فصلنامه اقتصاد محیط زیست و انرژی سال اول شماره ۴

قابلیت حل پیlda می‌کند. انعطاف‌پذیری و توانایی عمومیت بخشیدن بدون طرح فرضی لازم از مدل از جمله مزایای دیگر آن است. شبکه عصبی پیش‌خور با یک لایه پنهان نتایج فعال‌ساز سیگموئید در لایه پنهان، نتایج فعال‌ساز خطی در لایه خروجی و تعداد نرون‌های کمی در لایه پنهان، قادر است بر تابع را با دقت دلخواه تقیب زنده. به همین دلیل به این نوع شبکه عصبی با

c: تقریب زنده جامع گفته می‌شود.

3-4. معیارهای سنجش قدرت پیش‌بینی

به منظور مقایسه قدرت پیش‌بینی و انتخاب بهترین روش پیش‌بینی، از معیارهای مختلفی از جمله، میانگین مقدار خطای (MSE)، میانگین مقدار خطای نسبی (MAPE)، میانگین مقدار خطای آستفاده شد. این معیارها را می‌توان به صورت روابط زیر نشان داد.

\[
MAE = \frac{1}{n} \sum_{i=1}^{n} |e_i| \\
MSE = \frac{1}{n} \sum_{i=1}^{n} e_i^2 \\
MAPE = \frac{100}{n} \sum_{i=1}^{n} \left| \frac{e_i}{y_i} \right|
\]

در این روابط، \(e_i\) خطای پیش‌بینی است که از تفاوت مقدار پیش‌بینی شده و مقدار واقعی بدست می‌آید. \(y_i\) مقدار واقعی است. از این سه معیار برای سنجش قدرت پیش‌بینی در این مقاله استفاده خواهد شد.

4. نتایج و اطلاعات

در این مطالعه، از داده‌های سری زمانی ماهانه ۲۰۱۰ تا ۲۰۲۰ برای پیش‌بینی ترازهای جهانی نفت اویک استفاده شده است. داده‌های مورد استفاده عبارتند از ترازهای برای نفت اویک، قیمت خود آلای جانشین، تولید جریان، تولید نفت جهانی به ترتیب با:

\(P_g, P_n, D_i\)

1. Kuan and White
2. Universal Approximator
مقایسه تووانایی پیش‌بینی مدل‌های ARIMA, VAR و شیکه‌های...

نشان داده شده است، برای بدست آوردن داده‌ها از سایت‌های اپیک و Economagic.com بین المللی پول (IMF)، بانک جهانی، آژانس اطلاعات انتزاعی (EIA) و استفاده شده است. پس از تعیین متغیرهای گذشته در یک مدل بیانیه و وضعیت ایستایی متفاوت را بررسی می‌کنیم. برای بررسی ایستایی متغیرها در یک مطالعه از آزمون دیکی–فورس تعمیم‌یافته، استفاده شده است. نتایج این بررسی در جدول 1 گزارش شده است.

جدول 1: نتایج آزمون ایستایی

| متغیرها | سطح مقادیر آماره | سطح محاسباتی
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>D_{t}</td>
<td>P_{t}</td>
<td>$Q_{n_{t}}$</td>
</tr>
<tr>
<td>t</td>
<td>t</td>
<td>t</td>
</tr>
</tbody>
</table>

ملاحظه: محاسبات پژوهشگر

جدول 1 نشان می‌دهد از متغیرهای ما سه متغیر اول نا‌مست و تنها متغیر آخر ماناست.

5. تخمین مدل

SVAR

همان‌گونه که گفت شد، یکی از روش‌های مدل‌بندی برای پیش‌بینی در سری‌های زمانی استفاده از VAR است. بر این اساس در این قسمت، نظریه‌ای جهانی برای نفت اپیک در چارچوب یک مدل SVAR شوید. به دنبال هدف مدل به نتایج گرفته شده در این مقاله مدل است که این مدل ترکیب مدل VAR و رگرسیون ساختاری است. در این مدلها

1. International Monetary Fund
2. World Bank
3. Energy Information Administration
4. Structural Vector Autoregressions
پیش‌بینی یک متغیر مثل Y نه تنها به مقادیر قبلی خودش بلکه به مقادیر کنونی و گذشته متغیرهای مثلاً تأثیر گذار بر این متغیر نیز مرتبط است. در مدل‌های VAR متغیرهای تأثیر‌گذار می‌توانند به صورت درون‌زا و یا برون‌زا در مدل لحاظ گردند. بر این اساس در این مطالعه برای پیش‌بینی به جای استفاده شده است. در این مدل تفاوت این نفت اینک تابعی از VAR مدل می‌باشد. در نظر گرفته شده است:

\[D_t = f(P_t, Q_{n,t}, P_g, GDP_t, M_t) \]

(8)

که در آن یکی از تفاوتها جهانی برای نفت ایپک، \(P_t \) قیمت جهانی نفت، \(Q_{n,t} \) تولیدات نفت خیزروپیک، \(P_g \) قیمت گاز (قیمت کالای جانشین)، \(GDP_t \) تولید جهانی هستند و به دلیل اینکه قیمت جهانی نفت در سال 2008 به شدت صعود کرده و دوباره در سال 2009 به روند قیلی خود برگشت، به همین دلیل می‌تواند قدرتی برای سخت‌کردن قیمت جهانی نفت و تأثیر قطعی می‌کند، به این صورت است. که در سال 2008 این متغیر را یکی در نظر گرفته شده و در سال‌های دیگر صفر در نظر می‌گیریم.

5-1. تعیین تعداد وقوع‌های بینه

ما برای تعیین طول وقوع مناسب از معیارهای آزمون‌های نسبت درستنمایی (LR)، آکایپک (AIC)، بیژین شوارتز (HQ) و حنان کوئین (SC) طبق جدول 2 استفاده شده است.

<table>
<thead>
<tr>
<th>آزمون نسب درستنمایی (LR)</th>
<th>آکایپک (AIC)</th>
<th>بیژین شوارتز (SC)</th>
<th>حنان کوئین (HQ)</th>
<th>وقوع</th>
</tr>
</thead>
<tbody>
<tr>
<td>67/49</td>
<td>67/54</td>
<td>67/44</td>
<td>NA</td>
<td>0</td>
</tr>
<tr>
<td>67/54</td>
<td>67/34</td>
<td>67/34</td>
<td>75/44</td>
<td>1</td>
</tr>
<tr>
<td>67/74</td>
<td>67/17</td>
<td>67/45</td>
<td>33/40</td>
<td>2</td>
</tr>
<tr>
<td>67/10</td>
<td>67/80</td>
<td>67/37</td>
<td>50/33</td>
<td>3</td>
</tr>
</tbody>
</table>

براساس جدول 2 معیارهای بیژین شوارتز و حنان کوئین نشان دهنده وجود یک وقوع در گروه است. بر این اساس، مدل VAR به صورت زیر تخمین زده شده است.
çosه توافقات مدل‌های ARIMA، VAR و شبکه‌های...

\[D_t = \frac{1}{8} D_{t-1} - \frac{3}{4} P_{t-1} + M_t + \frac{1}{2}\,\text{تعداد GDP}_t + \frac{1}{2}\,\text{تعداد PPI}_t + \frac{1}{5}\,Q_n_t \]
\[R - \text{Squared} = 0.958 \]

5-1-2 آزمون مربوط به همبستگی
در اینجا هدف از برآورد مدل‌های ARIMA، VAR، تعیین تعداد روابط بلندمدت بین متغیرهای اقتصادی است. از آنجا که تعداد متغیرهای متغیر است، امکان وجود چهار رابطه بلندمدت بین آن‌ها وجود دارد. برای آزمون این مسئله طبق روش جوهانسنز از آماره اثر و حداقل مقدار ویژه استفاده شده که نتایج آن در جدول 3 آثاره است. همانطور که در این جدول دیده می‌شود، هر دو آماره اثر و حداقل مقدار ویژه وجود حداکثر دو رابطه بلندمدت را در سطح 0.95 درصد اطمینان بین متغیرهای اقتصادی تایید می‌کند.

جدول 3: نتایج آزمون تک‌تایی مربوط به همبستگی بین متغیرهای تهیه‌نامه نفت اپک

<table>
<thead>
<tr>
<th>آماره اثر</th>
<th>حداقل مقدار ویژه</th>
<th>مقدار بحرانی (سطح 0.05)</th>
<th>آماره اثر</th>
<th>لحاظ</th>
<th>رفر</th>
<th>R</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.1</td>
<td>0.26</td>
<td>0.1</td>
<td>0.3</td>
<td>0.24</td>
<td>0.2</td>
<td>R > 0.5</td>
</tr>
<tr>
<td>0.2</td>
<td>0.47</td>
<td>0.2</td>
<td>0.3</td>
<td>0.32</td>
<td>0.2</td>
<td>R = 0.5</td>
</tr>
<tr>
<td>0.3</td>
<td>0.68</td>
<td>0.3</td>
<td>0.3</td>
<td>0.42</td>
<td>0.3</td>
<td>R > 0.5</td>
</tr>
<tr>
<td>0.4</td>
<td>0.80</td>
<td>0.4</td>
<td>0.3</td>
<td>0.52</td>
<td>0.4</td>
<td>R = 0.5</td>
</tr>
<tr>
<td>0.5</td>
<td>1.00</td>
<td>0.5</td>
<td>0.3</td>
<td>0.63</td>
<td>0.5</td>
<td>R > 0.5</td>
</tr>
<tr>
<td>0.6</td>
<td>1.20</td>
<td>0.6</td>
<td>0.3</td>
<td>0.73</td>
<td>0.6</td>
<td>R = 0.5</td>
</tr>
<tr>
<td>0.7</td>
<td>1.40</td>
<td>0.7</td>
<td>0.3</td>
<td>0.84</td>
<td>0.7</td>
<td>R > 0.5</td>
</tr>
<tr>
<td>0.8</td>
<td>1.60</td>
<td>0.8</td>
<td>0.3</td>
<td>0.95</td>
<td>0.8</td>
<td>R = 0.5</td>
</tr>
</tbody>
</table>

توجه به نتایج جدول 3 که براساس آن هر دو آماره اثر و حداقل مقدار ویژه وجود حداکثر دو رابطه بلندمدت بین متغیرهای تهیه‌نامه نفت اپک را تایید می‌کند که ما یک رابطه بلندمدت را تحت عنوان مدل جوهانسنز برآورد کرده‌ایم.
فصل ششم اقتصاد محیط زیست و انرژی سال اول شماره ۴

۱-۳-۱. پرآورد مدل جوهانس

این مدل در واقع روابط بین داده‌ها را به ما نشان می‌دهد و ما را در سیاست‌گذاری‌ها کمک می‌کند. در ضمن طبق جدول ۴، این مدل دارای دو رابطه بین داده‌ها است که در اینجا یکی از دو رابطه بین شده است. در ضمن تمام متغیرها در این رابطه مستقل در نظر گرفته می‌شوند.

\[D = a_1 + a_2 GDP + a_3 P + a_4 Qn + a_5 @ TREND \]

(۱۰)

جدول ۴. نتایج پرآورد الگوی جوهانس مربوط به تغییرات نفت اوپک

<table>
<thead>
<tr>
<th>ضرایب</th>
<th>مقدار عددی</th>
<th>آماره ۴</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>۱۹۷۶/۰۲</td>
</tr>
<tr>
<td></td>
<td></td>
<td>۱۹۷۷/۱۲</td>
</tr>
<tr>
<td></td>
<td></td>
<td>۱۹۷۸/۰۴</td>
</tr>
<tr>
<td></td>
<td></td>
<td>۱۹۷۹/۰۲</td>
</tr>
<tr>
<td></td>
<td></td>
<td>۱۹۷۹/۱۰</td>
</tr>
<tr>
<td></td>
<td></td>
<td>۱۹۸۰/۰۲</td>
</tr>
<tr>
<td></td>
<td></td>
<td>۱۹۸۱/۰۴</td>
</tr>
<tr>
<td></td>
<td></td>
<td>۱۹۸۲/۰۲</td>
</tr>
<tr>
<td></td>
<td></td>
<td>۱۹۸۲/۱۰</td>
</tr>
<tr>
<td></td>
<td></td>
<td>۱۹۸۳/۰۲</td>
</tr>
<tr>
<td></td>
<td></td>
<td>۱۹۸۳/۱۰</td>
</tr>
<tr>
<td></td>
<td></td>
<td>۱۹۸۴/۰۲</td>
</tr>
<tr>
<td></td>
<td></td>
<td>۱۹۸۴/۱۰</td>
</tr>
<tr>
<td></td>
<td></td>
<td>۱۹۸۵/۰۲</td>
</tr>
<tr>
<td></td>
<td></td>
<td>۱۹۸۵/۱۰</td>
</tr>
<tr>
<td></td>
<td></td>
<td>۱۹۸۶/۰۴</td>
</tr>
<tr>
<td></td>
<td></td>
<td>۱۹۸۶/۱۲</td>
</tr>
<tr>
<td></td>
<td></td>
<td>۱۹۸۷/۰۴</td>
</tr>
<tr>
<td></td>
<td></td>
<td>۱۹۸۷/۱۲</td>
</tr>
<tr>
<td></td>
<td></td>
<td>۱۹۸۸/۰۴</td>
</tr>
<tr>
<td></td>
<td></td>
<td>۱۹۸۸/۱۲</td>
</tr>
<tr>
<td></td>
<td></td>
<td>۱۹۸۹/۰۴</td>
</tr>
<tr>
<td></td>
<td></td>
<td>۱۹۸۹/۱۲</td>
</tr>
<tr>
<td></td>
<td></td>
<td>۱۹۹۰/۰۴</td>
</tr>
<tr>
<td></td>
<td></td>
<td>۱۹۹۰/۱۲</td>
</tr>
<tr>
<td></td>
<td></td>
<td>۱۹۹۱/۰۴</td>
</tr>
<tr>
<td></td>
<td></td>
<td>۱۹۹۱/۱۲</td>
</tr>
<tr>
<td></td>
<td></td>
<td>۱۹۹۲/۰۴</td>
</tr>
<tr>
<td></td>
<td></td>
<td>۱۹۹۲/۱۲</td>
</tr>
<tr>
<td></td>
<td></td>
<td>۱۹۹۳/۰۴</td>
</tr>
<tr>
<td></td>
<td></td>
<td>۱۹۹۳/۱۲</td>
</tr>
<tr>
<td></td>
<td></td>
<td>۱۹۹۴/۰۴</td>
</tr>
<tr>
<td></td>
<td></td>
<td>۱۹۹۴/۱۲</td>
</tr>
<tr>
<td></td>
<td></td>
<td>۱۹۹۵/۰۴</td>
</tr>
<tr>
<td></td>
<td></td>
<td>۱۹۹۵/۱۲</td>
</tr>
<tr>
<td></td>
<td></td>
<td>۱۹۹۶/۰۴</td>
</tr>
<tr>
<td></td>
<td></td>
<td>۱۹۹۶/۱۲</td>
</tr>
<tr>
<td></td>
<td></td>
<td>۱۹۹۷/۰۴</td>
</tr>
<tr>
<td></td>
<td></td>
<td>۱۹۹۷/۱۲</td>
</tr>
<tr>
<td></td>
<td></td>
<td>۱۹۹۸/۰۴</td>
</tr>
<tr>
<td></td>
<td></td>
<td>۱۹۹۸/۱۲</td>
</tr>
<tr>
<td></td>
<td></td>
<td>۱۹۹۹/۰۴</td>
</tr>
<tr>
<td></td>
<td></td>
<td>۱۹۹۹/۱۲</td>
</tr>
<tr>
<td></td>
<td></td>
<td>۲۰۰۰/۰۴</td>
</tr>
<tr>
<td></td>
<td></td>
<td>۲۰۰۰/۱۲</td>
</tr>
</tbody>
</table>

متأسفانه محاسبات پژوهشگر

نتایج نشان می‌دهند که در پرآورد الگوی جوهانس داده‌ها موردنظر به تغییرات نفت اوپک مربوط می‌گردد.

۱-۳-۲. پرآورد مدل ARIMA

پرآورد الگوی جوهانس در دانش جهانی مقاله اصلی است که اولین مرحله شناسایی الگو و ARIMA با استفاده از نمودارهای خودهمبستگی (ACF) و خودهمبستگی جزئی (PACF) صورت می‌گیرد. پرآورد اولیه لازم برای الگو ARIMA شرط نامناسبی می‌باشد بررسی نمودار می‌شود. در روش ARIMA، الگوی پرآورد
مقایسه توالی‌های پیش‌بینی مدل‌های ARIMA, VAR

شده است. معمول‌اً در این مرحله، برآوردهایی با درجات بالاتر انجام شده و بهترین الگو از آنها با توجه به معیارهای آکاکیک و شوارتر و همچنین نفوذ سفید بوذن جملات پسماند انتخاب می‌شود. برای انتخاب الگوی مناسب از معیار آکاکیک و شوارتر استفاده شده که بر این اساس الگویی $ARIMA(1,1,1)$ انتخاب شده است. اما از آنگا که هفده اصلی برآوردها این الگوها، پیش بینی است، میزان خطای پیش‌بینی از اهمیت بیشتری در انتخاب الگو برخوردار است که همان الگویی که با معیار آکاکیک انتخاب شده‌بینی $ARIMA(1,1,1)$ کمترین خطای پیش‌بینی را دارد. نتایج تفصیلی حاصل از برآورد $ARIMA(1,1,1)$ در جدول ۵ آورده شده است.

<table>
<thead>
<tr>
<th>نام متغیر</th>
<th>ضریب</th>
<th>آزمون t</th>
</tr>
</thead>
<tbody>
<tr>
<td>AR(1)</td>
<td>0.89</td>
<td>5/09</td>
</tr>
<tr>
<td>AR(2)</td>
<td>-0.78</td>
<td>-1/1</td>
</tr>
<tr>
<td>AR(3)</td>
<td>0.88</td>
<td>-0/87</td>
</tr>
<tr>
<td>MA(1)</td>
<td>-0.5</td>
<td>-1/4</td>
</tr>
</tbody>
</table>

جدول ۵. نتایج حاصل از برآورد مدل ARIMA برای دوره ۲۰۰۱-۲۰۱۰

در جدول ۵، جمله خودگرایی مرتبه اول $AR(1)$ و جمله سوم $AR(3)$ به لحاظ آماری بی‌معنا است. بقیه متغیرها در سطح خطای ۰/۱۰ از نظر آماری معنی‌دار هستند. بنابراین مدل اصیل ما به شکل زیر خواهد شد.

$$ D_t = D_{t-1} + \beta D_{t-1} - D_{t-2} - \alpha_1 (\epsilon_{t-1} - \epsilon_{t-2}) $$

(11)

۵.۳. برآورد مدل شیب‌های عصبی

کار ساختن شیب‌های عصبی به طور کلی، سیستم طولانی‌تر از طریق یک مدل رگرسیون خطی به منظور پیش‌بینی است. طراحی شیب‌های عصبی علاوه بر انتخاب مجموعه‌ای از متغیرهای ورودی، با پیدایش ساختن شیب‌های به‌هرين پیش‌بینی شناسایی کند. تغییر ساختن یک شیب‌های حدود یک تغییر
163
فصل‌های ورودی و خروجی و انداده نمونه، می‌تواند پیش‌بینی‌های تولید شده را به طور اساسی تغییر دهد. برای انتخاب بهترین ساختمان سازندگی شیبهک باید با آزمون‌های خطا یک تیم;
همانند دیگر تکنیک‌های تخمین غیر خطی، در اینجا نیز نیازی نیست کاملاً مطمئن شده که به حداکثر مطلق دست یابیم. نتایج روش تخمین به‌ارزش‌های اولیه وزن‌ها حساس است. بنابراین برای یک مجموعه مشخص از ورودی‌ها و یک ساختمان معین شیبهک، روش تخمین توقف زود هنگام باعث صدای یا هزازی بار با استفاده از ارزش‌های اولیه مختلف وزن‌ها تکرار شود. وزن‌های تخمین زده شده که به کمترین میانگین مربعات خطا (MSE) در مجموعه اعتبار منجر می‌شوند، به عنوان بهترین نتیجه ممکن شیبهک برای مجموعه ورودی‌های مشخص که در آن ساختمان شیبهک معین مورد استفاده قرار گرفته‌اند، در نظر گرفته می‌شوند.
برای ارزیابی عملکرد دیگر شیبهک‌ها، باید با تغییر تعداد لایه‌ها و واحدهای پنهان و اضافه‌ی به حذف کردن ارتباطات میان واحدهای لایه‌های مختلف شیبهک، ساختمان شیبهک را اصلاح کرد.
تمامی مراحل روش تخمین، به امید یافتن حداکثر مطلق دوباره، صدای یا هزازی بار با ساختمان جدید (با MSE متفاوت ارزش‌های اولیه وزن‌ها) تکرار شود. سپس نتایج تخمین شیبهک‌ها با مقایسه حاصل شده در هر ساختمان ارزیابی شود. بعد از ارزیابی شیبهک‌های مختلف شیبهک‌های دارای کمترین انتخاب خواهد شد.

مراقباتی همچنین توسط شیبهک‌های طراحی شده به صورت زیر است:

1. سری زمانی به کار برده شده داده‌های ماه‌های 2001 تا 2010 ماه 10 است که این داده‌ها Matlab می‌باشد.
2. سری زمانی به کار برده شده داده‌های ماه‌های 2001 تا 2010 ماه 10 است که این داده‌ها Matlab می‌باشد.
3. بهترین نسبت آموزش به آزمون از میان نسبت آموزش به آزمون‌های 40-0، 50-0 و 60-0، درصد با نرخ یادگیری 40 تعیین می‌شود.
4. بهترین نسبت آموزش به آزمون از میان نسبت آموزش به آزمون‌های 40-0، 50-0 و 60-0، درصد با نرخ یادگیری 40 تعیین می‌شود.
5. سری زمانی مربوط به پیش‌بینی می‌گردید.
مقایسه توانایی پیش‌بینی مدل‌های ARIMA، VAR و شبکه‌های…

در ضمن ریشه مجموع مربعات خطای هر نوع پیش‌بینی به صورت زیر محاسبه می‌گردد:

\[
RMSE = \sqrt{\frac{1}{n} \sum_{i=1}^{n} (D_i - DF_i)^2}
\]

که در آن \(D_i \) مقدار پیش‌بینی دقیقی در دوره \(D \), \(DF_i \) مقدار دقیقی واقعی دقیقی و نفت اوبک در دوره \(D \) است. \(n \) نیز تعداد تعداد دقایق پیش‌بینی های انجام گرفته در طول مدت نشان داده شده است.

1. مقایسه قدرت پیش‌بینی الگوها سبک‌های با یک‌ویک

در بخش قبل مقایسه‌ی جهانی برای نفت اوبک به سه روش ARIMA و VAR و شبکه عصبی مورد بررسی قرار گرفت. در این بخش هدف آن است که برآوردهای سبک‌گاه را با یک‌ویک مقایسه‌ی نموده و دراییم که گرافیکی از آن‌ها دارای قدرت پیش‌بینی بالاتر است. برای انجام این کار از سه روش مجموعه مربعات خطای (MSE), میانگین قدر مطلق خطای (MAE) (و میانگین توصیفی (MSE) استفاده شده است. بر این اساس دوره پیش‌بینی دو در انتهای ۲۰۱۰۰-۲۰۱۱۰ در نظر گرفته شده است. نتایج حاصل از تخمین هر روش و مقدار واقعی مقادیر نفت اوبک در جدول ۶ ارائه شده است.

جدول ۶: مقدار واقعی و خطای الگوها سال ۲۰۰۰ (میلیون بشکه در روز)

<table>
<thead>
<tr>
<th>سال</th>
<th>مقدار واقعی</th>
<th>مقدار پیش‌بینی ARIMA</th>
<th>مقدار پیش‌بینی VAR</th>
<th>مقدار پیش‌بینی شبکه عصبی</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>۲۰۰۰</td>
<td>۳۴۷/۳۴۱۹</td>
<td>۳۷۰/۲۰۵۵</td>
<td>۳۳۷/۳۴۸۴</td>
<td>۳۱۴/۳۵۸۸</td>
</tr>
<tr>
<td>۲۰۰۱</td>
<td>۳۴۷/۳۴۱۹</td>
<td>۳۷۰/۲۰۵۵</td>
<td>۳۳۷/۳۴۸۴</td>
<td>۳۱۴/۳۵۸۸</td>
</tr>
<tr>
<td>۲۰۰۲</td>
<td>۳۴۷/۳۴۱۹</td>
<td>۳۷۰/۲۰۵۵</td>
<td>۳۳۷/۳۴۸۴</td>
<td>۳۱۴/۳۵۸۸</td>
</tr>
</tbody>
</table>

۲۰۰۳	۳۴۷/۳۴۱۹	۳۷۰/۲۰۵۵	۳۳۷/۳۴۸۴	۳۱۴/۳۵۸۸
۲۰۰۴	۳۴۷/۳۴۱۹	۳۷۰/۲۰۵۵	۳۳۷/۳۴۸۴	۳۱۴/۳۵۸۸
۲۰۰۵	۳۴۷/۳۴۱۹	۳۷۰/۲۰۵۵	۳۳۷/۳۴۸۴	۳۱۴/۳۵۸۸
۲۰۰۶	۳۴۷/۳۴۱۹	۳۷۰/۲۰۵۵	۳۳۷/۳۴۸۴	۳۱۴/۳۵۸۸
۲۰۰۷	۳۴۷/۳۴۱۹	۳۷۰/۲۰۵۵	۳۳۷/۳۴۸۴	۳۱۴/۳۵۸۸
۲۰۰۸	۳۴۷/۳۴۱۹	۳۷۰/۲۰۵۵	۳۳۷/۳۴۸۴	۳۱۴/۳۵۸۸
۲۰۰۹	۳۴۷/۳۴۱۹	۳۷۰/۲۰۵۵	۳۳۷/۳۴۸۴	۳۱۴/۳۵۸۸
۲۰۱۰	۳۴۷/۳۴۱۹	۳۷۰/۲۰۵۵	۳۳۷/۳۴۸۴	۳۱۴/۳۵۸۸
۲۰۱۱	۳۴۷/۳۴۱۹	۳۷۰/۲۰۵۵	۳۳۷/۳۴۸۴	۳۱۴/۳۵۸۸

پژوهشکده علوم و فناوری نفت
حال به این پردازش می‌پردازیم که کدام یک از این سه روش پیش‌بینی خطای کمتری را دارد؟

برای پی بردن به پاسخ پردازش بالا، ما داده‌های واقعی 10 ماه آخر سال 2010 را با مقدار پیش‌بینی شده با این سه روش مقایسه می‌کنیم و هرکدام که خطای کمتری داشت را به عنوان مورد در نظر گیریم. در ضمن هر چه دوره پیش‌بینی طولانی‌تر می‌شود، مقدار خطای پیش‌بینی نیز بیشتر می‌شود. چرا که پیش‌بینی در هر دوره، مجموع خطای پیش‌بینی ها گذشته را نیز در خود دارد.

برای تعیین میزان کمی خطاهای پیش‌بینی از آماره‌های مجموع مربعات خطای (MSE)، میانگین قدرمطلق خطای (MAE) و میزان میانگین درصد قدرمطلق خطای (MAPE) استفاده شده که نتایج آن در جدول 7 آمده است.

جدول 7 مقایسه نوایی الگوهای مختلف در پیش‌بینی تغییرات نفت اوکنک

<table>
<thead>
<tr>
<th>نوع الگو</th>
<th>میانگین درصد قدرمطلق خطای (MAPE)</th>
<th>مجموع مربعات خطای (MSE)</th>
<th>میانگین قدرمطلق خطای (MAE)</th>
</tr>
</thead>
<tbody>
<tr>
<td>VAR</td>
<td>5/7</td>
<td>0/190</td>
<td>0/675</td>
</tr>
<tr>
<td>ARIMA</td>
<td>10/20</td>
<td>0/352</td>
<td>0/194</td>
</tr>
<tr>
<td>ANN</td>
<td>17/2</td>
<td>0/24</td>
<td>0/117</td>
</tr>
</tbody>
</table>

مصدر: محاسبات پژوهشگر

ارزیابی قدرت پیش‌بینی الگوی VAR و مقایسه آن با الگوهای ARIMA و شبکه عصبی تاکی 7 از نمایندگی در ساخت پیش‌بینی این الگو نسبت به سایر الگوهای کامپیوتری خطای سیاستی چه جهانی نفت اوکنک دارد.

مشاهده می‌شود الگوی VAR کمترین خطا در پیش‌بینی تغییرات جهانی نفت اوکنک دارد.
 مقایسه تووانایی پیشینی مدل‌های ARIMA، VAR و شبکه‌های...

۷. پیش‌بینی آنتی نفت افزایشی

معیار پیش‌بینی را پیش‌بینی را افزایشی VAR قرار داده و ماه‌های سال ۲۰۱۲ را با این روش پیش‌بینی کرده و نتایج را در جدول ۸ آورده که نشان دهنده این است که در سال ۲۰۱۲ رشد نفت افزایشی برای نفت افزایشی وجود دارد.

جدول ۸. پیش‌بینی نفت افزایشی برای نفت افزایشی به روش VAR برای سال ۲۰۱۲

(میلیون بشکه در روز)

<table>
<thead>
<tr>
<th>ماه</th>
<th>مقدار پیش‌بینی</th>
</tr>
</thead>
<tbody>
<tr>
<td>ژانویه ۱۳۸۹</td>
<td>۳۴/۸۹۳۴</td>
</tr>
<tr>
<td>فوریه ۱۳۸۹</td>
<td>۳۳/۸۹۵۲</td>
</tr>
<tr>
<td>آگوست ۱۳۸۹</td>
<td>۳۴/۸۹۱۹</td>
</tr>
<tr>
<td>سپتامبر ۱۳۸۹</td>
<td>۳۳/۸۹۱۸</td>
</tr>
<tr>
<td>اکتبر ۱۳۸۹</td>
<td>۳۳/۸۹۱۸</td>
</tr>
<tr>
<td>نوامبر ۱۳۸۹</td>
<td>۳۴/۸۹۲۱</td>
</tr>
<tr>
<td>دسامبر ۱۳۸۹</td>
<td>۳۳/۸۹۸۰</td>
</tr>
</tbody>
</table>

مصدر: محاسبات پژوهشگر

نمودار ۳. روند پیش‌بینی نفت افزایشی برای نفت افزایشی برای دوره زمانی ۲۰۱۱-۲۰۱۵

مصدر: محاسبات پژوهشگر

همانطور که نمودار ۳ نشان می‌دهد، نفت افزایشی برای نفت افزایشی روند افزایشی دارد اما از سال ۲۰۱۴ سرعت افزایشی این روند کاهش می‌یابد. این روند به طوری که در ماه‌های سال ۲۰۱۵ اختلاف نفت افزایشی برای نفت افزایشی که عضو افزایشی به کمترین حد خود می‌رسد و این موضوع تأیید کننده نیاز برای کشورها به افزایش درآمده جهت کنترل نفت افزایشی است. همچنین به سهم صادرات نفت افزایشی سهم در صادرات آن کشورها دارد.
8. جمع بندي و نتیجه‌گیری
از آنجاچه که سازمان اویک نقش مهمی را در طرف عرضه جهانی نفت بر عهده دارد و میزان تولید کل سازمان و نیز سهمیه تعیین شده برای هر کشور از اعضای شورای اجرایی براساس میزان پیش‌بینی‌های دقیق در ارتباط با میزان تفاوت برای نفت این سازمان امری لازم و جویی است. بر این اساس در این مطالعه به منظور پیش‌بینی تفاوت‌های جهانی برای نفت ارائه یک مدل با توجه به مدل پیش‌بینی‌گری (ANN) و شیوه عصبی (ARIMA) که در مقاله مدل VAR و مدل میانگین مربعات خطا و میانگین مدل قدر مطلق خطا بهترین مدل انتخاب گردید، نتایج بدست آمده بیانگر یک تفاوت بین نفت این سازمان در میزان تفاوت در میزان مصرف نفت و سازمان در تعداد سازمان‌های پیش‌بینی‌گری اعضا (ANN) ARIMA و شیوه عصبی (ARIMA) نشان می‌دهد. در مقاله مدل VAR و مدل میانگین مربعات خطا، میانگین میانگین مربعات خطا و 5 درصد میانگین درصد قدر مطلق خطا، این روش به عنوان گزینه انتخاب گردید و برای تمامی ماه‌های سال 2012 پیش‌بینی انجام گرفت و روند تفاوت‌های جهانی برای نفت اریک تا سال 2015 برآورد گردید. براساس تخمین‌های صورت گرفته، پیش‌بینی می‌شود که تفاوت برای نفت اریک تا سال 2015 صعودی باشد ولی سروت افزایش بودن آن از سال 2014 کندتر خواهد بود. به همین دلیل، نتایج بیانگر یک است که در بلندمدت رابطه منفی بین تفاوت جهانی نفت و تفاوت برای نفت اریک وجود دارد و همچنین زمانی که تولید جهانی افزایش می‌یابد، باعث می‌شود تفاوت‌های جهانی نفت و در نتیجه تفاوت‌های برای نفت اریک نیز افزایش یابد.

منابع
الف- فارسی
ابراهیمی، حمید، و همکاران (1389) "پیش‌بینی قیمت گاز‌نفت خلیج فارس مبتنی بر تحلیل تکنیکی و شبکه‌های عصبی، فصلنامه مطالعات اقتصادی ایرانی، مسئولیت مطالعات بین‌المللی ارزی، شماره 24.
آقایی، کیومرث و هرهورز پورمیری (1385) "پیش‌بینی آینده قیمت فولای با استفاده از شبکه عصبی مصنوعی و مقایسه نتایج با روش ARIMA، فصلنامه برسی‌های اقتصادی، دوره 3 شماره 1.

مقایسه توافقاتی پیش‌بینی مدل‌های ARIMA، VAR و شیک‌هایی ...

بگزبان، آلبرت و ابراهیم نصر‌آبادی (۱۳۸۵)، "پیش‌بینی مصرف فراورده‌های نفتی: معرفی مدل‌های مصرف و توافق‌های میان‌فقرات، اندازه‌گیری، و دانشگاه صنعتی شریف، صص. ۴۷-۴۸.

خاموش‌هور، بهنام (۱۳۸۹)، "آموزش مدیری با برنامه‌ریزی از شیک‌های عصبی جهت پیش‌بینی شاخه بورس اوراق بهادار تهران، چهارمین کنفرانس دانشگاه تهران، شماره ۲۴.

مشیری، سید و فائزه فروتن (۱۳۸۵)، "آموزش آمار و پیش‌بینی قیمت‌های آنلاین نفت خام، فصلنامه پژوهش‌های اقتصادی ایران، شماره ۲۱، صص. ۴۷-۹۱.

مهرآرا، محسن و همکاران (۱۳۸۹)، "پیش‌بینی‌های بین‌المللی قیمت نفت با استفاده از شبکه عصبی GMDH، فصلنامه مطالعات اقتصادی، مؤسسه مطالعات بین‌المللی اقتصادی، شماره ۲۴.

ب- انگلیسی

