یک مدل اجماع در تصمیم‌گیری گروهی: رویکرد فازی

صدیقه خورشید
کارولوس
عزیزاله معماریانی

چکیده
موفقیت سازمان‌ها به اتخاذ سریع تصمیم‌های صحیح و اجرای سریع این تصمیم‌ها
بستگی دارد. چنین تصمیم‌هایی در سازمان‌ها توسط گروهی از افراد اتخاذ می‌شود.
محیط تصمیم‌گیری گروهی توسط گروهی از افراد شکل می‌گیرد که به منظور انتخاب
بهترین راهکار قضاوت‌هاییان نسبت به مجموعه‌ای از معیارها و اهداف اظهار می‌دارند.
در محیط تصمیم‌گیری گروهی، روش‌های بسیاری برای آشکار کردن نگرش و قضاوت
خبرگان و مشتریان کننده‌ان در فرآیند تصمیم‌گیری گروهی و حصول اجماع به کار می‌رود.

* - دکتری مدیریت سیستم
** - عضو هیئت علمی دانشگاه تهران
*** - عضو هیئت علمی دانشگاه تربیت مدرس
مقدمه

انسان در فعالیت‌های روزانه‌اش به طور مستمر تصمیم‌هایی را اتخاذ می‌کند. بسیاری از این تصمیم‌ها از طریق فرآیندهای تصمیم‌گیری در دنیای واقعی در محیطی اتخاذ می‌شود که در آن محیط، اهداف، محدودیت‌ها و پیامدها به همکاری در مکانیکیتعنیت است. به خصوص زیادتر از این تصمیم‌ها در سازمان‌ها توسط گروه‌های افراد اتخاذ می‌شود. در این تصحیمگیری گروهی به عنوان موقعیتی توصیف می‌شود که در آن (1):
الف- دو یا چندنبیت از مشارکت داده‌کننده اولویت‌های (سیستم‌های ارنشی) متفاوتی دارند. اما به اطلاعات دسترسی یکسان دارند. هر کدام از اعضای گروه با درک تک‌تک، تجزیه کرده، انگیزه و شخصیت منحصر به فردشان توصیف می‌شوند.
b- وجود یک مسئله مشترک را توصیف می‌دهند.
چ- برای رسیدن به یک تصمیم جمعی، مشترک کوشش می‌کنند.
در جاگاه گروهی به علت اختلاف عقیده میان افراد، روش‌های گوناگونی برای آشتی دادن نگرش‌ها و قضاوت مشارکت‌کنندگان بکار برده‌اند که می‌توان به موارد ذیل اشاره کرد (2):

1- اجتماع: اجماع بر حصول اتفاق نظر واحد در میان مشارکت‌کنندگان در قضاوت‌ها

2- رای گیری و توافق و مصالحه: زمانی که اجماع حاصل نشد گروه به رای‌گیری یا توافق بر روی قضاوت‌ها بسنده می‌کند.

3- میانگین پیش‌بینی قضاوت‌های افراد: در صورتی که اجماع حاصل نشد و گروه تماشای به رای‌گیری یا توافق و مصالحه نداشت باشد می‌توان مناسب‌ترین میانگین هندسی قضاوت‌های افراد را محاسبه کرد.

4- مدل‌های اندازه‌گیری برای کرایه‌گران متمایز: اگر گروه به طور معنی‌داری دارای اهداف متفاوتی است و نمی‌تواند آزموده بحث کروهی تصمیم‌گیری اتخاذ کند، پس هر عضو گروه یا براساس مدل‌های متمایز یا بازی‌گران متمایز قضاوت‌های خود را ارایه می‌دهد. اگر براساس
یک مدل اجماع در تصمیم‌گیری گروهی...

بازیگرانت متمایز باشند، هر عضو گروه قضاوت‌هایش را در یک مدل متمایز وارد خواهد کرد که پس از آن میانگین آنها محاسبه می‌شود و لیگ بر اساس مدل‌های متمایز باشند، نوعی مدل ترکیبی برای بازیگران تنظیم می‌شود که می‌توان عوامل را بر حسب سهم‌شان در مدل ترکیبی ارزیابی کرد.

تاکنون برای حصول اجماع روش‌های متفاوتی مانند روش تکنیک گروهی اسمی و روش AHP و روش کرکد رای گیری (۲) مورد توجه بوده است. کننون و همکارش یک ابزار جمع اجماع فازی ارائه دادند که ایده اصلی شان یک درجه اجماع بین خبرگان در محاسبه ارزش نهایی را در بر می‌گیرد که تقویت نرخ پذیرش یا رد با وجود توافق خبرگان در ارزیابی‌های انسان را مورد توجه قرار می‌دهد (۴).

تئوری مجموعه فازی، انعطاف‌پذیری مورد نیاز برای نشان دادن عدم اطمینان حاصل از فقدان دانش را فراهم می‌کند (۵). با اینکه تئوری مجموعه فازی توسط لطفی‌زاده، پژوهشگران بسیاری این تئوری را در محیط تصمیم‌گیری گروهی بکار برده و به ترتیب یادانه در محیط تصمیم‌گیری گروهی یا تئوری انتخاب اجتماعی دست یافته‌اند. آنها تأیید کرده‌اند که مجموعه فازی یک نوعی چهارچوب منطقی برای تصمیم‌گیری گروهی فراهم می‌کند (۶). تئوری مجموعه فازی نوعی چهارچوب منطقی فراهم می‌کند که توافق‌های انسان‌ها را برای بررسی کمیتی فضاها فازی انسان و واردکردن و تلطف نیت و سازگاری انسان در درون مدل‌های تصمیم‌گیری شیب‌سازی می‌کند.

هیچ و همکارانش نوعی مدل اجماع تحت رجحان‌های زبانی و کمی سازان زبانی فازی در محیط تصمیم‌گیری گروهی ارایه دادند (۷). همچنین هیرا و یک همکارانش یک مدل اجماع برای تصمیم‌گیری چند نفره با ساختارهای رجحانی متقابل ارایه دادند که در محل‌شناس یک راهکن جمعی موقتی محاسبه و برای حل تکنیک افراز مقایسه شده است و سپس یک شاخص اجماع محاسبه شده که برای راهنمایی فرآیند اجماع و تصمیم‌گیری است. ابتدا راهحل نهایی بکار می‌برند. همچنین یک شاخص نزدیکی و مجاورت تعیین می‌شود که این شاخص به شکلی اشاره‌کننده می‌کند که از میزان نزدیکی شان با راهحل جمعی آگاهی پایند که این شاخص برای راهنمایی جلسه بحث گروهی بکار می‌رود (۸). پیشرون با کاربرد AHP در تصمیم‌گیری گروهی مطرح می‌کند که یک بردار رجحان اجماعی باید یک
اجماعی منعکس کننده از تعاملات انسان‌ها منج گردید که با اجتماع ریاضی‌یا اجتماع جبری متفاوت است. با این اساس برای ابتدا سطح اجتماع گروهی سه شاخص – درجه توانا قوی گروهی و درجه عدم توانایی قوی گروهی و بستگی به حالت توافقانی بین مرز زوج از اعضای گروه طرح نمودند و برجای شناسایی مواقفین و مخالفین در ارزش آستانهای معنی‌دار برای توافق قوی و برای عدم توافق قوی طرح می‌کنند و بیان می‌کنند که این شاخص‌ها اجتماع با شاخص‌های اجتماع نرم‌سیستمی‌های فازی شباهت دارد (۹).

بردونو و همکارانش یک مدل سازی از اجتماع در تصمیم‌گیری گروهی بررسی اپراتورهای OWA یا مدل‌های نوعی از پایداری رفتار تصمیم‌اتсанسی را بسیار طبیعی متعکس می‌سازد و ارزیابی از بیان‌ها توسط خبرگان از طریق قضاوت‌های عملکردی زبانی با ملاحظه‌ی مجموعه‌ای از میزان‌ها بین شده است و یک تعریف سازگاری انسانی از اجتماع و یک روش برای محاسبه‌اش ارائه می‌شود. روزیکرد آنها اطلاعاتی را عرضه می‌کنند که در زبان بیان شده است و می‌توان از آنها خواسته که در قضاوت‌های مشابه به منظور افزایش درجه اجتماع تجربی نظر کنند (۱۰).

در تصمیم‌گیری گروهی مسئله‌ی حصول اجتماع بر چگونگی حصول حداقل درجه اجتماع در میان گروهی از خبرگان بر مجموعه‌ای از میزان‌ها شامل می‌کند. مسئله‌ی حصول اجتماع در طریق ایجاد یک فرآیند اجتماع گروهی بر روی طرح‌های تصمیم متفاوت تا حصول حداقل درجه اجتماع درباره مجموعه‌ی میزان‌ها حل می‌گردد (۱۱). فرآیند حصول اجتماع ضرورت تمام‌افزایش تصمیم‌گیری گروهی به شمار می‌آید ببینید علت که حصول یک اجتماع کلی درباره میزان‌ها انتخاب شده یک هدف مطلوب است. در مفهوم سنتی اکثریت به عنوان یک حد آستانه‌ای می‌باشد افراد تعریف شده است. در دیدگاه کلاسیک، اجتماع به عنوان توانایی کامل و اتفاق نظر واحد و کامل تمام خبرگان بر روی تمام میزان‌ها تعیین می‌شود که حداکثر اجتماع یا اجتماع ایده‌آل بسیار می‌آید که حصولش بسیار دشوار است و این تعیین از اجتماع بنا به دوره علی‌الحوزه و راه اجرای اجتماع (۱۲):

۱- این نوع اجتماع فقط تماشای میانان دو حالت (وجود یا عدم وجود اجتماع) را ممکن می‌سازد.
گیتری گروهی ...ایک مدل اجماع در تصمیم

2- شناسن رسيئن به یک چنین توافقی اندک است. بعلاوه در زندگی و دنیای واقعی توافق

مطلق و كامل ضرورت ندارد.

ابن دو علت به استفاده و تعريف یک مفهوم جديد از درجه اجماع منتج می‌شود که
درجه اجماع نرم نام دارد. اجماع نرم دلته بر وجود توافق ميان اکثریت فازی خبرگان بر
روش مجموعه معیارها دارد. اکثریت فازی یک مفهوم اکثریت نرم بیان شده از طريق یک
کمی ساز فازی است که از طريق یک منطق فازی مبتني بر محاسبه گزارشهای کمی شده
قانون اکثریت فازی را از طريق یک کمی ساز برای استنتاج مفاهیم رامحلهای گوناگون برای مسائل تصمیم‌گیری گروهی در یک
جابه‌گاه زبانی تصریح نمود و در جمع‌ها از مفهوم کمی ساز زبانی فازی استفاده می‌کند
OWA به منظور

جمع اطلاعات بکار می‌رود.

اکثریت فازی OWA یا ایپاراتور متوسطگری موزون مربوط شده یک
OWA محاسبه می‌گردد. ایپاراتور OWA یا ایپاراتور متوسطگری موزون مربوط شده یک
روش مؤثر و متدال برای جمع فاصله‌های فازی افراد در یک رجحان فازی جمعی و
اجتماعی است. ایپاراتور OWA به عنوان یک تکنیک جمع جدید توسط یک معرفی گردید
بر ارتباط با OWA n به عنوان یک بارهایانهای w_{1} = (w_{1}, w_{2}, ..., w_{n})
پژوهشی که برای
الف -
1 \leq i \leq n
\sum_{i=1}^{n} w_{i} = 1
ب –
\begin{align*}
f(a_{1}, a_{2}, ..., a_{n}) &= \sum_{j=1}^{n} w_{j} b_{j} = w_{1} b_{1} + ... + w_{n} b_{n} - \sum_{j=1}^{n} w_{j} b_{j} \\
f(a_{1}, a_{2}, ..., a_{n}) &= wB^r \end{align*}
به عنوان B به عنوان a_{1}, ..., a_{n}
که بزرگترین عنصر زام در جمع
پژوهشی که برای f قرار گرفته در ترتیب عددی
به عنوان a_{1}, ..., a_{n}
ین ایپاراتور نوعی جمع مراهم می‌کند که
همشه بین جمع or و جمع

و جمع

این ایپاراتور مرجع

ول این ایپاراتور مرحله

رهبری مجدد آن است و بطور خاص یک جمع

با وزن خاص \text{w}_i

مرتب می‌گردد.

بله یک وزن با موقعیت مربوط شده جمع مرتب می‌گردد.
یک ووجه اساسی این اپراتور مرحله رتبه‌بندی مجددا است که بطور خاص یک جمع یا a_1 وزن خاص می‌گردد بلکه یک وزن با موقعیت مربوط شده جمع مربوط می‌گردد.

اپراتورهای متفاوت OWA از یک طریق تابع وزنی شامل می‌شوند. یاگر به سه مورد OWA اشاره نموده است (۱۰):

الف - در این مورد

$$f^*(a_1,a_2,a_3,...,a_n) = \max (a_1,a_2,a_3,...,a_n)$$

و $w = w^* = (1;0;0;0;0)^T$

ب - در این مورد

$$f_*(a_1,a_2,a_3,...,a_n) = \min (a_1,a_2,a_3,...,a_n)$$

و $w = w_* = (0;0;0;0;0;0;1)^T$

ج - یا متوسط در این مورد

$$f_A(a_1,a_2,a_3,...,a_n)^T = \frac{1}{n} \sum_{i=1}^{n} a_i$$

و $w = w_A = \left(\frac{1}{n};\ldots;\frac{1}{n} \right)^T$

این اپراتور دارای ویژگی هایی به شرح ذیل است:

الف - برای هر اپراتور مجموعه اپراتور

$$f_*(a_1,a_2,a_3,...,a_n) \leq f(a_1,a_2,a_3,...,a_n) \leq f^*(a_1,a_2,a_3,...,a_n)$$

به شمار می‌آید که برای هر خواهیم داشت f OWA به قرار گذاری جایگاهی باشد: با فرض این که a_1 بیسته‌ای از جمع‌سوزندای باشند و با فرض این که a_1 بیسته‌ای از جمع‌سوزندای باشند و با فرض این که a_1 بموجب نتایج OWA شمار آید. پس برای هر اپراتور

$$f(a_1,a_2,a_3,...,a_n) = \min (a_1,a_2,a_3,...,a_n)$$

ج - این اپراتور دارای ویژگی یکتاوای است. با فرض این که a_1 یک مجموعه c_1 و a_1 باشد بگونه‌ای که برای هر $i = 1;2;3;...;n$ مجموعه f که $f(a_1,a_2,a_3,...,a_n) \geq (c_1;c_2;c_3;...;c_n)$ باشد.

می‌باشد.

د - این اپراتور دارای ویژگی خود توانای است. اگر برای تمام i ها صادق باشند $a_1 = a$ پس برای هر اپراتور

$$f(a_1,a_2,a_3,...,a_n) = (a,a,a,...,a_n) = a$$
یک مدل اجماع در تصمیم‌گیری گروهی

بطور خلاصه می‌توان گفت که ویژگی‌های فوق ای‌آی‌های OWA متوسط‌گیری قرار می‌دهد. به منظور طبقه‌بندی ای‌آی‌های OWA با ملاحظه مکاتبان در ارتباط با بردار w توسط یاگر به‌شرح زیر یک سنجش از orness OR و AND معرفی شده است:

$$orness(w) = \frac{1}{n-1} \sum_{i=1}^{n} (n-i)w_i$$

$$orness(w) = \frac{1}{n-1} \sum_{i=1}^{n} [(n-1)w_i + \ldots + w_{n-1}]$$

$$orness(w) = w_1 + \frac{n-2}{n-1} \cdot w_2 + \ldots + \frac{1}{n-1} \cdot w_{n-1}$$

بنابراین برای هر w در فاصله واحد قرار می‌گیرد. لازم بدار است که AND نزدیک‌تر باشد مقدارش به یک نزدیک‌تر است در حالیکه آن به OR w هر چه نزدیک‌تر باشد مقدارش به صفر نزدیک‌تر است. بنابراین با ملاحظه بردارهای

$$w^* = (1; 0; 0; 0; \ldots; 0)^T$$

و $w^* = (0; 0; 0; \ldots; 0; 1)^T$

ما می‌داریم:

$$orness(w_1) = 0.5$$

و $orness(w_0) = 0$ و $orness(w^*) = 1$

و یک سنجش از andness به صورت andness با ای‌آی‌های OWA یک ای‌آی‌های خواهد بود که مشابه می‌باشد $orness(w) \geq 5$. OWA و وقتی که از اکثر اوزان مختلف ممکن به ارزش‌های پایین‌تر باشد ای‌آی‌های

$$andness(w) \geq 0.5$$

یک ای‌آی‌های خواهد بود که مشابه می‌باشد. OWA در قلمرو جمع‌آوری می‌باشد. OWA با فرض این که $\{a_1; a_2; \ldots; a_n\}$ یک مجموعه معیارها به شماره‌های $A_1(x) \in [0,1]$, $A_i(x)$ باشند که بگویگری که برای هر معیار x درجه‌ای را تاشان وند که $A_i(x)$ تا آن درجه ای معیار توسط x تامین می‌گردد. اگر ما با خواهیم درجه‌ای Bیابیم که تمام معیارها را تامین کننده آن را با $D(x)$ نشان می‌دهیم به ای‌آی‌های

$$D(x) = \min\{A_1(x), \ldots, A_2(x)\}$$
که در این مورد نیاز می‌باشد که \(x \), شرط \(A_1 \) and \(A_2 \) and....and \(A_n \) را تامین کند. در صورتی که با خواهیم \(x \) حداقل را از معیارها را تامین کند که آن را با \(E(x) \) لطفی زاده ویلمن خواهیم رسید:

\[E(x) = \max \{ A_1(x), \ldots, A_n(x) \} \]

در این مورد نیاز می‌باشد که شرط \(A_i \) or \(A_2 \) or or \(A_n \) تامین گردد.

در کاربردهای سیاسی به جای تمایل به تامین یک از موضوعات یا "همه" یا "حداقل یکی از معیارها" توسط یک راه حل ممکن است نیاز به راه شده که \(x \) اکثرها یا "حداقل نیمی از معیارها" را تامین کند. با استفاده از مفاهیم کمی سازان نسبی، ما می‌توانیم این نوع جمع‌ها را به راهنمایی کمی ساز انجام دهیم (16).

کمی سازان نسبی فاصله در سال 1983 توسط لطفی زاده معرفی شد (17). کمی سازان نسبی فاصله برای نمایش مقادیر اقلام تامین کننده یک گزاره معین بکار می‌رود. لطفی زاده مطرح نمود که معنی یک کمی سازان نسبی می‌تواند از طریق کاربرد زیر مجموعه‌های فاصله برای نمایش آن تفسیر کرد. وی بین در نوع کمی سازان نسبی تلایز قائل می‌گردد (18):

الف - کمی ساز مطلق
ب - کمی ساز نسبی

کمی ساز مطلق برای نمایش مقادیری که می‌روند که می‌تواند متفاوت هستند مانند حدودا 2 یا بیش از 5. این کمی سازان نسبی مطلق دقیقاً در ارتباط با مفهوم شمارش یا تعداد \(R^+ \) عناصر هستند. اما در این کمی سازان با به عنوان زیر مجموعه فاصله اعداد حقیقی کاملاً تعیین می‌کند. در این روزا که یک کمی ساز مطلق می‌تواند بصورت یک زیرمجموعه فاصله‌ای داشته باشد، \(Q \) به عنوان یک دامنه شود و که که برای هر \(Q(r) \) درجه عضویت \(r \) در \(Q \) تعیین شود. \(Q(r) \)\(\Rightarrow Q(r) \) درجهای با نشان می‌دهد که آن درجه مقدار \(r \) با کمی ساز نشان داده شده با سازگار است. کمی سازان نسبی مانند اکثرها یا حداقل نیمی می‌توانند توسط

\[Q(r) = \begin{cases} 0.1 & \text{در جهای را نشان می‌دهد چونا از \(0 \) \text{ تا } \frac{1}{2} \text{ نشان داده می‌شود. برای هر } r \in [0,1] \text{ درجهای را نشان می‌دهد که } r \text{ نسبتی از موضوعات (شی) می‌تواند نماشی را داشته باشد.} \\ 1 & \text{را تامین می‌کند. بنابراین یک کمی ساز مطلق } Q : R^+ \rightarrow [0,1] \text{ تامین می‌کند:} \\
Q(0) = 0, \exists k \text{ such that } Q(k) = 1 \end{cases} \]

و یک کمی ساز نسبی \(Q : [0,1] \rightarrow [0,1] \text{ تامین می‌کند:} \\
Q(0) = 0, \exists r \in [0,1] \text{ such that } Q(r) = 1 \)
و یک کمی ساز نسبی ناگاهنده تامین می‌کند:

$$\forall a, b \text{ if } a > b \text{ then } Q(a) \geq Q(b)$$

![Diagram](image)

شکل شماره ۲: کمی ساز زبانی فازی نسبی

تابع عضویت یک کمی ساز نسبی می‌تواند بصورت دیل نشان داده شود:

$$Q(r) = \begin{cases}
0 & \text{if } r < a \\
\frac{r-a}{b-a} & \text{if } a \leq r \leq b \\
1 & \text{if } r > b
\end{cases}$$

تابع عضویت کمی ساز زبانی فازی نسبی

و با استفاده از این تابع می‌توانیم مقدار اکثریت فازی خبرگان را نشان دهیم. یک کمی سازان زبانی فازی OWA برای نمایش مقدار اقلام تامین کننده یک گزاره معین بکار می‌رود. بردار وزنی اپراتور از کمی سازان زبانی فازی نماینده اکثریت فازی خبرگان بدست می‌آید. در منطق کلاسیک فقط از دو کمی ساز زبانی فازی استفاده می‌گردد که دقیقاً for all b there exists b به چنین ترتیب هستند. در حالیکه انسان در گفتگوی غنی‌تر and or ارتباط با رابطه‌ای متنوع‌تر است و از کمی سازانی مانند بسیار یک کمی که حدوداً تقریباً هر دو اکثریت در گفتگوی انسانی می‌کند. در کوشش برای پرکردن شکاف بین سیستم‌های رسمی و گفتگوی طبیعی؛ یک ابزار نمایش دانش منعطف‌تری فراهم شد.
برای محاسبه اوزان اپراتور OWA به وسیله کمی سازی یا اونکاک در رویکرد را اطراف نموده است (19):

الف - اولین رویکرد انواع مکانیزم‌های یاکینژری با استفاده از داده‌های میزان توان به کار می‌رود.

ب - دومن رویکرد کمی که به مقایسه جمعیت بین وزن‌ها به‌دست که اوزان مفهوم اکثریت فاصله را در جمع با اپراتور OWA با کاربرد کمی ساز زبانی فازی نشان می‌دهد، یاگر اوزان را از طریق یک کمی ساز زبانی فازی محاسبه می‌نماید است که برای محاسبه اوزان اپراتور OWA بر طبق رویکرد دوم یاگر از فرمول ذیل استفاده می‌گردد:

\[
 w_i = Q\left(\frac{i}{n}\right) - Q\left(\frac{i-1}{n}\right) \quad i = 1, 2, 3, 4, \ldots n
\]

در نتیجه در جایگاه تصمیم گیری گروهی؛ اجماع وسیله‌ای برای تفسیر طرح‌های تصمیم متقاوت است و این اجماع یک اجماع مطلق نیست بلکه یک اجماع تدریجی است که در نتیجه تعامل اعضای گروه و بحث و بررسی در طول جلسه تصمیم گیری گروهی حاصل می‌گردد. در این مقاله یک مدل اجماع فازی برای جایگاه تصمیم گیری گروهی ارائه می‌گردد.

مدل اجماع فازی

در تصمیم گیری گروهی؛ بطور بارز و چشمگیری؛ اجماع تصویری شده است. اگر چه بطور سنتی اجماع؛ به معنای توافق مطلق تعیین شده است اما با یک رویکرد عملی می‌توان درباره اجماع صحبت کرد. با تغییر تپه به اجماع به عنوان یک پارامتر قابل سنجش می‌توان تعیین کرد که هر چه فاصله ایده افراد از ایده گروهی کمتر باشد؛ اجماع گروهی افزایش می‌یابد و بیشترین ارزش منظور با وحدت نظر و کمترین ارزش منظور با فقید توافق تعریب و تفسیر می‌گردد. در این مقاله؛ یک مدل اجماع در چایگاه تصمیم گیری گروهی ارائه شده است که در شکل شماره 1 ترسیم شده است و فرآیند حصول اجماع بطق کوریت دیل تعیین می‌گردد:
الف - گرفتن اطلاعات از خبرگان

هر عضو گروه اطلاعات رجحانی و قضاوتی خویش درباره معیارهای موثر در ارزیابی گزینه‌ها در شکل اصطلاحات کیفی و واژه‌های بینایی بیانی بیان می‌دارد که برای تسهیل محاسبات می‌باشد. عناصر مجموعه اصطلاحات کیفی و زبانی با اعداد فاوزی مثلثی چایگزین می‌گردد و توسط توابع عضویت تشخیص می‌گردد که قضاوت‌های خبرگان بر روی معیارها به صورت

شکل شماره ۱: نمودار اولین حصول اجماع در تصمیم‌گیری گروهی
\[CE = (C_1E_1, C_1E_2, C_1E_3, \ldots, C_1E_m, C_nE_1, C_nE_2, C_nE_3, \ldots, C_mE_n) \]
نمايش داده مي شود كه
\[q = \frac{1,2,3,4,\ldots,m}{i=1,2,3,\ldots,n} \]
نمايش داده مي شود كه
\[q = \frac{1,2,3,4,\ldots,m}{i=1,2,3,\ldots,n} \]
\[\text{اوازه‌هاي مياني بياين شده توسط خبرگان بر روی معيارها مي باشند كه با اعداد فايز مي توانيد شده جاگزین مي‌گردد.} \]

ب - تلفيق ايده‌هاي افراد در يك يادهجمعی و گروهي

براي تلفيق ايده‌هاي افراد در يك يادهجمعی و گروهي از اپریتور OWA به وسيله "کمي ساز" (اکثر) استفاده مي‌گردد و ايدهجمعی و گروهي به طريق دني محاسبه مي‌گردد. OWA مي‌گردد و وزن اپریتور از طريق رويکرد دوم ياگر محاسبه مي‌گردد.

\[
GO(c_1) = f(C_1E_1, C_2E_2, \ldots, C_mE_m) \Rightarrow \sum_{j=1}^{n} w_j b_j = w_1 b_1 + w_2 b_2, \ldots, w_n b_n
\]

معرفي بردار ايده‌هاي فايز جمعي و گروهي است و
\[b_j \]
به وسيلة مي باشد. بردار بروزترين مولفه در بسته مي باشد. بردار بردار مرتب شده \[C_1E_1, C_1E_2, \ldots, C_mE_m \]
معرفي بردار ايده Fuzzy جمعي و گروهي است و
\[GO(c_1) \]
به عنوان بردار رجحان جمعي و ايده اجماعي فايز باید يک اجماعي منعكس سازد كه از تعاملات انسان‌ها بوجود مي آيد كه با اجماع رياضي منتفاوت مي باشد. از آنجا كه ما به دنبال اجماعي هستيم كه رجحانها و ايده‌هاي تكتيكي افراد در آن لحاظ شده باشد و رضايت تمام تصميم كيردنگان را تامين كنند. اين نوع اجماع ديگر اجماعي نبست بلکه اجماعي است كه بتدريج در نتيجه تعامل و بحث گروهي DM تحقق مي یابد. برای حصول چنين اجماعي پارامترهای نيل برای تعیین سطح اجماع گروهي محاسبه مي‌گردد:

الف - درجه نزديكی ايده فرد به ايده گروهي

ب - شاخص‌هاي اجماع

براي محاسبه شاخص‌هاي فوق الگوريتم بيل تعريف مي‌گردد:

1- ارزيش صحيح کلي ايده‌هاي فايز افراد و ايده‌فازي گروهي از طريق فرمول ديل
یک مدل اجماع در تصمیم‌گیری گروهی

\[I^a_t(GO(C_1)) = \frac{1}{2}[\alpha a + b + (1 - \alpha)c] \]

\[I^a_t(IO(C_1)) = \frac{1}{2}[\alpha a + b + (1 - \alpha)c] \alpha \in [0, 1] \]

جو - محاسبه شاخص نزدیکی ایده‌افراد به ایده گروهی و جمعی:
برای محاسبه شاخص نزدیکی به سننگ نزدیکی میان زوج بردای رجحان افراد و گروه نیاز می‌باشد که بدين منظور محققت مختلف شاخص‌های گوناگونی مانند فاصله اقلیدسی، فاصله نرم 1، لکتوسینوس و سیئوس زاویه به دو زوج بردای و تابع سنگش شباهت ریک بردارهاند (1 و 2) که در این مقاله برای سننگ درجه نزدیکی ایده نفرد به ایده گروه از متریک \(L_p \) می‌آمیزد استفاده می‌گردد (3). این متریک فاصله بین دو \(p \) نقطه را در فضای \(k \) بعدی می‌سنجد یک ویژگی فیزیکی شاخص \(k \) دلالت بر افزایش بر افزایش

با کاهش همزمان می‌کند (برای مثال \(d_p \) در این مقاله ارزش 1 را تعبیه می‌شود است. از این رو به دنبال انحراف ایده‌های افراد از ایده گروهی، وزن و اهمیت یکسان تخصیص می‌دهد. متریک فاصله ایده افراد از ایده گروهی به شرح ذیل تعريف می‌گردد.

\[S_q(C_i) = |I^a_t(IO(C_i)) - I^a_t(GO(C_i))| \]

دو - محاسبه شاخص اجماع

رجحان و ایде اجماعی فازی بايد یک اجماعی را منعکس کند كه از تعاملات انسان‌ها استنتاج کرد که با اجماع ریاضی و اجماع توبولوژی متفاوت باشد. این نوع اجماع اجماعی است که رجحان‌ها و ایده‌های تکانه افراد در آن لحاظ می‌گردد و حداکثر
راضیات مندی را برای تصمیم‌گیرندگان تامین می‌نماید. این نوع اجماعی است که در ترتیب تعامل و بحث گروهی خبرگان و تصمیم‌گیرندگان بتدريج به‌دست می‌آید. برای حصول چنین اجماعی در تصمیم‌گیری گروهی می‌باشد که هرگز به‌دست می‌آید.

الف - شناسایی معیارهای هزینه و فایده: معیارهای ارزیابی گزینه‌ها بر حسب ماهیت هزینه‌ها یا سود به صورت نیل تعیین شده‌اند.

\[n = n_1 \cup n_2 \]
\[\phi = n_1 \cap n_2 \]

ب - محاسبه سطوح ایده آل مثبت توافق از طریق فرمول:

\[S(C_1)_{\text{pis}} = \left\{ \left(\max_{q} S_q(C_i) \right) \Bigg| i \in n_1 \right\} \times \left\{ \max_{q} S_q(C_i) \right\} \Bigg| i \in n_2 \} \]
\[q = 1,2,\ldots, m \]
\[\Rightarrow \{S(C_1)_{\text{pis}}, S(C_2)_{\text{pis}}, \ldots, S(C_n)_{\text{pis}}\} \]

را بدست می‌آوریم. معروف درجه توافق فردی است که کمترین فاصله با آنده گروهی و جمعی دارد.

ج - محاسبه سطوح ایده آل منفی توافق از طریق فرمول:

\[S(C_1)_{\text{nis}} = \left\{ \left(\min_{q} S_q(C_i) \right) \Bigg| i \in n_1 \right\} \times \left\{ \min_{q} S_q(C_i) \right\} \Bigg| i \in n_2 \} \]
\[q = 1,2,\ldots, m \]
\[\Rightarrow \{S(C_1)_{\text{nis}}, S(C_2)_{\text{nis}}, \ldots, S(C_n)_{\text{nis}}\} \]

را بدست می‌آوریم. معروف درجه توافق فردی است که بیشترین فاصله با آنده گروهی و جمعی دارد.

د - محاسبه متوسط درجه توافق و اجماع گروهی بر روی هر معیار از طریق:

\[CM(C_i) = \phi_Q(S_1(C_i), S_2(C_i), \ldots, S_m(C_i)) \]

محاسبه می‌گردد که چک که در ایراتور OWA یک کمی ساز فازی است که مفهوم اکثریت فازی را نشان می‌دهد که برای محاسبه بردار وزنی ایراتور (\(\phi_Q \)) OWA بکار می‌رود. در اینجا از مفهوم اکثریت فازی خبرگان استفاده می‌گردد. در واقع اکثریت فازی خبرگان بر روی معیار به این درجه توافق دست یافته‌اند.
یک مدل اجماع در تصمیم‌گیری گروهی ...

\[GC(C_1) = 1 - \frac{S(C_1)^{pis} - CM(C_1)}{S(C_1)^{pis} - S(C_1)^{Nis}} \]

(7)

\[GC(C_1) = 1 - \frac{CM(C_1) - S(C_1)^{pis}}{S(C_1)^{Nis} - S(C_1)^{pis}} \]

(8)

براساس این شاخص اجماع، GC(C_1) به‌منظور تعیین می‌تواند به‌عنوان شاخص اجماع برای محاسبه‌ای مورد استفاده قرار گیرد.

(آستانه توجه به حداکثر اجماع مورد نیاز (p) تعيين كرده‌که كدام معيار در فرآيند ارزیابي گزينه‌ها مورد توجه قرار گيرد.

۱- محاسبه متوسط درجه طوافق و اجماع گروهی بر روی مجموعه معياريها از طريق:

\[CM(C) = \phi \left(CM(C_1), CM(C_2), ..., CM(C_n) \right) \]

(9)

۲- محاسبه کمترین فاصله ميان ایده فرد و ایده گروهيا بيشترين درجه توافق بر روی مجموعه معياريها (محاسبه سطح اجماع قوي گروهي) از طريق فرمول:

\[GSCL(C) = \phi \left(S(C_1)^{pis}, S(C_2)^{pis}, ..., S(C_n)^{pis} \right) \]

(10)

۳- محاسبه بيشترين فاصله ميان ایده فرد و ایده گروهيا كمترین درجه توافق بر روی مجموعه معياريها (محاسبه سطح اجماع ضعيف گروهي) از طريق فرمول:

\[GWCL(C) = \phi \left(S(C_1)^{Nis}, S(C_2)^{Nis}, ..., S(C_n)^{Nis} \right) \]

(11)

۴- محاسبه شاخص اجماع گروهی بر روی مجموعه معياريها:

\[GC = 1 - \frac{GSCL(C) - CM(C)}{GSCL(C) - GWCL(C)} \]

(12)

از این شاخص اجماع به عنوان شاخص توقف فرآيند حصول اجماع استفاده مي‌گردد.
1- افزایش آستانه‌ای اجماع مورد نیاز "p" و شرط پایانی فرا آیدن حصول اجماع "ε". در این تعیین می‌گردد.

2- بحث و بررسی گروه‌های: گروه به بحث و بررسی و ارائه استدلال‌های حمایتی از معیارهای مهم و موثر در ارزیابی گزینه‌ها می‌پردازد و بعد از بحث و بررسی، هر کدام از اعضای گروه می‌تواند اطلاعات رجحانی خود را در روز معیارهای ارزیابی در شکل اطلاعات کمی (اعداد کلاسیکی یا اعداد فاژی) یا کیفی (واژه‌های بیانی) وارد سازد.

3- ایجاد جمعی گروه‌های در اختیار نزدیکی ایده‌فرهنگ با این موضوع گروه و شاخص اجماع گروهی

4- چنین شاخص اجماع بر روز تکنیک معیارها "GC(Ci)" شرط و قاعده‌ای را تامین کند. آن معیار به عنوان معیار مورد اجماع شناسایی می‌گردد.

5- معیارهای مورد اجماع و معیارهایی که اجماع بر روز آنها بسست نیامده و درجات نزدیکی (فاضله) ایده افراد نسبت به ایده گروهی بر روز تکنیک معیارها؛ برای آگاهی اعضای گروه و بحث و بررسی بیشتر در صورت نیاز به آنها برگردانده می‌گردد که برای راهنمای افراد به منظور تغییر ایده‌شناس قوانین نیاز به این تعیین می‌گردد:

$$ I_t^a IO(C) - I_t^a GO(C) \geq 0 $$

6- اگر تغییر در نظر افراد بر روی معیارها پیدا نیامده، به مرحله چهارم رفته و معیارهایی که شرط $ GC(C_i) \geq p $ را تامین کنند به عنوان معیارهای مهم و موثر در ارزیابی گزینه‌ها مورد توجه قرار گرفته و فرآیند حصول اجماع متوقف می‌گردد.
یک مدل اجماع در تصمیم‌گیری گروهی...

در صورت تغییر در نظر افراد به مرحله دوم رفتن و مجدداً ایجاد جمعی و درجه نسبی کی ایده فرد به ایده گروهی و مشاهده اجماع گروهی بر روی معيار C_1 و مشاهده اجماع گروهی بر روی مجموعه معيارها محاسبه می‌گردد و شرط و قاعده اجماع بر روی را تامین $GC(C_1) \geq p$ معيارها مجدداً بررسی می‌گردد و معيارهايی که قاعده و شرط کنند به عنوان معيارهاي مورد اجماع پذيرفته می‌گردد. همچنان با بررسی شرط اجماع بر روی معيارها، می‌بايست شرط نيل لان بررسی گردد:

$$|GC' - GC^{c'}| \leq \varepsilon$$

بود فايدن حصول اجماع متوقف می‌گردد در غير این صورت به مرحله دوم می‌رویم.

یک مطالعه موردی

به منظور ارزیابی پروژه های تحقيق همواره معيارهايی مورد توجه ارزیابان و داوران قرار می‌گیرد که برای ارزیابی همسان پروژه ها می‌بايست بر روی این معيارها بین داوران توافق و اجماع بوجود آید. بدين منظور بعد از شناسایی معيارهاي مؤثر در ارزیابی پروژه ها از شش داور خواسته شده که نظرات رجحانی خود را درباره ميژان اهميت معيارهاي مؤثر در ارزیابی بين دارند. معيارهاي مورد ارزیابی در جدول شماره ۲ و نتایج در جداول شماره ۳ و ۴ و ۵ ارائه شده است:

<table>
<thead>
<tr>
<th>ارزشي حاصل شده</th>
<th>بسيار ناامن</th>
<th>نسبتاً ناامن</th>
<th>کم امتنع</th>
<th>با امتنع</th>
<th>بسيار امتنع</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.05</td>
<td>0.20</td>
<td>0.30</td>
<td>0.50</td>
<td>0.70</td>
<td>0.75</td>
</tr>
<tr>
<td>جدول شماره ۲:</td>
<td>تعريف وازدهاي بياني و معاني شدن</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
جدول شماره ۲: معيارهای مورد توجه در ارزیابی پروژه‌ها

<table>
<thead>
<tr>
<th>شماره</th>
<th>معيارهای ارزیابی پروژه‌های تحقیق</th>
</tr>
</thead>
<tbody>
<tr>
<td>۱</td>
<td>گسترش عادات اجتماعی</td>
</tr>
<tr>
<td>۲</td>
<td>استفاده از ظرفیت‌های فنی</td>
</tr>
<tr>
<td>۳</td>
<td>بهبود اخلاق پروژه</td>
</tr>
<tr>
<td>۴</td>
<td>ارتقای نظری و شنون معنوی جامعه</td>
</tr>
<tr>
<td>۵</td>
<td>کامپوش آیوستک‌های مثبت</td>
</tr>
<tr>
<td>۶</td>
<td>طرح رویکرد جدید برای تحقیق</td>
</tr>
<tr>
<td>۷</td>
<td>توسعه و بهبود مدیریت و ابزار تحقیق</td>
</tr>
<tr>
<td>۸</td>
<td>تناسب تکنولوژی با رزق‌های ملی و اسلامی</td>
</tr>
<tr>
<td>۹</td>
<td>کامپوش آیوستک‌های مثبت</td>
</tr>
<tr>
<td>۱۰</td>
<td>ارتقای دانش فنی</td>
</tr>
<tr>
<td>۱۱</td>
<td>کاربردی کردن دانش تئوریکی و ارتقای دانش کاربران</td>
</tr>
<tr>
<td>۱۲</td>
<td>توسعه و بهبود دانش بنیادی</td>
</tr>
<tr>
<td>۱۳</td>
<td>توسعه و بهبود مهارت چرخه</td>
</tr>
<tr>
<td>۱۴</td>
<td>نشر و انتشار دانش از حوزه‌های به حوزه دیگر</td>
</tr>
<tr>
<td>۱۵</td>
<td>توسعه شرایط‌های تحقیق</td>
</tr>
</tbody>
</table>

معیارهایی که شرط اجتماعی تعريف شده توسط مدير جلسة "7. (C) رامین کنند به عنوان معيارهای مورد اجلاع شناسایی گرديد كه به عنوان معيارهای مهم در ارزیابی پروژه‌ها مورد توجه قرار مي‌گيرد. به منظور رسيدن به اکثر اجلاع تعاملی كه رضايت تمام اعضای گروه را تامين كندي معيارهای مورد اجلاع و معيارهایي كه اجلاع بر روی آنها حاصل نشده به اعضای گروه بر گرداگانده شده تادر صورتی كه بخواهند مجددا نظرات خود را اعمال كنند و چون در نظرات آنها تغييرى ايجاد نشد فرايند حصول اجلاع متوقف گرديد و معيارهای مورد اجلاع در مرحله پيشين به عنوان معيارهای مورد اجلاع شناسایی گرديد كه در جدول شماره ۲ با علامت * نشانه گذاری شده است.
نمودار ۱: مقایسه ایده افراد و گروه

نمودار ۲: نمودار درجه نزدیکی ایده افراد به ایده گروهی
<table>
<thead>
<tr>
<th>CRITERIA</th>
<th>(S(C_i)_{NS})</th>
<th>(S(C_i)_{NS})</th>
<th>(CM(C_i))</th>
<th>(GC(C_i))</th>
</tr>
</thead>
<tbody>
<tr>
<td>X1</td>
<td>0.44</td>
<td>0.0014</td>
<td>0.258</td>
<td>0.417</td>
</tr>
<tr>
<td>X2</td>
<td>0.48</td>
<td>0.2</td>
<td>0.228</td>
<td>0.915</td>
</tr>
<tr>
<td>X3</td>
<td>0.46</td>
<td>0.0173</td>
<td>0.209</td>
<td>0.264</td>
</tr>
<tr>
<td>X4</td>
<td>0.44</td>
<td>0.0014</td>
<td>0.22</td>
<td>0.5</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>6</td>
<td></td>
</tr>
<tr>
<td>X5</td>
<td>0.44</td>
<td>0.0014</td>
<td>0.22</td>
<td>0.5</td>
</tr>
<tr>
<td>X6</td>
<td>0.245</td>
<td>0.055</td>
<td>0.096</td>
<td>0.79</td>
</tr>
<tr>
<td>X7</td>
<td>0.506</td>
<td>0.066</td>
<td>0.187</td>
<td>0.72</td>
</tr>
<tr>
<td>X8</td>
<td>0.106</td>
<td>0.084</td>
<td>0.094</td>
<td>0.56</td>
</tr>
<tr>
<td>X9</td>
<td>0.46</td>
<td>0.18</td>
<td>0.209</td>
<td>0.56</td>
</tr>
<tr>
<td>X10</td>
<td>0.57</td>
<td>0.123</td>
<td>0.137</td>
<td>0.97</td>
</tr>
<tr>
<td>X11</td>
<td>0.4</td>
<td>0.04</td>
<td>0.17</td>
<td>0.64</td>
</tr>
<tr>
<td>X12</td>
<td>0.26</td>
<td>0.07</td>
<td>0.085</td>
<td>0.92</td>
</tr>
<tr>
<td>X13</td>
<td>0.185</td>
<td>0.005</td>
<td>0.102</td>
<td>0.97</td>
</tr>
<tr>
<td>X14</td>
<td>0.245</td>
<td>0.055</td>
<td>0.096</td>
<td>0.79</td>
</tr>
<tr>
<td>X15</td>
<td>0.245</td>
<td>0.055</td>
<td>0.096</td>
<td>0.79</td>
</tr>
</tbody>
</table>
نمودار ۳: نمودار مقایسه بین بیشترین و کمترین و متوسط درجه تواناق و درجه اجماع گروهی

نمودار ۴: نمودار مقایسه ایده گروهی و اجماع گروهی
نتیجه‌گیری
همواره در تصمیم‌گیری گروهی؛ اجماع و توافق نظر در میان افراد مورد توجه می‌باشد. از این رو محققان در نظام‌های علمی مختلف بدان موضوع توجه نموده‌اند و راهکارها و تکنیک‌های مختلفی از جمله تکنیک دلفی و فرایند تحلیل سلسله مراتبی برای ایجاد اجماع در میان افراد یک گروه طرح نموده‌اند. با طرح تئوری مجموعه فاژی توسعه‌ی لطفی‌زاده؛ محققان بسیاری از این تئوری در تصمیم‌گیری چند معتبره و تصمیم‌گیری گروهی استفاده نموده‌اند. در این مقاله یک مدل اجماع فاژی در زمینه تصمیم‌گیری گروهی طرح شده است که از مفهوم اکثریت فاژی و کمی سازان زبانی فاژی استفاده شده است. این مدل اجماع فاژی گروهی دارای این مزیت است که اجماع بدست آمده یک اجماع ریاضی‌ای جبری نیست بلکه یک اجماعی است که از روش تعامل و گفتگو در میان افراد درک شده در فرآیند تصمیم‌گیری گروهی بدست می‌آید.
1-Herrera, F and F.E Herrera-Vidama and J.L. Verdegay, "A sequential selection process in group decision making with a linguistic assessment approach" Available at: http://www.citeseer.nj.nec
2-Lai, Vincent S and Bok Wong and Waiman Cheung. (2002). "Group decision making in a multiple criteria environment: a case using the in software selection" ; European journal of operational research
3-Lei, Yand and Xi Youmin. (1996). "A view of group decision making process and bivoting approach" ; computers and industrial engineering ; vol : 31 ; issues 3-4 ; December.
6-Herrera, F and F.E Herrera-Vidama and J.L. Verdegay; "A sequential selection process in group decision making with a linguistic assessment approach" http://www.citeseer.nj.nec
7-Herrera, F and E.Herrera-Vidma and J.L. Verdegay; "A model of consensus in group decision making under linguistic assessments"; http://www.citeseer.nj.nec
8-Chiclana, F and F. Herrera and E.Herrera-Vidma; "Multioperson decision making based on multiplicative preference relations"; http://www.citeseer.nj.nec
9-Bryson, Noel; "Group decision-making and the analytic hierarchy process: exploring the consensus-relevant information content"; computers Ops Res; vol: 23; No: 1.
11-Herrera, F and E.Herrera-Vidma; "Linguistic modeling in group decision making based on OWA operators"; http://www.citeseer.nj.nec
12-Ibid.
13-Herrera, F and E.Herrera-Vidma and J.L. Verdegay; "A model of consensus in group decision making under linguistic assessments";