ترکیب سیستم هزینه‌یابی بر مبنای فعالیت (ABC) با مدیریت بر مبنای فعالیت (ABM) جهت کنترل و اداره کردن منابع سازمانی

مطالعه مورثی: کارخانجات صنعتی شاهد شیراز

* احمد رجبی

چکیده
در این تحقیق از ترکیب سیستم "هزینه‌یابی بر مبنای فعالیت" و "مدیریت بر مبنای فعالیت" جهت کنترل و اداره کردن منابع سازمانی بصورت یک مطالعه کاربردی در کارخانجات صنعتی شاهد شیراز استفاده شده است. برای این منظور، پس از اجرای و محاسبه به‌های تمام شده محصولات تولیدی این کارخانه، با استفاده از ABC سیستم و محاسبه به‌های تمام شده محصولات تولیدی این کارخانه، با استفاده از Rosh آنالیز فعالیت، نوع و حجم فعالیتها و منابع مزود نیاز برای تولید هر کدام از محصولات شناسایی گردیده، سپس با استفاده از این اطلاعات، مدل برنامه‌ریزی خطی "تعیین ترکیب بهینه ساخت محصولات" ایجاد شد و پس از حل مدل، ترکیب بهینه محصولات تولیدی کارخانه، وضعیت منابع (منابع کمبوش، مازاد و بلا استفاده)، حجم فعالیتهای مورد استفاده برای تولید هر کدام از محصولات و فعالیتهای دارای ارزش افزوده و بدون ارزش افزوده مشخص شد. با توجه به اینکه سیستم ABM بر کنترل و اداره کردن منابع سازمانی و حذف فعالیتهای فاقد ارزش افزوده در سازمان تأکید دارد با

* مربی معاونت نظارت و سنجش دانشگاه جامع علومی و کاربردی واحد فارس
توجه به متغیرهای مدل، فعالیت‌های به‌دن دو ارزش افزوده شناسایی شد تا نسبت به حذف این فعالیت‌ها و بکارگیری منابع این فعالیت‌ها در دیگر بخش‌ها اقدام گردد. نکته مهمی که از انجام این پژوهش حاصل شد، این پژوهش محدودیت نقض و فروش محصولات، به عنوان یکی از محدودیت‌های اساسی تولید و استفاده کامل از ظرفیت‌های بالقوه آن است که باعث افزایش ظرفیت‌های بلافاصله منابع و فعالیت‌های به‌دن ارزش افزوده در سازمان می‌گردد که نهایتاً باید به افزایش ظرفیت‌های سازمانی و قیمت تمام شده محصولات می‌شود. بطوریکه به هزینه‌های ظرفیت‌های بلافاصله و استفاده در طول دوره مورد بررسی، بالغ بر 100% سود محصولات تولیدی کارخانه می‌باشد.

مقدمه

هزینه‌بایی بر مبنای فعالیت‌ها یا ABC یکی از روش‌های نوین هزینه‌بایی محصولات و خدمات است که کاربردی‌های گستردگی آن روز بروز در شرکت‌های تولیدی و خدماتی در حال افزایش است (نمازی، 1378). یکی از مزایای مهم این سیستم، تهیه اطلاعات در مورد فعالیت‌ها و منابع سازمانی می‌باشد تا با توجه به این اطلاعات، زیمینه‌های منابع و ایجاد بهبود مسئول در سازمان فراهم گردد. برای ایجاد فرآیند بهبود دهنده در سازمان نیاز به کسب اطلاعات صحیح و به‌موقت در مورد فعالیت‌ها و هدف انجام آنها می‌باشد. اما کسب اطلاعات، فقط یک جنبه از این فرآیند است. جزئی دیگری که باید به آن توجه کرد بکارگیری ارزاریه‌ای مناسب جهت شناسایی این اطلاعات در بهبود سازمانی است. استفاده از اطلاعات سیستم ABC برای بهبود عملیات سازمانی، "مدیریت برمبنای فعالیت"، یا "مدیریت برمبنای سیستم ABM" (Namidhe، 1997) از اطلاعات تهیه شده توسط سیستم ABC برای اداره کردن و بهبود فعالیت‌های استفاده می‌کند. کارآین سیستم ABM بستگی به اطلاعات تهیه شده ABC دارد. اداره کردن و بهبود فعالیت‌های استفاده می‌کند. کارآین سیستم ABM بستگی به اطلاعات تهیه شده ABC دارد. روشی است که نشان می‌دهد چه تکنیک‌هایی در ساخت ABC متغیر است که نشان می‌دهد چه تکنیک‌هایی در ساخت محصولات نقش دارند. نشان می‌دهد که این تکنیک‌ها و منابع سازمانی در جهت انجام فعالیت‌ها بکار گرفته می‌شوند و چه راه‌هایی برای بهتر استفاده کردن از منابع و تعریم شناسایی فعالیت‌های دارای ارزش افزوده و بدون ارزش افزوده و جهت استفاده کردن از منابع و تعریم (Namidhe، 1997). ترکیب این دو سیستم می‌تواند بعنوان یک راه حل مطلوب برای کنترل منابع و فعالیت‌های سازمانی و ایجاد بهبود سیستم در سازمان بکار گرفته شود که در این پژوهش با توجه به اطلاعات تهیه شده توسط سیستم ABC در رابطه با منابع موجود در محل مورد مطالعه و اصول و مبانی سیستم ABC مطالعه و اصول و مبانی سیستم ABC مطالعه و اصول و مبانی سیستم ABC مطالعه و اصول و مبانی سیستم ABC، وضعیت منابع و ظرفیت‌های پلا استفاده در طول
تركيب سينتزم هزيدهيابي بر مبنای فعالیت

- مکانیزم عملکرد ABM در کنترل و اداره کردن منابع سازمانی

1- کنترل و اداره کردن منابع سازمانی از طریق کنترل فعالیت‌ها با توجه به فرآیند بهبود مستمر سازمانی، می‌توانیم هرکدام از این فعالیت‌ها به منظور بهبود بهبود فعالیت‌ها و کاهش هزینه‌ها و افزایش سودآوری سازمانی، که از بهبود بخشیدن به فعالیت‌ها و کاهش فعالیت‌های بدون ارزش افزوده حاصل می‌شود (Turing, 1997).

برای بکارگیری سیستم ABM، مراحله اساسی وجود دارد که عبارتند از:

2- تجزیه و تحلیل فعالیت‌ها جهت کسب اطلاعات

هدف از تجزیه و تحلیل فعالیت در ABM، استنتاج فعالیت‌های درک خصوصیات آنها می‌باشد. برای این منظور، تجزیه و تحلیل فعالیت‌ها مراحل زیر انجام می‌گیرد:

- گام اول: تعریف و شناسایی فعالیت‌های دارای ارزش افزوده و بدون ارزش افزوده در این مرحله بر اساس اطلاعات به دست آمده از تجزیه و تحلیل فعالیت، فعالیت‌ها به فعالیت‌های دارای ارزش افزوده و فعالیت‌های بدون ارزش افزوده تقسیم می‌شوند.

- گام دوم: شناسایی فعالیت‌های مهم و اساسی در سازمان

با توجه به اینکه جمع‌آوری اطلاعات برای کلیه فعالیت‌ها مشکل و غیرضروری است، بنابراین در سیستم ABM باید روی فعالیت‌های مهم و اساسی تأکید شود. چون این فعالیت‌ها ضمن ایجاد ارزش افزوده بالاتری، شرایط بالقوه مناسبی را برای بهبود بخشیدن در دوران خود فراهم می‌آورند. در این زمینه می‌توان از قانون باریک یا برای دسته‌بندی فعالیت‌ها در سازمان استفاده کرد. جون با بررسی هزینه‌های سازمانی ملاحظه می‌گردد که 20/80 از فعالیت‌ها باعث ایجاد 80/0 ارزش افزوده می‌گردد.

- گام سوم: مقایسه فعالیت‌ها به بیشتر عملکردها

یکی از راه‌های ایجاد بهبود عملکرد در سیستم ABM، مقایسه فعالیت‌های انجام شده در سازمان با فعالیت‌های مشابه با شرایط بالقوه مناسبی را برای پیش‌بینی نتایج بهبود عملکردها را در سیستم ABM شناسایی کرد.

- گام چهارم: بررسی ارتباط بین فعالیت‌ها

از آنجا که فعالیت‌ها برای سیستم به هدف به صورت زنجیره‌ای با هم در ارتباط هستند، این ارتباط باید در جهت کم کردن زمان انجام فعالیت و کاهش دوباره کاری‌ها باشد. برای این منظور، باید ارتباط متقابل فعالیت‌ها در نظر گرفته شود تا بر این اساس زمان انجام کارها کاهش یابد (Turing, 1997).

Bencharkining
شناختی فعالیت یافته به دو روش افزوده با تأکید بر کشف محرکهای خشونت‌آمیز

شناختی فعالیت‌های غیر ضروری و بدون ارزش افزوده، اولین قدم در فراگیری بهبود سازمانی است. از آنجا که جهت تخصصی‌سازی هر یک از فعالیت‌های غیر ضروری از محرکها و خشونت‌آمیز استفاده می‌شود، شناختی محرکهای خشونت‌آمیز برای هدف‌یافتن فعالیت‌های غیر ضروری باعث بهبود فعالیت‌های سازمانی می‌گردد. با بکارگیری استفاده از اطلاعات مربوط به محرکهای خشونت‌آمیز می‌توان فعالیت‌های غیر ضروری و اضافی در سازمان را شناسایی کرد و به‌علت ناشی از انجام فعالیت‌های به‌رد برد. مثال هنگامی که در فراگیری عملیات ضایعات ایجاد می‌شود، بطور اتوماتیک نمی‌توان ضایعات را هدف گرفت بلکه فقط زمانی که مانند آن شناسایی گردد، (کشف محرکه خشونت‌آمیز) می‌توان نسبت به حفظ آن اندام کرد (Turner, 1997).

3- بکارگیری راه‌کارها برای کاهش فعالیت‌های بدون ارزش افزوده

ارائه راه‌کارها مناسب برای کاهش هر یک از فعالیت‌های بدون ارزش افزوده یکی از ABM برتری‌های سیستم است. کنترل و اداره کردن فعالیت‌ها است. برای این منظور، این سیستم گام اساسی را پیشنهاد می‌کند که عبارتند از:

1. گام اول: کاهش زمان انجام فعالیت‌ها

این از عناصر کلیدی در فراگیری بهبود فعالیت‌ها، بررسی راه‌های کاهش زمان انجام فعالیت‌ها است. این عمل می‌تواند از طریق هر یک از قابلیت‌های در فراگیری با یا غیر افرادی کردن امکانات و تجهیزات ایجاد گردد. به عنوان مثال زمان انجام فعالیت‌ها بستگی به روایت‌ها دارد. با دفعات جابجایی فعالیت‌ها و حمل و نقل را با استفاده از کنترل و اندازه‌گیری زمان و ضایعات بهبود می‌یابد، یا دفعات جابجایی و حمل و نقل را با استفاده از کنترل و اندازه‌گیری زمان و ضایعات بهبود می‌یابد.

2. گام دوم: کاهش فعالیت‌های غیر ضروری

فراگیری بهبود فعالیت‌های غیرضروری به عنوان مثال جابجایی‌های اضافی موارد و سایر مصرفی در یک کارخانه را می‌توان از طریق طراحی صحیح و درک ارتباط بین بخش انبار با بخش‌های عملياتی کاهش داد و از فعالیت‌های زائد حمل و نقل بروزگیری کرد.

3. گام سوم: استفاده از فعالیت‌های با هزینه پایین

با توجه به ایکه برای انجام فعالیت‌های راه‌های متعدد وجود دارد ناباوران فعالیت‌هایی که می‌توانند با هزینه کمتر انجام شوند باید در اولویت قرار گیرند. به عنوان مثال قطعه‌گذاری یک پد در کارخانه‌ی می‌تواند توسط عملیات دستی و یا با استفاده از عملیات کاملاً خودکار انجام شود. به‌طوری‌که این عملیات توسط مالیات انجام شود، مستلزم فراهم کردن دستگاه‌ها و امکانات زیادی است. همین انجام عملیات دستی اگرچه ممکن است هزینه‌های تعیینی را ایجاد کند نیاز به هزینه ثابت اولیه نمی‌باشد. در سیستم ABM برای کاهش هزینه انجام فعالیت‌ها با توجه به
اپنکه اطلاعات لازم در مورد هزینه انجام فعالیت‌ها وجود دارد، می‌توان در انتخاب فعالیت‌های مختلف، فعالیت بهینه را برای انجام کارها انتخاب کرد.

گام چهارم: ترکیب فعالیت‌ها

با توجه به تشکیل فعالیت‌ها در سازمان برای استفاده مؤثر از آنها باید تا حد امکان فعالیت‌های مشابه در کاندید ترکیب کرد تا در ترکیب فعالیت‌های هزینه‌های انجام فعالیت‌های کاهش می‌یابد و از طرفی کنترل و اداره کردن آنها بهتر انجام می‌شود.

گام پنجم: آرایش‌دهی و نظم مجدد به منابع بلافاستفاده

یکی از راه‌های ایجاد بهبود سازمانی و کنترل مؤثر فعالیت‌ها، آرایش‌دهی و نظم مجدد به منابع بلافاستفاده است تا در ابتدا اساس به شناسایی ظرفیت‌های بلافاستفاده تا حد امکان از این منابع استفاده کرد. این مسئله از طرفی نیز باعث کاهش در هزینه‌ها می‌گردد (Turgan, 1997).

با توجه به قابلیت‌های ABM و مراحل اجرای کارگری آن، در این مطالعه برای کنترل و اداره کردن منابع سازمانی و حذف فعالیت‌های بدون ارزش افزوده از ABM ترکیب سیستم ABC با سیستم ABM در گام‌های صنعتی شاهد به عنوان محل اجرای سیستم پیشنهادی استفاده شده است تا توجه به نتایج این در سیستم، و تکمیل اطلاعات در مورد منابع سازمانی راهکارهای کنترل و کاهش هزینه‌ها ارائه گردد. آمیخت‌نگین تولید محصولات در این کارخانه از نظر روش تولید بصورت ترکیبی از سیستم تولید قطعات و جریانی است. برای طراحی سیستم پیشنهادی، ابتدا سیستم هزینه‌پایی و روشن تولید موجود این کارخانه مورد بررسی قرار گرفت تا با توجه به وزیگن‌های سیستم موجود، طراحی سیستم مطلوب انجام شود. برای طراحی و بکارگیری سیستم پیشنهادی مراحل زیر انجام گرفت:

ABM

- مراحل بکارگیری سیستم

-MLE محاسبه بهای تمام شده و شناسایی خصوصیات فعالیت‌ها

برای طراحی سیستم ABC با ایده‌های مورد انتظار از طراحی آن را در نظر گرفت. به عنوان مثل اگر هدف از طراحی سیستم، تبعیض اهداف استراتژیک باشد، شناسایی و تجزیه و تحلیل فعالیت‌ها باج بصورت فعالیت‌های کلی انجام شود، اما اگر علاوه بر هدف فوق، بهبود فعالیت‌های عملیاتی (ABM) نیز مرحله آن باشد بهتر است که تجزیه و تحلیل فعالیت‌ها بصورت فعالیت‌های ریز و جزئی باشد (Turgan, 1997). با توجه به اینکه هدف از بکارگیری سیستم ABC تهیه اطلاعات برای کاربرد سیستم ABM می‌باشد مراحل زیر انجام گرفت:

1 - Macro Activity
2 - Micro Activity
گام اول: شناسایی مراکز فعالیت بر حسب جمله ب‌ه‌ا ب‌ه‌а ب‌ه‌ا B
با توجه به مرحله ذکر شده در فوق به‌آیه تمام شده محصولات تولیدی این کارخانه (تلقین، لامب کیم مصرف، ماده‌ترش، قفل زونکن، قفل سلام، ایفون و کارت لزن) بر اساس روش پیشنهادی تعیین گردید. در جدول زیر به‌ایه تمام شده از طریق سیستم موجود، ABC شده بر اساس سیستم محاسبه و با به‌ایه تمام شده از طریق سیستم تولیدی از طریق این دو سیستم، ملاحظه می‌شود اطلاعات نادرست توسط سیستم موجود باعث تصمیم گیری‌های اشتباهی در انتخاب محصولات برای تولید در کارخانه شده است. بطوریکه بر اساس این اطلاعات، محصولاتی که دارای سود بوده‌اند از خط تولید خارج شده و در عوض محصولاتی که دارای زان بوده‌اند در برنامه تولید قرار گرفته‌اند. با توجه به اطلاعات تهیه‌شده از طریق سیستم پیشنهادی، برای کنترل و اداره کردن محصولات تولیدی کارخانه بر اساس یک سیستم علمی در این مطالعه از روش برنامه‌ریزی خطی استفاده شده است که اجزای یک مدل بشر زیر معرفی می‌گردد.

جدول 1- مقایسه به‌ایه تمام شده و سودآوری محصولات تولیدی بر اساس سیستم موجود و سیستم ABC

<table>
<thead>
<tr>
<th>ABC</th>
<th>اطلاعات بر اساس روش سیستم</th>
<th>اطلاعات بر اساس روش موجود</th>
<th>نام محصول</th>
<th>ردیف</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sود</td>
<td>Qیمت</td>
<td>شده (واده)</td>
<td>Qیمت</td>
<td>شده (واده)</td>
</tr>
</tbody>
</table>
| 14419 | 14377 | 61100 | 62100 | 61200 | 14550 | 57100 | 53100 | 1 | 7
| 5364 | 17507 | 24500 | 23500 | 22980 | 23500 | 21000 | 21500 | 2 |
| 100 | 21000 | 21000 | 20600 | 20300 | 20600 | 20400 | 20900 | 3 |
| 1589 | 16345 | 41550 | 42500 | 42050 | 42500 | 40900 | 40500 | 4 |
| 950 | 8920 | 27500 | 28700 | 27500 | 28500 | 27500 | 27500 | 5 |
| 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 6 |
| 1000 | 1000 | 1000 | 1000 | 1000 | 1000 | 1000 | 1000 | 7 |
| 3456 | 32500 | 32500 | 32500 | 32500 | 32500 | 32500 | 32500 | 8 |

۲- ایجاد مدل برنامه‌ریزی خطی تعیین ترکیب به‌ینه تولید محصولات

با توجه به اجزای یک مدل برنامه‌ریزی خطی و اطلاعات حاصل از طراحی و بکارگیری ABC سیستم در این مدل تابع هدف، نشان داده‌شد سود هر کدام از محصولات تولیدی است. محصولاتی هیچ در بر گیرند و حجم و نوع غلیظ و مالات یا قرار دارند محصولات به‌ینه امر است و اعداد سیستم است. برای انجام بررسی در دسترس را نشان می‌دهد (Kee, 1995) اجزاء تشکیل‌دهنده این مدل با توجه به محصولات تولیدی و نتایج اجرا سیستم

عبارتند از:
3-2-1- تابع هدف

تابع هدف شامل متغیرهای تصمیم و ضرایب آن می‌باشد که در این مدل، متغیرهای تصمیم نشان‌دهنده محصولات تولیدی است. و ضرایب آن نیز بیان کننده سود محاسبه شده است. با ABC حاصل از تولید هر واحد محصول است که از روشنی شده است. با توجه به اینکه در تابع هدف، سود حاصل از فروش هر محصول در نظر گرفته شده است، بنابراین شکل تابع هدف بصورت جداول یا روش (Max z) تعیین می‌گردد. بر این اساس، متغیر و امکانات با توجه به تولید محصولات که بشرین سود ممکن را ایجاد می‌کند، بکار گرفته شوند. در جدول شماره 2 ضرایب متغیرها و سود هر کدام از محصولات تولیدی نشان داده شده است. تابع هدف مدل با توجه به محصولات تولیدی به صورت زیر می‌باشد:

\[
Max \ z = -1546AIP + 14416 \ TEL + 8920 \ PEN + 15908LAMP + 5394LOCK + 100 \ ZON - 1CART
\]

جدول 2- سود خالص محصولات تولیدی و متغیرهای بکار گرفته شده در مدل تعیین ترکیب بهینه تولید

<table>
<thead>
<tr>
<th>تأمین متغیر بکار گرفته شده در مدل</th>
<th>نام محصول</th>
</tr>
</thead>
<tbody>
<tr>
<td>گوشی اپhon</td>
<td>AIP</td>
</tr>
<tr>
<td>تلفن رومیزی</td>
<td>TEL</td>
</tr>
<tr>
<td>مداد تراش</td>
<td>PEN</td>
</tr>
<tr>
<td>لامپ کم مصرف</td>
<td>Lamp</td>
</tr>
<tr>
<td>قفل درب بازکن</td>
<td>Lock</td>
</tr>
<tr>
<td>قفل زونکن</td>
<td>Zon</td>
</tr>
<tr>
<td>کارت تلخن</td>
<td>Cart</td>
</tr>
</tbody>
</table>

2-2-1- محدودیت‌ها

محدودیت‌ها در مدل بیان کننده روابط میان متغیرهای تصمیم‌گیری با محدود و تابع هدف می‌باشد. بنابراین آنها در تعیین سود و ترکیب بهینه تولید محصولات موثر می‌باشند. با توجه به اطلاعات حاصل از سیستم ABC محدودیت‌های مربوط به تولید محصولات که می‌توانند در تعیین ترکیب بهینه تولید و شناسایی منابع و ظرفیت‌های بدون ارزیافزوده موثر باشند عبارتند از:

1. Objective Function
2. Constraints
1- محدودیت دسترسی به مبنای نیروی انسانی در دایره ساخت قطعات (Laborprod)

این محدودیت نشان‌دهنده میزان فعالیت نیروی کار مورد نیاز برای ساخت محصولات در دایره ساخت قطعات است. برای تعیین روابط بین محدودیت‌ها و عوامل تولید، از مبنای "ساعت" استفاده شده است. بر اساس نیروی انسانی موجود در این دایره، میزان حداکثر این منبع برای ۵۹۵ ساعت است که به توجه به نوع فعالیت مورد نیاز برای تولید یک واحد محصول و ضریب استفاده از این منبع، محدودیت آن به شرح زیر است:

\[0.72 \text{ AIP} + 0.9 \text{ TEL} + 0.2 \text{ PEN} + 0.042 \text{ LAMP} + 0.2 \text{ LOCK} + 0.13 \text{ ZON} + 0.0014 \text{ CART} \leq 5950 \text{ ساعت} \]

(INJPLSTIC)

2- محدودیت منبع دستگاه‌های تزریق (PRESS)

بر اساس توابع اطلاعات حاصل از سیستم ABC و میزان استفاده هر واحد محصول از این منبع، محدودیت آن به شرح زیر است:

\[0.05 \text{ AIP} + 0.9 \text{ TEL} + 0.057 \text{ PEN} + 0.0278 \text{ LMAP} + 0.0055 \text{ LOCK} + 0.0 \text{ ZON} + 0.00139 \text{ CART} \leq 2600 \text{ ساعت} \]

3- محدودیت منبع دستگاه‌های پرس (TRASH)

بر اساس نتایج توزیع دستگاه‌های پرس موجود در کارخانه و میزان ساعات کاری هر دستگاه، حداقل میزان این منبع ۴۲۳ ساعت است که براساس استفاده هر واحد محصول از فعالیت، محدودیت آن به شرح زیر است:

\[0.022 \text{ AIP} + 0 \text{ TEL} + 0.032 \text{ PEN} + 0.0 \text{ LAMP} + 0.072 \text{ LOCK} + 0.072 \text{ ZON} + 0 \text{ CART} \leq 4260 \text{ ساعت} \]

4- محدودیت منبع دستگاه‌های تراش (GALVANIZH)

ظرفیت موجود در دایره گالوانائز قطعات، با توجه به تعداد نیروهای کاری در این دایره ۱۲۰۰ ساعت است. بر اساس میزان استفاده هر واحد محصول از این منبع، محدودیت آن به شرح زیر است:

\[0.014 \text{ AIP} + 0 \text{ TEL} + 0.027 \text{ PEN} + 0 \text{ LAMP} + 0.06 \text{ LOCK} + 0.111 \text{ ZON} + 0 \text{ CART} \leq 1200 \text{ ساعت} \]

5- محدودیت منبع قسمت گالوانائزه (GALVANIZH)

ظرفیت موجود در دایره گالوانائز قطعات، با توجه به تعداد نیروهای کاری در این دایره ۱۲۰۰ ساعت است. بر اساس میزان استفاده هر واحد محصول از این منبع، محدودیت آن به شرح زیر است:

\[0.014 \text{ AIP} + 0 \text{ TEL} + 0.027 \text{ PEN} + 0 \text{ LAMP} + 0.06 \text{ LOCK} + 0.111 \text{ ZON} + 0 \text{ CART} \leq 1200 \text{ ساعت} \]

6- کل محدودیت‌ها در نظر گرفته شده برای جمع‌آوری اطلاعات در این مطالعه پیک دوره ۴ ماهه بوده است.
6- محدودیت منبع چابکی سیلک قطعات (SILK)
میزان طرفی در دسترس این قسمت با توجه به نیروی کار و دستگاه‌ها، در طول دوره مورد بررسی 1000 ساعت می‌باشد که براساس میزان استفاده هر واحد محصول از این فعالیت، محدودیت آن به صورت زیر است:

0.0025 AIP + 0.05 TEL + 0.0027 PEN + 0.029 LAMP
+ 0.019 LOCK + 0 ZON + 0 CART ≤ 1000 (ساعت)

7- محدودیت منبع نیروی انسانی در قسمت مونتاژ (ASSEMBLE)
این محدودیت نشان دهنده میزان نیروی کار در دسترس داره مونتاژ است. با توجه به تعداد نیروهایی کاری در این داره، حداکثر در دسترس این منبع، 1100 ساعت می‌باشد که بر اساس میزان استفاده هر واحد محصول از خدمات این مرکز فعالیت، محدودیت آن بر حسب ساعت بصورت زیر است:

0.56 AIP + 0.84 TEL + 0.17 PEN + 0.7 LAMP
+ 0.19 LOCK + 0 ZON + 0 CART ≤ 11200 (ساعت)

8- محدودیت منبع قسمت تست و کنترل محصولات (TEST)
با توجه به اینکه مرحله تست قطعات بکی از مراحل اساسی و مهم در تولید محصولات است. بدلیل کمبود دستگاه‌های تست و نیروی متخصص در این قسمت، حداکثر زمان در دسترس در طول دوره مورد بررسی 90 ساعت است که بر حسب میزان استفاده هر واحد محصول از این فعالیت، محدودیت آن به صورت زیر است:

0.055 AIP + 0.083 TEL + 0 PEN + 0.055 LAMP
+ 0.055 LOCK + 0 ZON + 0 CART ≤ 890 (ساعت)

9- محدودیت منبع پخش کنترل کیفیت (Q.C)
از آنجا که محصولات از ایندی اثر و تولید تا مرحله تبدیل به محصول، نیاز به عملیات و مراحل کنترل کیفیت متعدد دارند، این محدودیت نیز با استیس در مدل تعیین ترکیب بهره‌وری تولیدات، منظور شود. بر این اساس، حداکثر زمان در دسترس در طول دوره مورد بررسی برای این قسمت 3240 ساعت است. که با توجه به استفاده هر واحد محصول و دفاتر بازرگانی، این محدودیت به شرح زیر است:

0.05 AIP + 0.112 TEL + 0.07 PEN + 0.05 LAMP
+ 0.083 LOCK + 0.0019 ZON + 0.0005 CART ≤ 3240 (ساعت)

10- محدودیت منبع خدمات فنی و مهندسی (ENG)
این محدودیت نشان‌دهنده امکانات فنی و مهندسی موجود در کارخانه است. با توجه به طول دوره مورد بررسی، میزان در دسترس این منبع 1300 ساعت است. که بر حسب میزان استفاده هر واحد محصول از این فعالیت، محدودیت آن بصورت زیر است:

0.018 AIP + 0.031 TEL + 0.067 PEN + 0.0033 LAMP
+ 0.038 LOCK + 0.0028 ZON + 0.00028 CART ≤ 1200 (ساعت)
(SETUP)
با توجه به اینکه تولید محصولات نیاز به دفعات متعدد فعالیت تنظیم دستگاه مورد بررسی، حداقل زمان در دسترس بار این فعالیت ۱۷۰ ساعت است، که بر حسب استفاده هر واحد محصول از این خدمات این مرکز فعالیت، محدودیت آن بشر زیر است:
۰.۰۲ AIP + ۰.۰۵۴ TEL + ۰.۰۷۵ PEN + ۰.۰۲۲ LAMP + ۰.۰۴۵LOCK + ۰.۰۰۴۳ ZON + ۰.۰۰۰۸۹۹ CART ≤ ۱۱۷۰ (ساعت)

(DEMAND CONS)
از آنجا که میزان تقاضا یکی از محدودیت‌ها مهم در تولید محصولات است، این محدودیت نیز باید در مدل تعیین ترکیب بهینه محصولات در نظر گرفته شود. عدم توجه به این محدودیت موظف تخصیص منابع و ظرفیت‌های تولید به محصولاتی می‌گردد که ممکن است در آینده تقاضای برای آنها وجود نداشته باشد و یا اینکه باعث ایجاد ظرفیت‌های بلااستفاده در سازمان گردد. اما لحاظ کردن آن باعث می‌شود که میزان ظرفیت و امکانات سازمانی با توجه به حجم تقاضای برای هر محصول تعیین شود و منابع اضافی در سایر فعالیت‌ها بکار گرفته شود. برای تعیین تقاضای محصولات تولیدی در این مطالعه، با بررسی تقاضای دوره‌های قبل و استفاده از روش پیش‌بینی "میانگین متحرک" میزان تقاضای هر محصول برای دوره مورد نظر مشخص گردد. تا در مدل تعیین ترکیب بهینه محصولات این محدودیت نیز در نظر گرفته شود.

با توجه به این تابع هدف و محدودیت‌های موجود مدل تعیین ترکیب بهینه تولید محصولات بصورت زیر فرمول‌بندی می‌گردد:

MAX Z : -۱۵۴۶۴AIP + ۱۴۴۱۶TEL + ۸۹۲۸PEN + ۱۵۹۰۸LAMP + ۵۳۹۴LOCK + ۱۰۰ZON-CART (ریال)

۰.۷۲ AIP + ۰.۹ TEL + ۰.۲ PEN + ۰.۰۴۲ LAMP + ۰.۲ LOCK + ۰.۱۳ ZON + ۰.۰۰۱۴ CART ≤ ۵۹۵۰ (ساعت)
۰.۰۵ AIP + ۰.۹ TEL + ۰.۰۵۷ PEN + ۰.۰۲۷۸ LMAP + ۰.۰۰۵۵ LOCK + ۰ ZON + ۰.۰۰۱۳۹ CART ≤ ۲۶۰۰ (ساعت)
۰.۰۲۲ AIP + ۰ TEL + ۰.۰۳۲ PEN + ۰.۰ LAMP + ۰.۰۷۲ LOCK + ۰.۰۷۲ ZON + ۰ CART ≤ ۴۲۶۰ (ساعت)
۰AIP + ۰ TEL + ۰.۰۲۵ PEN + ۰.۰۱۴۲ LAMP + ۰.۰۳۳ LOCK + ۰.۰۰۳۳ ZON + ۰ CART ≤ ۱۵۰۰ (ساعت)
۰.۰۰۲۵ AIP + ۰.۰۵ TEL + ۰.۰۰۲۷ PEN + ۰.۰۲۹ LAMP + ۰.۰۱۹ LOCK + ۰ ZON + ۰ CART ≤ ۱۰۰۰ (ساعت)
۰.۵۶ AIP + ۰.۸۴ TEL + ۰.۱۷ PEN + ۰.۷ LAMP + ۰.۱۹ LOCK + ۰ ZON + ۰ CART ≤ ۱۲۱۰۰ (ساعت)

1 - Movment Average
0.055 AIP + 0.083 TEL + 0 PEN + 0.055 LAMP + 0.055 LOCK + 0 ZON + 0 CART ≤ 890
(n) ساعت
0.05 AIP + 0.112 TEL + 0.07 PEN + 0.05 LAMP + 0.083 LOCK + 0.0019 ZON + 0.0005 CART ≤ 3240
(n) ساعت
0.018 AIP + 0.031 TEL + 0.067 PEN + 0.0033 LAMP + 0.038 LOCK + 0.0028 ZON + 0.00028 CART ≤ 1200
(n) ساعت
0.02 AIP + 0.054 TEL + 0.075 PEN + 0.0022 LAMP + 0.045 LOCK + 0.0043 ZON + 0.00089 CART ≤ 1170
(n) ساعت
AIP ≤ 3150
(تعدادتضاو) TEL ≤ 5150
(تعدادتضاو) PEN ≤ 6500
(تعدادتضاو) LAMP ≤ 2850
(تعدادتضاو) LOCK ≤ 4500
(تعدادتضاو) ZON ≤ 33200
CART ≤ 1963666

3-1- تحلیل نتایج مدل ترکیب بهینه تولید محصولات

پس از ایجاد مدل برنامه‌ریزی خطي و تعیین روابط متغیرها، این مدل توسط ILP حل گردیده که نتایج حل مدل بر حسب محصولات کارخانه، میزان منابع مازاد و کمبود و حدودیت‌های جدول شماره 3 آمده است. با توجه به نتایج حل مدل نتایج کلی آن بر حسب هر کدام از متغیرها در جدول 4 نشان داده شده است.

(Turny, 1997; Kee, 1995; Luebbe, 1992)

جدول 3- خروجی نهایی برنامه کامپیوتری مدل برنامه‌ریزی خطي تعیین ترکیب بهینه محصولات تولیدی، منابع و ظرفیت‌های بلااستفاده

<table>
<thead>
<tr>
<th>رشته (Row)</th>
<th>متغیر تصمیم (Decision variable)</th>
<th>راه اندازی (Solution Value)</th>
<th>مقدار مجهز (Unit Cost or Profit)</th>
<th>ضریب افزوده (Total Contribution)</th>
<th>ضریب کاهش (Reduced Cost)</th>
<th>ضریب کاهش (Basis Status)</th>
<th>مقدار محدود (Allowable Min. C(j))</th>
<th>مقدار محدود (Allowable Max. C(j))</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>AIP</td>
<td>0</td>
<td>-1548000</td>
<td>0</td>
<td>-898559</td>
<td>At bound</td>
<td>-M</td>
<td>535255</td>
</tr>
<tr>
<td>2</td>
<td>TEL</td>
<td>55500</td>
<td>1401000</td>
<td>532234000</td>
<td>0</td>
<td>Basic</td>
<td>80358463</td>
<td>M</td>
</tr>
<tr>
<td>3</td>
<td>MEDAIX</td>
<td>650000</td>
<td>8920000</td>
<td>599800000</td>
<td>0</td>
<td>Basic</td>
<td>535255</td>
<td>M</td>
</tr>
<tr>
<td>4</td>
<td>LAMP</td>
<td>2850000</td>
<td>1590000</td>
<td>451370000</td>
<td>0</td>
<td>Basic</td>
<td>535255</td>
<td>M</td>
</tr>
<tr>
<td>5</td>
<td>LOCK</td>
<td>4087000</td>
<td>5594000</td>
<td>202407500</td>
<td>0</td>
<td>Basic</td>
<td>540542</td>
<td>900682</td>
</tr>
<tr>
<td>6</td>
<td>ZON</td>
<td>7020000</td>
<td>100900</td>
<td>702093000</td>
<td>0</td>
<td>Basic</td>
<td>0</td>
<td>997188</td>
</tr>
<tr>
<td>7</td>
<td>CART</td>
<td>0</td>
<td>-1000</td>
<td>0</td>
<td>-1000</td>
<td>At bound</td>
<td>-M</td>
<td>0</td>
</tr>
</tbody>
</table>

تابع توابع (Objective Function) (MAX) = -20000000 + 0.000005(MC)

<table>
<thead>
<tr>
<th>رشته (Row)</th>
<th>متغیر تصمیم (Decision variable)</th>
<th>راه اندازی (Solution Value)</th>
<th>مقدار مجهز (Unit Cost or Profit)</th>
<th>ضریب افزوده (Total Contribution)</th>
<th>ضریب کاهش (Reduced Cost)</th>
<th>ضریب کاهش (Basis Status)</th>
<th>مقدار محدود (Allowable Min. RHS)</th>
<th>مقدار محدود (Allowable Max. RHS)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>LABDProd</td>
<td>3613306</td>
<td>95000</td>
<td>234569</td>
<td>523400</td>
<td>0</td>
<td>-M</td>
<td>3613306</td>
</tr>
<tr>
<td>2</td>
<td>IN_DPhc</td>
<td>913480</td>
<td>26000</td>
<td>10685.3</td>
<td>0</td>
<td>0</td>
<td>913480</td>
<td>149680</td>
</tr>
<tr>
<td>3</td>
<td>PRESS</td>
<td>1000327</td>
<td>24600</td>
<td>2225372</td>
<td>0</td>
<td>0</td>
<td>1000327</td>
<td>2225372</td>
</tr>
<tr>
<td>4</td>
<td>TRASH</td>
<td>361017</td>
<td>15000</td>
<td>113681</td>
<td>0</td>
<td>0</td>
<td>361017</td>
<td>113681</td>
</tr>
<tr>
<td>5</td>
<td>GAL_Varix</td>
<td>1200000</td>
<td>12000</td>
<td>0</td>
<td>900900</td>
<td>0</td>
<td>900900</td>
<td>0</td>
</tr>
<tr>
<td>6</td>
<td>SILK</td>
<td>4355000</td>
<td>18000</td>
<td>43431</td>
<td>0</td>
<td>0</td>
<td>4355000</td>
<td>0</td>
</tr>
<tr>
<td>7</td>
<td>LABD_Agave</td>
<td>8205582</td>
<td>1120000</td>
<td>59941</td>
<td>0</td>
<td>0</td>
<td>8205582</td>
<td>0</td>
</tr>
<tr>
<td>8</td>
<td>TEST</td>
<td>809900</td>
<td>2000</td>
<td>97809.9</td>
<td>0</td>
<td>0</td>
<td>809900</td>
<td>97809.9</td>
</tr>
<tr>
<td>9</td>
<td>QC_2</td>
<td>1528882</td>
<td>2100</td>
<td>17131</td>
<td>0</td>
<td>0</td>
<td>1528882</td>
<td>17131</td>
</tr>
<tr>
<td>10</td>
<td>ENG</td>
<td>779528</td>
<td>2390</td>
<td>230731</td>
<td>0</td>
<td>0</td>
<td>779528</td>
<td>230731</td>
</tr>
<tr>
<td>11</td>
<td>SLT_U</td>
<td>985985</td>
<td>1007</td>
<td>2115</td>
<td>0</td>
<td>0</td>
<td>985985</td>
<td>2115</td>
</tr>
<tr>
<td>12</td>
<td>AIP_demand</td>
<td>0</td>
<td>3150</td>
<td>0</td>
<td>3150</td>
<td>0</td>
<td>3150</td>
<td>0</td>
</tr>
<tr>
<td>13</td>
<td>TEL_demand</td>
<td>3150000</td>
<td>3150</td>
<td>0</td>
<td>3150</td>
<td>0</td>
<td>3150000</td>
<td>0</td>
</tr>
<tr>
<td>14</td>
<td>MEDAIX_demand</td>
<td>6500000</td>
<td>65000</td>
<td>0</td>
<td>89855</td>
<td>0</td>
<td>6500000</td>
<td>0</td>
</tr>
<tr>
<td>15</td>
<td>LAMP_demand</td>
<td>2850000</td>
<td>28500</td>
<td>0</td>
<td>20568.2</td>
<td>0</td>
<td>2850000</td>
<td>20568.2</td>
</tr>
<tr>
<td>16</td>
<td>LOCK_demand</td>
<td>4087000</td>
<td>4087</td>
<td>0</td>
<td>4122.7</td>
<td>0</td>
<td>4087000</td>
<td>0</td>
</tr>
<tr>
<td>17</td>
<td>ZON-demand</td>
<td>7020000</td>
<td>332000</td>
<td>0</td>
<td>26396.1</td>
<td>0</td>
<td>7020000</td>
<td>0</td>
</tr>
<tr>
<td>جدول ۴ - ترکیب بهینه تولید محصولات بر اساس مدل پیشنهادی</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>---------------------------------</td>
<td>---------------------------------</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>نام محصول</td>
<td>رنگ</td>
<td>تولید بهینه</td>
<td>سود کل (ریال)</td>
<td>میزان تقاضا</td>
<td>دسترسی</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>----------------</td>
<td>-----</td>
<td>--------------</td>
<td>----------------</td>
<td>------------</td>
<td>--------</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>۱</td>
<td>۱</td>
<td>۱۲۰۰۰</td>
<td>۱۲۴۱۶</td>
<td>۵۱۰۰۰۰</td>
<td>۱۴۱۴۱۶</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>۲</td>
<td>۲</td>
<td>۱۱۰۰۰۰۰</td>
<td>۷۳۶۰۰۰۰</td>
<td>۱۴۱۴۱۶</td>
<td>۱۴۱۴۱۶</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>۳</td>
<td>۳</td>
<td>۳۶۵۰۰</td>
<td>۳۶۵۰۰۰</td>
<td>۵۸۰۰۰۰۰</td>
<td>۵۸۰۰۰۰۰</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>۴</td>
<td>۴</td>
<td>۴۶۵۰۰۰۰۰</td>
<td>۴۶۵۰۰۰۰۰</td>
<td>۵۸۰۰۰۰۰</td>
<td>۵۸۰۰۰۰۰</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>۵</td>
<td>۵</td>
<td>۳۶۵۰۰۰۰۰</td>
<td>۳۶۵۰۰۰۰۰</td>
<td>۴۶۵۰۰۰۰۰</td>
<td>۴۶۵۰۰۰۰۰</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>۶</td>
<td>۶</td>
<td>۳۶۵۰۰۰۰۰</td>
<td>۳۶۵۰۰۰۰۰</td>
<td>۳۶۵۰۰۰۰۰</td>
<td>۳۶۵۰۰۰۰۰</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>۷</td>
<td>۷</td>
<td>۳۶۵۰۰۰۰۰</td>
<td>۳۶۵۰۰۰۰۰</td>
<td>۲۶۵۰۰۰۰۰</td>
<td>۲۶۵۰۰۰۰۰</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

جمع سود کل طی دوره ۲۰۰۵۱۲۹۰۰ ریال است.
(LABORTOLID)

1- منع نیروی انسانی در داراوهای ساخت فلزات
نتایج مدل بینهنه تولید محصولات نشان می دهد که میزان در دسترس ایس منبع 0595
ساعت است. که حداقل 1377 ساعت متواند کاهش یابد بر این اساس میزان مازاد آن
2283 ساعت است که نشان دهنده ظرفیت بالا استفاده به یافته است. بنابراین این فعالیت به عنوان
یک فعالیت بدون ارزش افزوده می باشد. اطلاعات حاصل از حل مدل نیز نشان می دهد که
ارزش سایه‌ای این منبع برای با صفر است. بدین‌نیت است که یکی از دور تا با رابطه
ارزش سایه‌ای است که کاملاً مصرف شده باشد و دارای میزان اضافی نباشد. بدین‌نیت است
که افزایش این منبع هیچ تأثیر مثبتی بر افزایش سود آوری ندارد و باعث سروزی برای تا میزان
این فعالیت کاهش یابد و با در سایر فعالیت‌های دیگر که دارای ارزش افزوده می‌باشد بکار
گرفته شود.

(INjplastic)

2- منع دستگاه تزریق پلاستیک
نتایج حاصل از حل مدل نشان می دهد که میزان مورد نیاز این منبع برای تولید بینهنه
محصولات 95 ساعت است با توجه به حجم مתناوب در دسترس (200 ساعت) میزان
مازاد و ظرفیت بلافاصله آن برای با 184 ساعت است بنابراین این فعالیت نیز یک
فعالیت بدون ارزش افزوده است و از طرفی قیمت سایه‌ای آن نیز برای با صفر است. بر
این اساس افزودن این منبع تأثیر مثبتی بر افزایش سودآوری محصولات کارخانه ندارد
و باعث افزایش سودآوری می‌شود. لذا این منبع سایر محدودیت‌هایی که باعث عدم استفاده کامل از آن
به وجود نمی‌رود. را شناسایی و حذف نمود.

(PRESS)

3- منع دستگاه پرس (یری)
نتایج حاصل از حل مدل نشان می دهد که میزان مورد نیاز این منبع برای تولید بینهنه
محصولات 119 ساعت است که با توجه به حجم در دسترس (200 ساعت) میزان
مازاد و ظرفیت بلافاصله آن برای با 1946 ساعت است بنابراین این فعالیت یک
فعالیت بدون ارزش افزوده است و جوین قیمت سایه‌ای آن نیز برای با صفر است. افزایش
این فعالیت تأثیر مثبتی افزایش سودآوری محصولات کارخانه ندارد و باعث افزایش افزایش
مازاد این منبع سایر محدودیت‌هایی که باعث عدم استفاده کامل از آن می‌شود را شناسایی و
حذف نمود.

(TRASH)

4- منع دستگاه‌های سری تراش
نتایج حاصل از حل مدل نشان می دهد که حجم مورد نیاز این منبع 974 ساعت است
که با توجه به میزان در دسترس آن (500 ساعت) میزان مازاد و ظرفیت بلافاصله آن برای
با 127 ساعت است بنابراین این فعالیت، یک فعالیت بدون ارزش افزوده است و افزایش
آن تأثیری در افزایش سودآوری محصولات کارخانه ندارد.

(GALVAAnizeh)

5- منع ساعت در دسترس قسمت گالوانته
نتایج حاصل از حل مدل نشان می دهد که میزان مورد نیاز این منبع برای حفظ
ترکیب بهینه تولید محصولات، 1200 ساعت است و با توجه به میزان در دسترس
(1200 ساعت) میزان و ظرفیت بلافاصله آن برای با صفر است بنابراین این منبع دارای

ارزش افزوده است و از طرفی قیمت سایه‌ای آن نیز برابر با ۱۰۱۰۱ریال است. بنابراین نتایج
حل مدل به ازای افزایش هر واحد از این منبع، ۱۰۱۰۱ریال به سود تهیه کارخانه اضافه
می‌گردد. بنابراین افزایش این منبع باعث سود‌آوری می‌گردد و باید تقویت گردد.
(SILKE)

۶- منبع ساعت‌های در دسترس قسمت چاه سیلک

نتایج حاصل از حل مدل نشان می‌دهد که حجم مورد نیاز این منبع ۴۴۳ساعت
است و با توجه به میزان در دسترس آن (۱۰۰۰ساعت)، مازاد و طرفیت بلااستفاده آن
۵۷ساعت است. بنابراین این منبع یک منبع بسیار ارزش‌آفرزش است و از طرفی قیمت سایه‌ای آن
نیز برابر با صفر است. بنابراین افزودن آن تاثیری بر افزایش سود آوری محصولات
کارخانه ندارد و باید برای یک کارگر مازاد این منبع سایر محدودیت‌هایی که باعث عدم
استفاده کامل از آن می‌شود را شناسایی و حذف نمود. و با مازاد آن را در بخش‌هایی که
نیاز به نیروی انسانی دارند بکار گرفت.

(LABOR Assemble)

۷- منبع نیروی کار در قسمت مونتاژ

نتایج حاصل از حل مدل نشان می‌دهد که حجم مورد نیاز این منبع ۲۸۱ساعت
است و با توجه به میزان در دسترس (۱۲۰۰ساعت)، طرفیت بلااستفاده آن
۲۹۱ساعت است. بنابراین این منبع یک منبع بسیار ارزش‌آفرزش است و از طرفی قیمت سایه‌ای آن
نیز برابر با صفر است. بنابراین افزودن آن تاثیری بر افزایش سود آوری محصولات
کارخانه ندارد و باید برای یک کارگر مازاد این منبع سایر محدودیت‌هایی که باعث عدم
استفاده کامل از آن می‌شود را شناسایی و حذف نمود.

(TEST)

۸- منبع نیروی کار در قسمت تست

نتایج حاصل از حل مدل نشان می‌دهد که حجم مورد نیاز این منبع ۳۸۱ساعت
است و با توجه به میزان در دسترس (۸۹۰ساعت)، طرفیت بلااستفاده آن
۵۸۳ساعت است. بنابراین این منبع یک منبع بسیار ارزش‌آفرزش است و از طرفی قیمت
سایه‌ای آن نیز برابر با صفر است. بنابراین افزودن آن تاثیری بر سود‌آوری
محصولات کارخانه ندارد و باید برای یک کارگر مازاد این منبع سایر محدودیت‌هایی که
باعث عدم استفاده کامل از آن می‌شود را شناسایی و حذف نمود.

(AIPdemand)

۹- محدودیت مربوط به تقاضا برای محصول آیفون

با توجه به اینکه میزان سود‌آوری هر واحد از این محصول برای کارخانه ۱۵۴۶-
ریال است، بنابراین تولید بهبود آن برای با صفر باشد و تولید این محصول برای
کارخانه دارای ارزش افزوده نمی‌باشد از طرفی قیمت سایه‌ای این محصول نیز برابر با
صفر تعیین شده است. بنابراین اساس تولید این محصول با باید موفق شود و یا با
بکارگیری روش‌های مؤثر تولید، به‌این‌عرض این تولید به‌این‌عرض کار خود به

(TELdemand)

۱۰- محدودیت مربوط به تقاضا برای محصول تلفن

با توجه به اطلاعات به‌این‌عرض شده محصولات تولیدی که از روش ABC
محاسبه
شد، تولید هر واحد از این محصول برای کارخانه ۴۴۱۶۱ریال سود‌آوری دارد و با
با توجه به میزان تقاضا برای آن، تولید بهبود دقتی برای با میزان تقاضا تعیین شده است.
به عبارتی میزان تولید این محصول با باید تا اندازه‌ای که تفاوت‌آوری برای آن وجود داشته
قياس تفاوت فعلياً بين دراية ارزش افروده است كمدير بابد با توجه به اين نكته سعي در افزايش تفاوت برای محصول داشته باشد. ارزش سایه در توليد اين محصولات نيز نشان مي دهد كه توليد هر واحد از اين محصول دراري ارزش سایه در 1446 برادر (ميزان سوداوری ان محصول) اين محصول است.

(например سوداوری ان محصول) است.

- محصولات مربوط به تفاوت برای محصول مداوم تراش (PEN-demand)
با توجه به اطلاعات بهاي تمام شده، سود هر واحد از اين محصول گردرگه است که با کارخانه برادر 820 ريال است كه با توجه به ميزان تفاوت براي اين محصول، ميزان توليد بهينه ديققاً برای اين افزایش تفاوت تعين شده است. بنابراین افزایش تفاوت برای اين محصول، یک فعالیت دراية ارزش افزوده است که مدیریت باید با توجه به این نکته سعی در افزایش تفاوت برای توليد اين محصول داشته باشد. ارزش سایه توليد این محصول نيز نشان مي دهد كه توليد هر واحد از اين محصول دراري ارزش سایه در 1446 ريال (ميزان سوداوری ان محصول) است.

- محصولات مربوط به تفاوت برای محصول لامپ (LAMP-demand)
با توجه به اطلاعات بهاي تمام شده، توليد هر واحد از اين محصول 1590 ريال برای کارخانه دراري سود مياشد و ميزان توليد بهينه آن برابر با ميزان تفاوت مي باشد. بنابراین محصولات تفاوت یک محصولات اساسی است. بر اين اساس افزایش تفاوت برای اين محصول، یک فعالیت دراية ارزش افزوده است که مدیریت باید با توجه به اين نکته سعی در افزایش تفاوت برای محصولات داشته باشد. ارزش سایه توليد اين محصول نيز نشان مي دهد كه توليد هر واحد از اين محصول دراري ارزش سایه در 1498 ريال (ميزان سوداوری ان محصول) است.

- محصولات مربوط به تفاوت برای محصول فقتل (LOCK-demand)
با توجه به اطلاعات بهاي تمام شده، سود حاصل از توليد هر واحد از اين محصول، 85394 ريال است و ميزان توليد بهينه آن برابر با ميزان تفاوت مي باشد. بنابراین محصولات تفاوت یک محصولات اساسی است. بر اين اساس افزایش تفاوت برای اين محصول، یک فعالیت دراية ارزش افزوده است.

- محصولات مربوط به تفاوت برای محصول زونکن (ZON-demand)
بر اساس نتایج اطلاعات محاسبه بهاي تمام شده، توليد هر واحد از اين محصول برای کارخانه 100 ريال سوداوری دارد و ميزان توليد بهينه آن برابر 17697 واحد است. بنابراین اين محصولات مي گردد كه ميزان تفاوت 29750 واحد بيش از ميزان توليد بهينه است. اين موضوع نشان مي دهد كه علیرغم سوداوری توليد اين محصولات تفاوت بين توليد بهينه، ميزان توليد بهينه كمتر از تفاوت تعین شده است که اين مسئله به اين دليل است كه با توجه به اينکه سوداوری اين محصول نسبت به ساير محصولات كمتر است، منابع در دسترس ابتدا به توليد محصولات سوداوری بيشتر تخصيص مي یابند مبنای مانده به توليد محصولات سوداوری اگرچه سوداور است اما جون
5-10 محدودیت مربوط به نکات برای محصول کاری تلفن (CARTdemand) به نسبت به حجم آن محصول دارای ارزش افزوده نمی‌باشد و نباید تقویت گردد.

با توجه به اطلاعات محاسبه به‌ای جانب تمام شده ملاحظه گردد که تولید هر واحد از این محصول دارای ۱-۲ بیل می‌باشد. بنابراین تولید این محصول برای کارخانه، دارای ارزش افزوده نمی‌باشد و علیرغم اینکه نقاطی زاید بیل بر آن وجود دارد، باید از برنامه تولید خارج گردد و یا به کارگیری روش‌های مؤثر تولید، هزینه‌های تولید آن را کاهش داد. از طرفی قیمت سایه‌ای این محصول نیز برای با صفر تعیین شده است.

3-5 تحلیل هزینه‌های هزینه تولید بر اساس نتایج مدل بهینه تولید، میزان تولید هر محصول و حجم فعالیت‌ها و منابع مورد نیاز مشخص گردید. بنابراین توجه به نسبت خانه در دسترس بودن، بخشی از منابع موجود در کارخانه بطور مصرفی برای استفاده یافته می‌ماند که با افزایش تقاضا برای محصولات کارخانه و با ارائه خدمات به متقاضیان بیرون از کارخانه این ال‌وی‌های تولید به سرعت استفاده گردید. در جدول شماره (۵) هزینه‌های استفاده منابع و هزینه‌های مصرفی در حالی بهینه تولید محصولات نشان داده شده است. ملاحظه می‌گردد که هزینه هزینه‌های Т-۵۰/۱ در هزینه‌های برای با صفری مشخصه بوده که در حالی تولید بهینه است. از این هزینه‌ها باعث افزایش بهای تمام شده محصولات و کاهش سوداوری می‌گردد که برای این مقدار باید راهکارهای لازم برای استفاده بهتر از تولید را پیدا کنید و کاهش هزینه‌های هزینه‌های هزینه‌های هزینه‌های (Turny, 1997; Kee, 1995; Lurebbe, 1992)

| هزینه کل محصول (برای بسته‌های ۲۵۰۰۰) | هزینه هزینه هزینه محصول (برای بسته‌های ۲۵۰۰۰) | هزینه محصول (بسته‌های ۲۵۰۰۰) | تعداد محصول | رنگ | رنگ | رنگ |
|---|---|---|---|---|---|
| ۲۰۲۸۳۰۰۰ | ۱۵۰۰۰ | ۲۰۶۰۸۰۰ | ۱۰۰۰۰۰۰ | ۱ | ۱ | ۱ |
| ۲۰۶۲۰۰۰ | ۲۰۰۰۰۰ | ۲۰۰۰۰۰۰ | ۲۰۰۰۰۰۰ | ۲ | ۲ | ۲ |
| ۲۰۰۸۰۰۰ | ۳۰۰۰۰۰ | ۲۰۰۰۰۰۰ | ۲۰۰۰۰۰۰ | ۳ | ۳ | ۳ |
| ۲۰۰۰۰۰۰ | ۵۰۰۰۰۰ | ۲۰۰۰۰۰۰ | ۲۰۰۰۰۰۰ | ۴ | ۴ | ۴ |
| ۲۰۰۵۰۰۰ | ۵۰۰۰۰۰ | ۲۰۰۰۰۰۰ | ۲۰۰۰۰۰۰ | ۵ | ۵ | ۵ |
| ۲۰۰۲۰۰۰ | ۲۰۰۰۰۰ | ۲۰۰۰۰۰۰ | ۲۰۰۰۰۰۰ | ۶ | ۶ | ۶ |
| ۲۰۰۲۰۰۰ | ۵۰۰۰۰۰ | ۲۰۰۰۰۰۰ | ۲۰۰۰۰۰۰ | ۷ | ۷ | ۷ |
| ۲۰۰۰۰۰۰ | ۲۰۰۰۰۰ | ۲۰۰۰۰۰۰ | ۲۰۰۰۰۰۰ | ۸ | ۸ | ۸ |
| ۲۰۰۰۰۰۰ | ۸۰۰۰۰۰ | ۲۰۰۰۰۰۰ | ۲۰۰۰۰۰۰ | ۹ | ۹ | ۹ |
| ۲۰۰۰۰۰۰ | ۱۰۰۰۰۰۰ | ۲۰۰۰۰۰۰ | ۲۰۰۰۰۰۰ | ۱۰ | ۱۰ | ۱۰ |

جدول ۵- هزینه‌ها و هزینه‌های تولید بسته‌های باز استفاده در مدل بهینه تولید
نتایج و دستاوردها

براساس نتایج حل مدل تغییرات تعداد محصولات و با توجه به تجزیه و تحلیل اطلاعات فعالیت‌ها در سیستم ABC، نتایج و دستاوردهای زیر حاصل گردید:

1- بر اساس نتایج حل مدل تغییرات تعداد محصولات تولیدی کارخانه، محصولات لامپ کم مصرف، مداد نازک، قفل درب بر باز کردن و تلفن برق میزان تقاضای مورد نیاز برای آنها باید ساخته شوند. اما محدودیت‌های تقاضایی و کارهای لمسی تلفن بادی زیان‌آور برای سازندگی به تولید ندارند. در واقع در حالت بهینه برای تولید این محصولات، سودآوری بجز محدودیت تقاضای بیش از حد بهره‌برداری می‌رود.

2- برای محصولات زنگ‌نگین در حالت جواب بهینه موثر نیست. بنابراین برای کسب سود بالاتر از این محصولات، باید جهان رنگ و نریش آنها افزایش بیابد. اما محدودیت تقاضا برای محصولات زنگ‌نگین در حالت جواب بهینه وجود دارد. از آنجا که سایر محصولات نسبت به این محصولات در مقایسه با منابعی که محدودیت تمام دارند سود بالاتری را ایجاد می‌کنند.

3- نتایج حاصل از حل مدل طرفین‌های تمستده و حداکثر مناسبی که از هر منبع باید در دسترس باشد را نشان می‌دهد بر این اساس، اگر حجم منابع موجود از این حجم کمتر شود بر جواب بهینه مؤثر است و باعث تغییر منطقه موجه می‌گردد. اما افزایش این منابع بر جواب بهینه تاثیری نیز ندارد. این ایده در این ابعاد طرفین‌های اضافی ساماندهی است که از آنجا در حالت تغییر تعداد کمپنی تولیدی طرفین‌های باعث کاهش بهبود شده استفاده موثر از منابع سازمانی می‌گردد. بر اساس این نتایج در حالت بهینه بر روی منطقه موجی قرار دادن دارای ارزش بهبود منابع پایین‌تر. افزایش این منابع در یک محدوده خاص باعث افزایش سود کل می‌گردد.

4- با استفاده از نتایج طراحی سیستم ABC و حل مدل بهینه تولید، اطلاعات مناسبی در مورد کنترل و اداره کردن منابع و فعالیت‌ها حاصل گردید. بطوری که در ضمن از قسمت‌های حجم منابع و تراکم نریو انسانی زیاد مقابله و در بعضی از پیش‌های کمبود نریو انسانی وجود دارد نتایج نشان می‌دهند از این اطلاعات می‌توان در جابجایی و آرایش مجدد منابع کمک‌گر به شورت.

5- مهارت‌های محدودیتی که بر جواب بهینه تغییرات تولید محصولات و ایجاد طرفین‌های با استفاده سازمانی مؤثر است، محدودیت فروش محصولات است. برای رفع این
ترکیب سیستم هزینه‌برای بر مبنای فعالیت ...

محدهدیت، بايد با بکارگیری روشهای که در افزایش حجم فروش موثر باشد، میزان فروش محصولات را افزایش دهد. به هنگام محدودیت دقیقا باعث ایجاد ظرفیت‌های بلا استفاده و ایجاد فعالیت‌های بدون ارزش انرژی می‌گردد. بطوریکه در طول دوره مورد بررسی نسبت هزینه‌های ظرفیت‌بلا استفاده به سود خالص کسب شده برای با 10% باید.

5- یکی از عواملی که در این کارخانه بر افزایش سود اوری و کاهش هزینه‌های سازمانی موثر است، کاهش کلی از طرفیت‌های با ایجاد فرق و عدم استفاده کامی از ماده و امکانات می‌گردد. به عبارتی کلی از طرفیت‌های باعث می‌گردد تا حداکثر طرفیت تولید شود. به حداکثر طرفیت کلی از طرفیت‌های باید تقویت گردد. عبارتند از: فعالیت‌های تولید، دست و کش و...

6- یکی دیگر از نتایج این تحقیق، شناسایی فعالیت‌های بدون ارزش انرژی است. با استفاده از این الگوهای می‌توان فعالیت‌های بدون ارزش انرژی را حذف و از این طریق هزینه‌های سازمانی را کاهش داد و به تقویت و توسیع فعالیت‌های دارای ارزش، سود‌آوری سازمانی را افزایش داد.
منابع و مآخذ

منابع فارسی
رجبی، احمد (1382). کاربرد سیستم مدیریت برمنایی فعالیت در کاهش هزینه‌های نظام بیمارستانی مقاله پذیرفته شده در اولین همایش مدیریت بیمارستانی، تهران.
نمازی، محمد (1378). بررسی سیستم هزینه‌بایی بر مبنای فعالیت در حسابداری مدیریت و ملاحظات رفتاری آن، بررسی‌های حسابداری و حسابرسی، سال هفتم، شماره 26 و 27، 1376-77.

منابع لاتین
Turny, P. (1997). Activity Based Costing, Kogan Page,

