| تعداد نشریات | 61 |
| تعداد شمارهها | 2,223 |
| تعداد مقالات | 18,061 |
| تعداد مشاهده مقاله | 55,782,795 |
| تعداد دریافت فایل اصل مقاله | 28,991,766 |
بهبود مدیریت موثر عدم قطعیت در تصمیم گیری های نظامی با استفاده از عامل های شناختی، دسته بندی براساس قوانین وابستگی فازی و انتخاب ژنتیکی قوانین | ||
| مطالعات مدیریت صنعتی | ||
| مقاله 7، دوره 14، شماره 42، مهر 1395، صفحه 199-237 اصل مقاله (1.37 M) | ||
| نوع مقاله: مقاله پژوهشی | ||
| شناسه دیجیتال (DOI): 10.22054/jims.2016.5720 | ||
| نویسندگان | ||
| مجتبی هروی1؛ تبسم عظیمی گله2؛ حسام زند حسامی3 | ||
| 1کارشناسی ارشد مهندسی دانش و علوم تصمیم دانشگاه ازاد اسلامی واحد قزوین | ||
| 2کارشناس ارشد مدیریت بازرگانی - بازار یابی شرکت توزیع نیروی برق اهواز | ||
| 3استادیار گروه مدیریت صنعتی دانشگاه آزاد اسلامی واحد قزوین | ||
| چکیده | ||
| تصمیم گیری یکی از مهمترین موضوعات مورد بررسی در تحقیقات نظامی بشمار می رود. یکی از چالش های موجود در این بحث وجود عدم قطعیت در محیط های جنگی می باشد که تاثیرات مخربی بر کیفیت و دقت تصمیم گیری می گذارد. در مقاله هروی و همکارانش، چاپ شده در سال 2193 ، بکارگیری ترکیبی از دو موضوع عامل های شناختی و دسته بندی براساس قوانین وابستگی فازی به عنوان زمینه های موثر و پرکاربرد، توانسته بود تا حدودی این مسئله را کمرنگ کرده و سعی در کاهش عدم قطعیت داشته باشد. ولی هم چنان در شرایط حساس و بحرانی، نیاز به سرعت عمل بیشتر با حذف قوانین نامعتبر و ناکارای استخراج شده در اتخاذ تصمیمهای موثرتر قابل انکار نیست. هدف این مقاله، بهره گیری از ظرفیت های الگوریتم ژنتیک در انتخاب قوانین واقعبینانهتر به عنوان یک روش فراابتکاری در تکمیل روش قبلی بصورت ترکیبی، برای کاهش هرچه بیشتر عدم قطعیت در تصمیم گیری ها می باشد. نتایج تجربی بدست آمده در مقایسه با روش پیشین، به روشنی نشان می دهد که این ترکیب علاوهبر مزیتهای روش قبل، بدلیل کاهش هرچه بیشتر قوانین تولید شده برای اتخاذ تصمیم، قابل فهم تر، دقیقتر و ریسک پذیری عاقلانهتری دارد. | ||
| کلیدواژهها | ||
| تصمیم گیری؛ مدیریت عدم قطعیت؛ جنگ های نامتقارن؛ عامل های شناختی؛ دسته بندی براساس قوانین وابستگی فازی؛ انتخاب ژنتیکی قوانین | ||
| مراجع | ||
|
Albus James S. and Barbera Anthony J., (2005). RCS: A cognitive architecture for intelligent multi-agent systems, Annual Reviews in Control, no.29, pp.87–99. Anandhavalli M., Suraj Kumar Sudhanshu, Ayush Kumar and Ghose M.K., (2009). Optimized association rule mining using genetic algorithm, Advances in Information Mining, Volume 1, Issue 2, pp.01-04. Anderson B. F., Deane D. H., Hammond K. R., and McClelland G. H., (1981). Concepts in judgment and decision research, New York: Praeger. Anderson J.R., (1996). Act: a simple theory of complex cognition, American Psychologist, vol.51, pp. 355–365. Ascough II J.C., Maier H.R., Ravalico J.K., and Strudley M.W., (2008). Future research challenges for incorporation of uncertainty in environmental and ecological decision-making, Ecological Modelling. Bratman M. E., Israel D. J., and Pollack M. E., (1988). Plans and resource-bounded practical reasoning, Computational Intelligence, Vol.4, pp. 349-355. Castro Sidney de, Marietto Maria das Graças Bruno, França Robson dos Santos, and Botelho Wagner Tanaka, (2012). A Multi-Agent System for Information Management and Augmented Reality in Asymmetric Wars, The 7th International Conference for Internet Technology and Secured Transactions. Chen Zuoliang, and Chen Guoqing, (2008). Building an Associative Classifier Based on Fuzzy Association Rules, International Journal of Computational Intelligence Systems, vol.1, no.3, pp. 262-273. Cil Ibrahim, and Mala Murat, (2010). A multi-agent architecture for modelling and simulation of small military unit combat in asymmetric warfare, Expert Systems with Applications, vol.37, pp.1331-1343. Cordesman A., (2002). Terrorism, asymmetric warfare, and weapons of mass destruction: Defending the US homeland, Praeger Publishers. Evertsz R., Ritter F.E., Busetta P., and Pedrotti M., (2008). Realistic behaviour variation in a BDI-based cognitive architecture, In: Proceedings of SimTecT. SIAA Ltd, Melbourne, Australia. Friedenberg J. and Silverman G., (2006). Cognitive Science: The Study of Mind, Sage Publications. Ghosh Soumadip, Biswas Sushanta, Sarkar Debasree and Sarkar Partha Pratim, (2010). Mining Frequent Itemsets Using Genetic Algorithm, International Journal of Artificial Intelligence & Applications (IJAIA), Vol.1, No.4. Gilbert N., and Troitzsch K.G., (2005). Simulation for the Social Scientist, 2nd ed. Open University Press, MacGraw Hill Education. Goldberg D. E., (1989). Genetic Algorithms in Search Optimization and Machine Learning, Addison-Wesley, Reading, MA. Heravi M. and Azimi Galeh T., (2016). Impact of using Gray Relational Analysis as part of Multiple Attribute Decision Making on the Organization's Knowledge Management, to improve the Evaluation and Ranking of Individuals based on Emotional Intelligence, International Journal of Advanced Biotechnology and Research (IJBR), Vol.7, Special Issue.3, pp. 926–935. Heravi M. and Setayeshi S., (2014). Intelligent and Fast Recognition of Heart Disease based on Synergy of Linear Neural Network and Logistic Regression Method, J. Mazand Univ Med Sci, Vol.24(112), pp. 78–87. Heravi M. and Setayeshi S., (2015). Speed up and more Quality in Recognition of Heart Disease based on a Learner Machine (Hybrid- Linear) and the Effect of Pareto’s Law on the Training Model, The First Conference on Novel Approaches of Biomedical Engineering in Cardiovascular Diseases. Heravi M., Akramizadeh A., Pourakbar M. and Menhaj M.B., (2013). A Hybrid Method for Effective Management of the Uncertainty in Army Decision Making using Cognitive Agents and Classification based on Fuzzy Association Rules, in Proc. of the 13th Iranian Int. Conf. on Fuzzy Systems (IFSC), IEEE Publication, pp.1-6. Heravi M., Azimi galeh T. and Menhaj M.B., (2015a). Modeling of an Associative Classifier based on Fuzzy Association Rules, in Proc. of the International Conference on Research in Science and Technology, Kualalampur, Malaysia. Heravi M., Azimi galeh T. and Zandhessami H., (2015b). Improving the Efficiency of a Classifier based on Fuzzy Association Rules using Genetic Rule Selection, in Proc. of the International Conference on Research in Science and Technology, Kualalampur, Malaysia. Heravi M., Azimi galeh T. and Zandhessami H., (2016). Management of Assessment and Prioritization in the Selection of Suppliers of Electrical Equipment for Electric Power Distribution Companies using Multi Attribute Value Theory (MAVT) as part of a Multi Criteria Decision Making (MCDM), 2nd International conference on Research in Science and Technology (Istanbul – Turkey). Hindriks K., de Boer F., van der Hoek W., and Meyer J.-J., (1999). Agent programming in 3APL, Autonomous Agents and Multi-Agent Systems, vol.2 (4), pp. 357–401. Holland J. H, (1992). Adaptation in Natural and Artificial Systems, MIT Press, Cambridge, MA. Ishibuchi H., Murata T., and Turksen I. B., (1997). Single-objective and two-objective genetic algorithms for selecting linguistic rules for pattern classification problems, Fuzzy Sets and Systems, vol. 89, no.2, pp.135-149. Ishibuchi H., Nakashima T., and Murata T., (2001). Three-objective genetics-based machine learning for linguistic rule extraction, Information Sciences, vol. 136, no. 1-4, pp.109-133. Klein J., (2003). Breve: a 3d simulation environment for the simulation of decentralized systems and artificial life, In: Artificial Life VIII: Proceedings of the Eighth International Conference on Artificial Life Complex Adaptive Systems. MIT Press, Cambridge, MA, USA, pp. 329–334. Koza J. R., (1992). Genetic Programming: On the Programming of Computers by Means of Natural Selection (Complex Adaptive Systems), The MIT Press. Laird J.E., (2008). Extending the soar cognitive architecture, In: Proceeding of the 2008 Conference on Artificial General Intelligence. IOS Press, Amsterdam, The Netherlands, pp. 224–235. Langley P., and Choi D., (2006). A unified cognitive architecture for physical agents, In: AAAI’06: Proceedings of the 21st National Conference on Artificial Intelligence. AAAI Press, pp. 1469–1474. Lawniczak Anna T., and Stefano Bruno N. Di, (2012). Computational intelligence based architecture for cognitive agents, Procedia Computer Science, vol.1, pp.2227-2235. Lu J. and Cheng W., (2007). A genetic-algorithm-based routing optimization scheme for overlay network, In Proceedings of the 3rd International Conference on Natural Computation, Washington, DC, USA. IEEE Computer Society Press, pp. 421-425. Nguyen Loan T.T., Vo Bay, Hong Tzung-Pei and Thanh Hoang Chi, (2012). Classification based on association rules: A lattice-based approach, Expert Systems with Applications, Vol.39, pp.11357–11366. Nguyen Loan T.T., Vo Bay, Hong Tzung-Pei and Thanh Hoang Chi, (2013). CAR-Miner: An efficient algorithm for mining class-association rules, Expert Systems with Applications, Vol.40, pp. 2305–2311. North M., Collier N., and Vos J., (2006). Experiences creating three implementations of the repast agent modeling toolkit, ACM Transactions on Modeling and Computer Simulation, vol.16 (1). Russell S. and Norvig P., (2009). Artificial Intelligence: A Modern Approach, 3rd ed., Prentice-Hall, pp.40-46. Sun R., (2007). Cognitive social simulation incorporating cognitive architectures, IEEE Intelligent Systems, vol.22 (5), pp. 33–39. Takahashi S., Sallach D., and Rouchier J., (2007). Advancing Social Simulation: The First World Congress, Springer-Verlag, Berlin. Wang Xin, and et al., (2012). Mining axiomatic fuzzy set association rules for classification problems, European Journal of Operational Research, Vol.218, pp. 202–210. Weiss Gerhard, (1999). Multi agent Systems: A Modern Approach to Distributed Modern Approach to Artificial Intelligence, The MIT Press. Weyns Danny, (2010). Architecture Based Design of Multi-Agent Systems, Springer Heidelberg Dordrecht London New York, pp.35-39. Xu J., and Chen H., (2005). Criminal network analysis and visualization, Communications of the ACM (CACM), vol.48, pp. 100– 107. Yang A., Curtis Abbas, H. A., and Sarker R, (2008). NCMAA: A network centric multi-agent architecture for modeling complex adaptive systems, The Artificial Life and Adaptive Robotics Laboratory Technical Report Series. Yuan B. and Gallagher M., (2003). Playing in Continuous Spaces: Some Analysis and Extension of Population-Based Incremental Learning, IEEE Evolutionary Computation | ||
|
آمار تعداد مشاهده مقاله: 2,316 تعداد دریافت فایل اصل مقاله: 1,424 |
||