| تعداد نشریات | 61 |
| تعداد شمارهها | 2,226 |
| تعداد مقالات | 18,178 |
| تعداد مشاهده مقاله | 55,972,517 |
| تعداد دریافت فایل اصل مقاله | 29,024,503 |
بخشبندی قیمتی بازار خودروی سواری ایران و رتبهبندی خودروها در بخشهای قیمتی با استفاده از روش ترکیبی دیمتل خوشه بندی دو - مرحله ای تاپسیس و وزن دهی دو مرحله ای آنتروپی شانون | ||
| مطالعات مدیریت صنعتی | ||
| مقاله 7، دوره 16، شماره 50، مهر 1397، صفحه 159-192 اصل مقاله (1.1 M) | ||
| نوع مقاله: مقاله پژوهشی | ||
| شناسه دیجیتال (DOI): 10.22054/jims.2018.9110 | ||
| نویسندگان | ||
| طاهره زعفریان1؛ محمد اندبیلی2؛ حسین مومنی3؛ سید اسماعیل نجفی4 | ||
| 1دانشجوی دکتری تخصصی مهندسی صنایع، دانشکده فنی و مهندسی، دانشگاه آزاد اسلامی، واحد علوم و تحقیقات - تهران | ||
| 2کارشناس ارشد آمار، دانشگاه شهید بهشتی تهران | ||
| 3استادیار گروه مدیریت، دانشکده مدیریت و حسابداری، دانشگاه آزاد اسلامی، واحد کرج | ||
| 4استادیار گروه مهندسی صنایع، دانشکده فنی و مهندسی، دانشگاه آزاد اسلامی، واحد علوم و تحقیقات تهران | ||
| چکیده | ||
امروزه بیش از 055 نوع خودروی نو در بازار خودروی ایران وجود دارد که نسبت به دهه گذشته رشد قابل توجهی داشته است. تنوع بالای مدلها امکان انتخاب خودرو را دشوار میسازد. تاکنون مدلی ریاضی جهت بخشبندی و رتبهبندی بازار خودرو توسعه داده نشده است که تعداد خوشههای بهینه توسط الگوریتم و با استفاده از مدل ریاضی تعیین شود و نیز در رتبه بندی، وزن دهی به معیارها بهصورت خودکار صورت پذیرد. پژوهش فوق روشی ترکیبی را توسعه میدهد. ابتدا با استفاده از روش دیمتل، قیمت به عنوان تاثیرپذیرترین معیار انتخاب میشود و سپس براساس روش خوشه بندی دومرحله ای، بخشهای قیمتی بازار بهصورت خودکار شناسایی میشوند. سپس، با استفاده از روش وزندهی آنتروپی شانون دومرحله ای به تمامی امکانات خودروها وزن مناسب تخصیص داده میشود و با استفاده از تاپسیس، رتبه بندی خودروها براساس تمامی مشخصات عملکردی، امکانات، ارزش برند، ارزش استایل و نیز قیمت در داخل بخشهای قیمتی انجام میشود. آزمون همبستگی رتبه ای اسپیرمن نیز جهت مقایسه رتبه بندی مدل با رفتار بازار خودروی ایران انجام شده است. نتایج نشان میدهد که میتوان بازار خودرو را در شش سطح مختلف بخشبندی نمود و نیز در هر بخش قیمتی، قیمت تنها عامل تعیین کننده در مطلوبیت یک خودرو نمیباشد، بلکه ترکیبی وزنی از مشخصات عملکردی، امکانات و قیمت یک خودرو در مقایسه با رقبای موجود در آن بخش، تعیین کننده بهینه ترین انتخاب برای مشتری میباشد | ||
| کلیدواژهها | ||
| الگوریتم خوشه بندی دومرحله ای؛ بخشبندی قیمتی؛ تاپسیس؛ دیمتل | ||
| مراجع | ||
|
Aghabozorgi, S., SeyedShirkhorshidi, A., Wah, T.Y., (2015). Time-series clustering- A decade review, Information Systems, 53, 16-38.
Bacudio R. Lindley , Michael Francis D. Benjamin,Ramon Christian P. Eusebio, Sed Anderson K. Holaysan, Michael Angelo B. Promentilla, Krista Danielle S. Yu, Kathleen B. Aviso, (2016). Analyzing barriers to implementing industrial symbiosis networks using DEMATEL, Sustainable Production and Consumption, 7, 57–65.
Chen, X., (2015). A new clustering algorithm based on near neighbor influence, Expert Systems with Applications, 42 (21), 7746-7758.
Chiu, T., Fang, D., Chen, J., Wang, Y., & Jeris, C. (2001). A Robust and Scalable Clustering Algorithm for Mixed Type Attributes in Large Database Environment, In Proceedings of the 7th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, 263–268.
Damilola F. Arawomo, Augustine C.Osigwe, (2016). Nexus of fuel consumption, car features and car prices: Evidence from major institutions in Ibadan, Renewable and Sustainable Energy Reviews 59, 1220–1228.
Francisco, D., (2012). Poor mental health symptoms among Romanian employees. A Two-Step Cluster analysis, Procedia - Social and Behavioral Sciences, 33, 293-297
Golchinfar, Sh., Bakhtaei, A., (2006). Market Segmentation, Tadbir Journal, 175 (in Persian).
Grace Haaf, C., Jeremy J. Michalek, W. Ross Morrow, Yimin Liu, (2014). Sensitivity of Vehicle MarketShare Predictions to DiscreteChoice Model Specification, Journal of Mechanical Design, 136 (12), 121402.
Graeme P Maxton and John Wormald, (2004). Time for a Model Change, New York: Cambridge University Press.
Heidarzade, A., Mahdavi, I., Mahdavi-Amiri, N., (2016). Supplier Selection Using a Clustering Method Based on a New Distance for Interval Type-2 Fuzzy Sets: A Case Study, Applied Soft Computing, 38, 213-231.
Huifeng, W., Xiaoyu, Z., Xiaojing, L., Peiqiu, L. Weisheng, L. Zhongfeng, L., Yijie, W., Fengkui, P., (2006). Studies on Acute Toxicity of Model Toxins by Proton Magnetic Resonance Spectroscopy of Urine Combined with Two-step Cluster Analysis, Chinese Journal of Analytical Chemistry, 34 (1), 21-25.
Luxburg, U. V., (2007). A tutorial on spectral clustering, Statistics and Computing, 17(4), 395–416.
Matas, Anna; Raymond, josep, (2006). Hedonic prices for cars: An application to the Spanish car market; Universitat Autonoma de Barcelona
Milani, A. S., Shanian, A., & El-Lahham, C., (2008). A decision-based approach for measuring human behavioral resistance to organizational change in strategic planning, Mathematical and Computer Modeling, 48, 1765–1774.
Milani, A. S., Shanian, A., Madoliat, R., & Nemes, J. A., (2005). The effect of normalization norms in multiple attribute decision making models: A case study in gear material selection. Structural and Multidisciplinary Optimization, 29, 312–318.
Min, J., Peng, K. H., (2012). Ranking emotional intelligence training needs in tour leaders: An entropy-based TOPSIS approach, Current Issues in Tourism, 15 (6), 563-576.
Ming-Yi Shih, Jar-Wen Jheng and Lien-Fu Lai, (2010). A Two-Step Method for Clustering Mixed Categorical and Numeric Data. Tamkang Journal of Science and Engineering, 13 (1), 11-19.
Momeni, M., Najafi Moghaddam, E., (2004). Performance analysis of accepted companies in Tehran Stoch Exchange using TOPSIS, Economical Research Journal, 3 (1), 55-75 (in Persian).
Rai, P., Singh, S., (2010). A survey of clustering techniques, International Journal of Compututer Applications, 7 (12), 1–5.
Rao, R. V., Davim, J. P. (2008). Decision-Making Framework Models for Material Selection Using a Combined Multiple Attribute Decision-Making Method, Journal of Advanced Manufacturing Technology, 35, 751–760.
Roy, S., Bhattacharyya, D. K., (2005). An approach to find embedded clusters using density based techniques. Lecture Notes in Computer Science, 3816, 523–535.
Satish, S.M., Bharadhwaj, S., (2010). Information search behaviour among new car buyers: A two-step cluster analysis, IIMB Management Review 22, 5-15.
Şchiopu, D., (2010). Applying TwoStep Cluster Analysis for Identifying Bank Customers’ Profile. Seria ŞtiinŃe Economice, 62 (3), 66-75.
Shao, J., Ahmadi, Z., Kramer, S., (2014). Prototype-based learning on concept-drifting data streams. In SIGKDD, 412–421.
Singh, R. K., Benyoucef, L., (2011). A fuzzy TOPSIS based approach for e-sourcing, Engineering Applications of Artificial Intelligence, 24, 437–448.
Srdjevic, B., Medeiros, Y. D. P., & Faria, A. S. (2004). An objective multi-criteria evaluation of water management scenarios. Water Resources Management, 18, 35–54.
Triantaphyllou, E., Shu, B., Sanchez, N., Ray, T., (1998). Multi-Criteria Decision Making: An Operations Research Approach, Encyclopedia of Electrical and Electronics Engineering, 15, 175-186.
Wang, Y. J., (2008). Applying FMCDM to Evaluate Financial Performance of Domestic Airlines in Taiwan, Expert Systems with Applications, 34, 1837–1845.
Zhang, G., Shang, J., Li, W., (2012). An information granulation entropy-based model for third-party logistics providers’ evaluation. International Journal of Production Research, 50 (1), 177–190.
Zhang, H., Gu, C. L., Gu, L. W., & Zhang, Y., (2011). The evaluation of tourism destination competitiveness by TOPSIS & information entropy – a case in the Yangtze River delta of China. Tourism Management, 32, 443–451. | ||
|
آمار تعداد مشاهده مقاله: 1,401 تعداد دریافت فایل اصل مقاله: 2,008 |
||