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Abstract:

In this article, we consider the problem of estimating the stress-strength relia-

bility Pr(X > Y ) based on upper record values whenX and Y are two independent

but not identically distributed random variables from the power hazard rate dis-

tribution with the common scale parameter k. When the parameter k is known,

the maximum likelihood estimator (MLE), the approximate Bayes estimator, and

the exact confidence intervals of stress-strength reliability are obtained. When the

parameter k is unknown, we obtain the MLE and some bootstrap confidence inter-

vals of the stress-strength reliability. We also apply the Gibbs sampling technique

to study the Bayesian estimation of the stress-strength reliability and its corre-

sponding credible interval. An example is presented to illustrate the inferences

discussed in the previous sections. Finally, to investigate and compare the perfor-

mance of the different proposed methods in this paper, a Monte Carlo simulation

study is conducted.
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1. Introduction

The problem of estimating R = Pr(X > Y ) arises in the context of mechanical

reliability of a system with strength X and stress Y and R is chosen as a measure

of system reliability. The system fails if and only if, at any time, the applied stress

is greater than its strength. This type of reliability model is known as the stress-

strength model (Valiollahi et al., 2013). This problem also arises in situations

where X and Y represent lifetimes of two devices, and one wants to estimate the

probability that one fails before the other. For example, in biometrical studies,

the random variable X may represent the remaining lifetime of a patient treated

with a certain drug while Y represents the remaining lifetime when treated by

another drug (Al-Gashgari and Shawky, 2014). The estimation of stress-strength

reliability is very common in statistical literature. For example, see Raqab and

Kundu (2005), Kundu and Gupta (2005, 2006) and Nadar et al. (2014). Also,

the reader is referred to the book by Kotz et al. (2003) for other applications and

motivations for the study of the stress-strength reliability.

Record values arise naturally in many real-life applications involving data re-

lating to meteorology, hydrology, sports, and life-tests. Record values also are of

great importance to scientists and engineers and have been studied extensively. In

industry and reliability studies, many products may fail under stress. For example,

a wooden beam breaks when sufficient perpendicular force is applied to it, an elec-

tronic component ceases to function in an environment of too high temperature,

and a battery dies under the stress of time (Soliman et al., 2006). But the precise

breaking stress or failure point varies even among identical items. Hence, in such

experiments, measurements may be made sequentially and only values larger (or

smaller) than all previous ones are recorded (Soliman et al., 2006). Data of this

type are called record data. The theory of record values was first introduced by

Chandler (1952). For more details and applications of record values, readers may

refer to the book by Arnold et al. (1998) and the references cited therein.

Let {Xi, i ≥ 1} be a sequence of independent and identically distributed (iid)

random variables with an absolutely continuous cumulative distribution function

(cdf) F (x) and probability density function (pdf) f(x). Define Ym = max{X1, ..., Xm},
m ≥ 1. Then, Xj is an upper record value of the sequence X1, X2, ..., if Xj > Yj−1

, j > 1. Let T1 = 1 with probability 1, and

Tn = min{j : j > Tn−1, Xj > XTn−1
}, n > 1,

then {Tn, n ≥ 1} is the record time sequence, at which the records appear. There-

fore, the sequence of upper record values is defined by Rn = XTn , n ≥ 1. An
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analogous definition can be given for lower records.

The problem of estimating the stress-strength reliability based on record values

for several distributions are discussed in the works of Baklizi (2014 a, b), Nadar

and Kizilaslan (2014) and Al-Gashgari and Shawky (2014).

Mugdadi (2005) defined the power hazard function as

h(x) = axk, x > 0, a > 0, k > −1.

Corresponding to this hazard function, the cumulative distribution function (cdf)

is given by,

F (x) = 1− exp

(
− a

k + 1
xk+1

)
, (1.1)

and the probability density function (pdf) is given by,

f(x) = axk exp

(
− a

k + 1
xk+1

)
. (1.2)

If X has pdf (1.2), we denoted it by X ∼ PHRD(a, k).

The power hazard function is very simple, and it can be increasing, decreasing,

or constant. Therefore, the power hazard rate distribution (PHRD) can often pro-

vide a better fit than other two-parameter distributions when modeling monotone

hazard rates.

Mugdadi and Min (2009) investigated the Bayes estimation for the power haz-

ard rate distribution. Parameter estimation for the power hazard rate distribution

based on record data is considered by Tarvirdizade and Nematollahi (2016). The

problem of estimating the stress-strength reliability for the power hazard rate dis-

tribution is discussed by Kinaci (2014).

In this paper, we consider the problem of estimating the stress-strength relia-

bility for the power hazard rate distribution based on upper record values. It is

important to note that some well-known lifetime distributions such as exponential,

Rayleigh, and Weibull are special cases of the PHRD defined in (1.2). Therefore,

the results obtained in this paper can be valid for these distributions and the other

distributions which have a power hazard function.

The rest of the paper is organized as follows. In Section 2, we discussed the

likelihood inference for the stress-strength reliability. In Section 3, we presented

some bootstrap confidence intervals for stress-strength reliability. In Section 4,

Bayesian inference on R is considered. In Section 5, an example is presented to

illustrate the inferences discussed in the previous sections. In Section 6, a Monte

Carlo simulation study is conducted to investigate and compare the performance
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of different types of estimators presented in this paper. Finally, a discussions and

some conclusion are given in Section 7.

2. Likelihood Inference

Let X and Y be independent random variables from the power hazard rate distri-

bution with the parameters (a1, k) and (a2, k) respectively. Let R = Pr(X > Y )

be the stress-strength reliability. Then, from (1.1) and (1.2) we have

R = Pr(X > Y ) =

∫ ∞
0

∫ ∞
y

fX(x)fY (y)dxdy =

∫ ∞
0

fY (y)(1− FX(y))dy

=

∫ ∞
0

a2y
ke−

a2
k+1y

k+1

e−
a1
k+1y

k+1

dy =
a2

a1 + a2
.

Our interest is to estimate R based on upper record values on both variables. Let

r
∼

= (r1, ..., rn) be a set of upper records from PHRD(a1, k) and let s
∼

= (s1, ..., sm)

be an independent set of upper records from PHRD(a2, k). The likelihood func-

tions are given by (Ahsanullah, 2004),

L(a1, k| r∼) = f(rn)

n−1∏
i=1

(
f(ri)

1− F (ri)

)
, 0 < r1 < ... < rn <∞,

L(a2, k| s∼) = g(sm)

m−1∏
i=1

(
g(si)

1−G(si)

)
, 0 < s1 < ... < sm <∞. (2.3)

where f and F are the pdf and cdf of X ∼ PHRD(a1, k) respectively and g and G

are the pdf and cdf of Y ∼ PHRD(a2, k) respectively. Substituting f , F , g and

G in (2.3), we obtain the likelihood functions as follows

L(a1, k| r∼) = an1 exp

(
− a1
k + 1

rk+1
n

)
.

n∏
i=1

rki ,

L(a2, k| s∼) = am2 exp

(
− a2
k + 1

sk+1
m

)
.

m∏
i=1

ski . (2.4)

Hence, the joint Log-likelihood function of the observed records r
∼

and s
∼

is given

by

`(a1, a2, k| r∼, s∼) = n ln a1 +m ln a2 − a1
k+1r

k+1
n − a2

k+1s
k+1
m

+k

(
n∑
i=1

ln ri +
m∑
i=1

ln si

)
. (2.5)

Next, we consider likelihood inference for R in the following two cases:
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2.1 When the parameter k is known

Under the assumption that the parameter k is known, the MLE of the parameters

a1 and a2 based on the upper record values can be obtained by solving the following

likelihood equations:

∂`

∂a1
=

n

a1
− 1

k + 1
rk+1
n = 0,

∂`

∂a2
=
m

a2
− 1

k + 1
sk+1
m = 0. (2.6)

Hence, the MLEs of a1 and a2, say â1 and â2, are given by

â1 =
n(k + 1)

rk+1
n

, â2 =
m(k + 1)

sk+1
m

, (2.7)

respectively. Therefore using the invariance properties of the maximum likelihood

estimation, the MLE of R becomes

R̂ =
â2

â1 + â2
.

To study the distribution of R̂ we need the distributions of â1 and â2. Consider

first â1 = n(k + 1)/rk+1
n , the pdf of the nth upper record value Rn is given by

(Ahsanullah, 2004),

fRn(rn) =
1

(n− 1)!
f(rn)[− ln(1− F (rn))]n−1. (2.8)

Substituting f and F in (2.8), we obtain

fRn(rn) =
an1

(n− 1)!(k + 1)
n−1 r

n(k+1)−1
n exp

(
− a1
k + 1

rk+1
n

)
, rn > 0.

Consequently, the pdf of Z1 = â1 is given by

fZ1(z1) =
(na1)

n

(n− 1)!zn+1
1

exp

(
−na1
z1

)
, z1 > 0. (2.9)

This is recognized as the inverted gamma distribution, i.e., Z1 ∼ IGamma(n, na1).

Similarly, the pdf of Z2 = â2 is given by

fZ2
(z2) =

(ma2)
m

(m− 1)!zm+1
2

exp

(
−ma2

z2

)
, z2 > 0. (2.10)

Thus Z2 ∼ IGamma(m,ma2). Therefore we can find the pdf of

R̂ =
â2

â1 + â2
=

Z2

Z1 + Z2
=

1

1 + Z1

Z2

.
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Consider Z1/Z2. Note that, by the properties of the inverted gamma distribution

and its relation with the gamma distribution we have (na1/Z1) ∼ Gamma(n, 1)

and (ma2/Z2) ∼ Gamma(m, 1). Hence (2na1/Z1) ∼ χ2
2n and (2ma2/Z2) ∼ χ2

2m.

Note that, by the independence of two random quantities we have

(2ma2/2mZ2)

(2na1/2nZ1)
=
a2Z1

a1Z2
∼ F(2m,2n).

Hence, (Z1/Z2) = (a1/a2)F(2m,2n), has a scaled F distribution. It follows that the

distribution of R̂ is that of 1
1+(a1/a2)F(2m,2n)

which can be obtained using simple

transformation techniques. This fact can be used to construct the following 100(1−
α)% confidence interval for R,((

1 +
z1

z2Fα/2,2m,2n

)−1
,

(
1 +

z1
z2F1−α/2,2m,2n

)−1)
. (2.11)

2.2 When the parameter k is unknown

If all of the parameters a1, a2 and k are unknown, in addition to the likelihood

equations in (2.6), we must consider following likelihood equation

∂`

∂k
= −a1rk+1

n

(k + 1) ln rn − 1

(k + 1)
2 − a2sk+1

m

(k + 1) ln sm − 1

(k + 1)
2

+

(
n∑
i=1

ln ri +

m∑
i=1

ln si

)
= 0. (2.12)

By replacing a1 and a2 obtained from (2.6) into (2.12) and after some simplifica-

tion, we obtain the MLE of k as

k̂ =

(
n+m

n ln rn +m ln sm −
∑n
i=1 ln ri −

∑m
i=1 ln si

)
− 1. (2.13)

Consequently, the MLEs of a1 and a2 are given by

â1 =
n(k̂ + 1)

rk̂+1
n

, â2 =
m(k̂ + 1)

sk̂+1
m

. (2.14)

Hence, the MLE of R using (2.13) and (2.14) is given as

R̂ =
â2

â1 + â2
. (2.15)

It is clear that the study of the distribution of R̂ is very complicated and difficult

to obtain. In this case, we will construct some confidence intervals based on the

bootstrap method which are discussed in the next section.



Inference on Pr(X > Y ) Based on Record Values From ... 65

3. Bootstrap Confidence Intervals

There are several bootstrap based intervals discussed in the literature (Efron and

Tibshirani, 1993). In this section, we consider some parametric bootstrap con-

fidence intervals for R. Firstly, we describe the procedure for generation of the

bootstrap samples as follows:

Algorithm 3.1.

• Step 1. Compute â1, â2, k̂ and R̂, the MLEs of a1, a2, k and R based on

the original two samples of upper records r
∼
and s

∼
.

• Step 2. Generate a bootstrap upper record sample
∗
r
∼

= (r∗1 , r
∗
2 , ..., r

∗
n) from

PHRD(â1, k̂) and similarly generate a bootstrap upper record sample
∗
s
∼

=

(s∗1, s
∗
2, ..., s

∗
m) from PHRD(â2, k̂). Based on these data, we compute the boot-

strap estimates say, â∗1, â
∗
2, k̂

∗ and R̂∗.

• Step 3. Repeat step 2, B times to obtain a set of bootstrap samples of R, say

R̂∗1, ..., R̂
∗
B.

Then we can compute the following bootstrap intervals:

Normal Interval: The simplest 100(1 − α)% bootstrap interval is the Normal

interval

(R̂− z1−α/2ŝeboot, R̂+ z1−α/2ŝeboot) (3.16)

where ŝeboot is the bootstrap estimate of the standard error based on R̂∗1, ..., R̂
∗
B .

Percentile Interval: The 100(1 − α)% bootstrap percentile interval is defined

by

(R̂∗(α/2)B , R̂
∗
(1−α/2)B) (3.17)

that is, just use the α/2 and 1−α/2 quantiles of the bootstrap sample R̂∗1, ..., R̂
∗
B .

Studentized Pivotal (Student’s t) Interval: Let

T ∗b =
(R̂∗b − R̂)

ŝe∗b
, b = 1, 2, ..., B,

where ŝe∗b is an estimate of the standard error of R̂∗b . Then the 100(1 − α)%

bootstrap Student’s t interval is given by

(R̂− t∗1−α/2ŝeboot, R̂− t
∗
α/2ŝeboot) (3.18)

where t∗α is the α quantile of T ∗1 , ..., T
∗
B .

Interested readers may refer to DiCiccio and Efron (1996) and the references

contained therein to observe more details.
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4. Bayesian Inference

In this section, we discuss Bayesian estimation of R based on upper record values

from the power hazard rate distribution in the following two cases:

4.1 When the parameter k is known

Under the assumption that the parameter k is known, the likelihood functions in

(2.4) suggest a Gamma conjugate prior for a1 and a2 as

π(a1) =
λα1
1 aα1−1

1 e−λ1a1

Γ(α1)
, a1 > 0, α1, λ1 > 0,

π(a2) =
λα2
2 aα2−1

2 e−λ2a2

Γ(α2)
, a2 > 0, α2, λ2 > 0. (4.19)

where α1, λ1, α2 and λ2 are the parameters of the prior distributions of a1 and

a2, respectively. Combining these prior distributions with the likelihood functions

in (2.4), the posterior distributions of a1 and a2 are given as

a1| r∼ ∼ Gamma(n+ α1, υ1), a2| s∼ ∼ Gamma(m+ α2, υ2), (4.20)

where

υ1 =

(
λ1 +

1

k + 1
rk+1
n

)
, υ2 =

(
λ2 +

1

k + 1
sk+1
m

)
.

Since the priors a1 and a2 are independent, then, using standard transformation

techniques and after some manipulations, the posterior pdf of R will be

fR(r) = C
rm+α2−1(1− r)n+α1−1

[υ2r + υ1(1− r)]n+m+α1+α2
, 0 < r < 1,

where

C =
Γ(n+m+ α1 + α2)

Γ(n+ α1)Γ(m+ α2)
υn+α1
1 υm+α2

2 .

The Bayes estimator under squared error loss is the mean of this posterior distribu-

tion, which can not be computed analytically. Alternatively, using the approximate

method of Lindley (1980), it can be seen that the approximate Bayes estimator of

R, say R̃B , relative to squared error loss function is

R̃B = R̃

(
1 +

(1− R̃)
2

m+ α2 − 1
− R̃(1− R̃)

n+ α1 − 1

)
, (4.21)
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where R̃ = ã2
ã1+ã2

and

ã1 =
n+ α1 − 1

υ1
, ã2 =

m+ α2 − 1

υ2
,

are the mode of the posterior densities a1 and a2, respectively. Furthermore,

from the posterior densities a1 and a2, we obtain that 2υ1a1| r∼ ∼ χ2
2(n+α1)

and

2υ2a2| s∼ ∼ χ2
2(m+α2)

. It follows that π(R| r
∼
, s
∼

), the posterior distribution of R,

is equal to that of (1 + AW )−1, where W ∼ F2(n+α1),2(m+α2) and A = υ2(n+α1)
υ1(m+α2)

.

Therefore a Bayesian 100(1− α)% confidence interval for R is given by(
(AF1−α/2,2(n+α1),2(m+α2) + 1)

−1
, (AFα/2,2(n+α1),2(m+α2) + 1)

−1
)
. (4.22)

4.2 When the parameter k is unknown

In this subsection, we consider the Bayes estimation of R under assumption that

all of the parameters (a1, a2, k) are unknown. It is assumed that a1 and a2 have

conjugate priors Gamma(α1, λ1) and Gamma(α2, λ2) as mentioned in (4.19), re-

spectively. It is also assumed that (k + 1) has a prior Gamma(α3, λ3), i.e.

π(k) =
λα3
3 (k + 1)

α3−1e−λ3(k+1)

Γ(α3)
, k > −1, α3, λ3 > 0. (4.23)

Moreover, we assume that a1, a2 and k are independent. Therefore the joint

posterior density of a1, a2 and k is given by

π(a1, a2, k| r∼, s∼) =
L(a1, a2, k| r∼, s∼)π(a1)π(a2)π(k)∫∞

0

∫∞
0

∫∞
−1 L(a1, a2, k| r∼, s∼)π(a1)π(a2)π(k)dkda1da2

, (4.24)

where the numerator by using (2.4), (4.19) and (4.23) is given by

λα1
1 an+α1−1

1

Γ(α1)
e−υ1a1

(
n∏
i=1

rki

)
λα2
2 am+α2−1

2

Γ(α2)
e−υ2a2

(
m∏
i=1

ski

)
λα3
3 (k + 1)

α3−1

Γ(α3)
e−λ3(k+1).

Since the expression for π(a1, a2, k| r∼, s∼) in (4.24) can not be written in a closed

form, we need a simulation technique to compute the Bayes estimate of R and

the corresponding credible interval of R. We adopt the Gibbs sampling technique

which use the posterior distributions of each parameter conditional on all others

(see Gelfand and Smith, 1990). The conditional posterior distributions of a1, a2

and k can be obtained as follows:

(a1|a2, k, r∼, s∼) ∼ Gamma(n+ α1, υ1),
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(a2|a1, k, r∼, s∼) ∼ Gamma(m+ α2, υ2)

and

π(k|a1, a2, r∼, s∼) ∝ e−υ1a1
(

n∏
i=1

rki

)
e−υ2a2

(
m∏
i=1

ski

)
(k + 1)α3−1e−λ3(k+1). (4.25)

Based on these conditional posterior distributions, we can easily generate samples

of a1 and a2 from gamma densities. However, the conditional posterior distribution

of k can not be reduced analytically to a well known distribution and therefore

it is not possible to sample directly by standard methods. To do this, we use

the Metropolis-Hastings method (Metropolis et al., 1953, and Hastings, 1970)

with normal proposal distribution. Therefore, the algorithm of Gibbs sampling is

described as follows:

Algorithm 4.1.

• Step 1. Start with k(0) = k̂ as an initial guess and set t = 1.

• Step 2. Generate a
(t)
1 from Gamma(n+ α1, υ1).

• Step 3. Generate a
(t)
2 from Gamma(m+ α2, υ2).

• Step 4. Using Metropolis-Hastings method, generate k(t) from π(k|a1, a2, r∼, s∼)

with the N(k(t−1), 1) proposal distribution.

• Step 5. Compute R(t) = a
(t)
2 /(a

(t)
1 + a

(t)
2 ).

• Step 6. Set t = t+ 1.

• Step 7. Repeat Steps 2–6, N times.

Now the approximate posterior mean and posterior variance of R become

Ê(R| r
∼
, s
∼

) =
1

N −M

N∑
t=M+1

R(t) (4.26)

and

V̂ (R| r
∼
, s
∼

) =
1

N −M

N∑
t=M+1

(R(t) − Ê(R| r
∼
, s
∼

))
2
, (4.27)

where M is the burn-in period (that is, a number of iterations before the stationary

distribution is achieved).
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Based on N and R(t) values, using the method proposed by Chen and Shao

(1999), a 100(1− γ)% HPD credible interval can be constructed as(
R[ γ2N], R[(1− γ2 )N]

)
, (4.28)

where R[ γ2N] and R[(1− γ2 )N] are the
[
γ
2N
]
-th smallest integer and the

[(
1− γ

2

)
N
]
-

th smallest integer of {R(t), t = M + 1,M + 2, ..., N}, respectively .

5. An Illustrative Example

In order to illustrate the inferences discussed in the previous sections, in this sec-

tion, we simulate 7 upper record values from PHRD(2, 1) and 7 upper record values

from PHRD(4, 1). Therefore, RExact = 0.6667. The data has been truncated after

four decimal places and it has been presented below. The r
∼

upper record values

are

1.0806, 1.5817, 1.6027, 2.5134, 2.5271, 2.5335, 2.5354

and the corresponding s
∼

upper record values are

0.7028, 0.7924, 0.9578, 1.4263, 1.4430, 1.6930, 1.7296.

Case I: when k is known, we obtain the MLEs of a1 and a2 from (2.7) as, 2.1778

and 4.6799, respectively. Therefore, the MLE of R becomes R̂ = 0.6824. The

corresponding 95% confidence interval based on (2.11) is equal to (0.4190,0.8449).

Letting α1 = α2 = 2 and λ1 = λ2 = 4 in (4.21), we obtain ã1 = 1.1089, ã2 =

1.4556 and R̃ = 0.5675. Therefore, the approximate Bayes estimator of R becomes

R̃B = 0.5632. The corresponding Bayesian 95% confidence interval based on (4.22)

is equal to (0.3359,0.7731).

Case II: when k is unknown, we obtain the MLEs of k, a1 and a2 from

(2.13) and (2.14) as, 2.1364, 1.1865 and 3.9376, respectively. Therefore, the MLE

of R becomes R̂ = 0.7684. Based on 1000 bootstrap samples, the 95% bootstrap

confidence intervals from (3.16), (3.17) and (3.18) are obtained as, (0.5458,0.9909),

(0.5345,0.9681) and (0.5686,1), respectively. In Bayesian computation, we used

hyper parameters α1 = α2 = α3 = 2 and λ1 = λ2 = λ3 = 1. The approximate

Bayes estimator of R from (4.26) based on N = 5000 samples and discard the

first 1000 values as burn-in period becomes 0.6874. Also, the 95% HPD credible

interval from (4.28) is obtained as, (0.4616,0.8648). The simulated values of R

and Histogram of R generated by the algorithm of Gibbs sampling are plotted in

Figure 1.
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Figure 1: Simulated values of R and Histogram of R

6. A Simulation Study

Since the performance of the different methods proposed in the previous sections

can not be compared theoretically, in this section, we present some results based

on Monte Carlo simulations to compare the performance of the different methods.

We compare the MLEs and Bayes estimators in terms of their biases and mean

squared errors (MSEs). We also compare different confidence intervals in terms

of their coverage probability and expected length. We consider two cases, namely

when (I) the parameter k is known and (II) the parameter k is unknown, separately.

In both cases we use all combinations of n = 4, 5, 6 and m = 4, 5, 6. We use the

parameter values a1 = 1, 3, a2 = 1 and k = 2. Therefore, RExact = 0.25, 0.5. For

computing the Bayes estimators and HPD credible intervals, we assume two priors

as follows:

Prior 1: α1 = α2 = α3 = λ1 = λ2 = λ3 = 0,

Prior 2: α1 = α2 = α3 = 2 and λ1 = λ2 = λ3 = 3.

Note that Prior 1 is non-informative prior, while Prior 2 is an informative prior.

We report all the results based on 1000 replications.

Case I: in this case, we obtain the average biases and MSEs of the MLE and

the approximate Bayes estimator of R based on two Priors 1 and 2. We also

compute the coverage probability and expected length for the confidence intervals

obtained by using the ML and Bayesian methods. The results are reported in

Tables 1 and 2.

Case II: in this case, first, we obtain the MLE of k and then compute the

average biases and MSEs of the MLE and the approximate Bayes estimator of
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Table 1: Biases and MSEs (in parentheses) of the estimators of R (k known)

(n,m) RExact MLE Bayes (Prior 1) Bayes (Prior 2)

(4,4) 0.25 0.0144(0.0135) 0.0395(0.0133) 0.1502(0.0278)

(4,5) 0.0099(0.0132) 0.0353(0.0130) 0.1548(0.0257)

(4,6) 0.0044(0.0124) 0.0308(0.0123) 0.1601(0.0243)

(5,4) 0.0143(0.0131) 0.0326(0.0128) 0.1270(0.0230)

(5,5) 0.0145(0.0123) 0.0336(0.0121) 0.1353(0.0220)

(5,6) 0.0116(0.0109) 0.0317(0.0110) 0.1388(0.0195)

(6,4) 0.0144(0.0134) 0.0377(0.0133) 0.1143(0.0196)

(6,5) 0.0185(0.0117) 0.0330(0.0112) 0.1198(0.0182)

(6,6) 0.0162(0.0103) 0.0315(0.0108) 0.1244(0.0165)

(4,4) 0.5 0.0007(0.0219) 0.0006(0.0173) -0.0006(0.0067)

(4,5) -0.0017(0.0211) 0.0017(0.0163) 0.0084(0.0062)

(4,6) -0.0104(0.0203) -0.0030(0.0159) 0.0112(0.0061)

(5,4) 0.0137(0.0216) 0.0088(0.0171) -0.0027(0.0069)

(5,5) 0.0020(0.0196) 0.0019(0.0160) 0.0012(0.0061)

(5,6) 0.0045(0.0183) 0.0068(0.0151) 0.0095(0.0059)

(6,4) 0.0151(0.0198) 0.0074(0.0158) -0.0094(0.0063)

(6,5) 0.0022(0.0188) -0.0008(0.0152) -0.0059(0.0058)

(6,6) -0.0066(0.0156) -0.0060(0.0131) -0.0045(0.0056)

R based on two Priors 1 and 2. We also compute the coverage probability and

expected length for the bootstrap confidence intervals, namely the normal interval,

the percentile interval (Boot-p), the Student’s t interval (Boot-t), and the HPD

credible interval. For computing the bootstrap confidence intervals, we use 500

bootstrap iterations. We also compute the Bayes estimates and HPD credible

intervals based on N = 2000 samples and discard the first 200 values as the burn-

in period. The simulation results are reported in Tables 3 and 4.

7. Conclusions

In this article, we considered the problem of estimating the stress-strength relia-

bility based on upper record values from the power hazard rate distribution. We

used maximum likelihood approach and Bayesian approach for the estimation of

R in two cases (I) when the parameter k is known and (II) when the parameter k

is unknown.

Based on simulation results, we observe that the MSE and the expected length

of the estimators decreas as sample sizes n and m increasing. From Tables 1 and 3,
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Table 2: Expected lengths and coverage rates (in parentheses) of the confidence

intervals with (1-α)=0.95 (k known)

(n,m) RExact MLE Bayes (Prior 1) Bayes (Prior 2)

(4,4) 0.25 0.5064(0.979) 0.5064(0.979) 0.5072(0.986)

(4,5) 0.4835(0.964) 0.4835(0.964) 0.4928(0.944)

(4,6) 0.4683(0.964) 0.4683(0.964) 0.4826(0.917)

(5,4) 0.4723(0.962) 0.4723(0.962) 0.4796(0.986)

(5,5) 0.4555(0.960) 0.4555(0.960) 0.4668(0.963)

(5,6) 0.4416(0.970) 0.4416(0.970) 0.4556(0.934)

(6,4) 0.4588(0.968) 0.4588(0.968) 0.4597(0.992)

(6,5) 0.4346(0.968) 0.4346(0.968) 0.4455(0.968)

(6,6) 0.4181(0.959) 0.4181(0.959) 0.4340(0.942)

(4,4) 0.5 0.5966(0.979) 0.5966(0.979) 0.5226(1.000)

(4,5) 0.5682(0.959) 0.5682(0.959) 0.5038(0.999)

(4,6) 0.5526(0.962) 0.5526(0.962) 0.4908(0.995)

(5,4) 0.5690(0.957) 0.5690(0.957) 0.5043(0.998)

(5,5) 0.5432(0.963) 0.5432(0.963) 0.4863(1.000)

(5,6) 0.5248(0.968) 0.5248(0.968) 0.4719(0.997)

(6,4) 0.5538(0.970) 0.5538(0.970) 0.4915(0.999)

(6,5) 0.5240(0.954) 0.5240(0.954) 0.4719(0.999)

(6,6) 0.5072(0.969) 0.5072(0.969) 0.4583(1.000)

we observe that the bias and MSE of the estimators are very small. These tables

show that the performance of the MLE and the approximate Bayes estimator

based on Prior 1 is almost the same but the performance of the approximate

Bayes estimator based on Prior 2 is different. It appears that the MLE and the

approximate Bayes estimator based on Prior 1 have the better performance for

small values of R while the approximate Bayes estimator based on Prior 2 performs

very well for values of R close to 0.5. When the parameter k is known, we observe

from Table 2 that the performance of all confidence intervals is almost similar in

terms of expected length, but in terms of coverage rate the Bayes interval based

on Prior 2 has a better performance especially for values of R close to 0.5. When

the parameter k is unknown, Table 4 shows that the performance of the bootstrap

confidence intervals is very different than the Bayes intervals. We observe that

the bootstrap confidence intervals have very short expected lengths in comparison

with the Bayes intervals, but they have a low coverage rate. It appears that the

performance of the Bayes interval based on Prior 2 is quite satisfactory, especially

for values of R close to 0.5.
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Table 3: Biases and MSEs (in parentheses) of the estimators of R (k unknown)

(n,m) RExact MLE Bayes (Prior 1) Bayes (Prior 2)

(4,4) 0.25 -0.0513(0.0302) -0.0296(0.0265) 0.1834(0.0355)

(4,5) -0.0639(0.0255) -0.0373(0.0222) 0.1959(0.0325)

(4,6) -0.0704(0.0252) -0.0420(0.0218) 0.2001(0.0308)

(5,4) -0.0424(0.0241) -0.0277(0.0216) 0.1478(0.0280)

(5,5) -0.0512(0.0213) -0.0319(0.0188) 0.1589(0.0277)

(5,6) -0.0376(0.0200) -0.0178(0.0182) 0.1731(0.0271)

(6,4) -0.0194(0.0226) -0.0107(0.0205) 0.1267(0.0214)

(6,5) -0.0291(0.0197) -0.0161(0.0180) 0.1360(0.0208)

(6,6) -0.0300(0.0191) -0.0154(0.0176) 0.1422(0.0195)

(4,4) 0.5 -0.0076(0.0439) -0.0066(0.0380) -0.0018(0.0045)

(4,5) -0.0307(0.0419) -0.0236(0.0365) 0.0160(0.0039)

(4,6) -0.0483(0.0362) -0.0374(0.0317) 0.0266(0.0033)

(5,4) 0.0402(0.0429) 0.0332(0.0380) -0.0130(0.0038)

(5,5) -0.0072(0.0337) -0.0068(0.0321) -0.0032(0.0034)

(5,6) -0.0184(0.0340) -0.0142(0.0305) 0.0116(0.0032)

(6,4) 0.0407(0.0390) 0.0299(0.0336) -0.0292(0.0045)

(6,5) 0.0282(0.0312) 0.0231(0.0298) -0.0086(0.0039)

(6,6) 0.0093(0.0288) 0.0086(0.0262) 0.0031(0.0035)
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