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Abstract:

The partial linear model is very flexible when the relationship between the

covariates and responses, is either parametric or nonparametric. However, the

estimation of the regression coefficients is challenging since one must also estimate

the nonparametric component simultaneously. As a remedy, the differencing ap-

proach, to eliminate the nonparametric component and estimate the regression co-

efficients, can be used. Here, suppose the regression vector-parameter is subjected

to lie in a sub-space hypothesis. In situations where the use of difference-based

least absolute and shrinkage selection operator (D-LASSO) is desirable, we pro-

pose a restricted D-LASSO estimator. To improve its performance, LASSO-type

shrinkage estimators are also developed. The relative dominance picture of sug-

gested estimators is investigated. In particular, the suitability of estimating the

nonparametric component based on the Speckman approach is explored. A real

data example is given to compare the proposed estimators. From the numerical

analysis, it is obtained that the partial difference-based shrinkage estimators per-

form better than the difference-based regression model in average prediction error

sense.
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1. Introduction

Partial linear regression models are popular semi-parametric modeling techniques

that assume the response to be linearly dependent on some predictors, whereas its

relation to other additional variables is nonparametric functions. In these models,

some of the relations are believed to be of certain parametric form while others

are not easily parameterized.

A partial linear model (PLM) has the following general form

y = Xβ + g(t) + ε (1.1)

where y = (y1, . . . , yn)>, X = (x1, . . . ,xn)>, xi = (xi1, . . . , xip)
> ∈ Rp is the ith

observed vector of explanatory variables including p-dimensional vector of regres-

sion coefficients, g(t) = (g(t1), . . . , g(tn))>, ti’s are values of an extra univariate

variable satisfying 0 ≤ t1 ≤ . . . ≤ tn ≤ 1, g(ti) is an unknown bounded real-valued

function defined on [0, 1], and β = (β1, . . . , βp)
> is a p-vector unknown parameters.

Generally, assume that ε = (ε1, . . . , εn)> is a vector of unobservable random

errors distributed with E[ε] = 0 and E[εε>] = σ2In where In is an identity matrix

of order n.

The PLM generalizes both parametric and nonparametric regression models

which correspond to the cases g(t) = 0 and β = 0, respectively. The key idea is

to estimate the parameter vector β, the function g(t).

PLMs have been received considerable attention in statistics and econometrics.

These models were originally studied by Engle et al. (1986) to determine the

effect of weather on the electricity sales. Some earlier surveys of the estimation

and application of model (1.1) can be found in the monograph of Hardle, Liang

and Gao (2000). In the last decade, several authors have investigated the PLM,

including Bunea (2004), Liang (2006), Sun, Kopciuk and Lu (2008), and Aydin

(2014), among others.

Now, suppose that we are provided with some prior information about the

whole or subset of covariates. This prior information can be utilized to improve the

overall estimation of the regression coefficients using shrinkage estimation (Ahmad

and Raheem , 2012). Many notable studies are incorporating prior information,

in the form of restrictions, to improve estimation in the sense that the restricted

and shrinkage estimators have lesser risk and prediction error values.

The organization of this study is given as follows: the full model estimators are

given in section 2, the preliminary test, shrinkage estimators are also presented in

section 3. Section 4 consists of a real data example that illustrates the usefulness of
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the suggested estimators. Finally, the conclusion and remarks are given in section

5.

2. Full Model Estimation

In this situation, difference-based technique has been used to remove the nonpara-

metric component in the PLM. Let d = (d0, d1, . . . , dm) be a (m+1)-vector, where

m is the order of differencing weights minimizing the variance of linear estimators

satisfying the condition

m∑
j=0

dj = 0

m∑
j=0

d2j = 1 (2.2)

Define the (n−m)×m differencing matrix D whose elements satisfy (2.2) as

D =


d0 d1 · · · dm 0 0 . . . 0

0 d0 d1 · · · dm 0 . . . 0
...

. . .
. . .

. . .
. . .

. . .
. . .

...

0 0 · · · 0 d0 d1 · · · dm

 (2.3)

The optimal values for elements of this matrix, is given for example in Yatchew

(2003).

Applying the difference matrix to model (1.1) permits direct estimation of the

parametric effect. In particular, take

Dy = DXβ + Dg(t) + Dε. (2.4)

Since the data have been ordered so that the X’s are close, the application of the

differencing matrix D in model (1.1) removes the nonparametric effect in large

samples (Yatchew , 2000).

If g(·) is an unknown function that is the inferential object has a bounded first

derivative, then Dg(t) is close to zero, so that applying the differencing matrix

ignores the presence of Dg(t). Thus, we may rewrite (1.1) as

Dy = DXβ + Dε,

or

yD = XDβ + εD (2.5)

where yD = Dy, XD = DX and εD = Dε. So that εD is an (n −m)-vector of

disturbances distributed with E[εD] = 0 and E[εDε
>
D] = σ2DD> 6= In−m.
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For arbitrary differencing coefficients satisfying (2.2), Yatchew (1997) defines

a simple differencing (D) estimator of β in model (1.1) as

β̂
D

=
(
X>DXD

)>
X>DyD (2.6)

Thus, differencing allows one to perform inferences on β as if there were no non-

parametric component g(·) in the model (1.1) (Yatchew , 2003). Once β is esti-

mated, a variety of nonparametric techniques could be applied to estimate g(·) as

if β were known.

Now, suppose that we are provided with some prior information about the

whole or subset of covariates. This prior information can be utilized to improve the

overall estimation of the regression coefficients using shrinkage estimation (Ahmad

and Raheem , 2012)

Many notable studies are incorporating prior information, in the form of re-

strictions, to improve estimation in the sense that the restricted and shrinkage

estimators have lesser risk and prediction error values. Saleh (2006) gives ex-

tensive overviews on a preliminary test (PT), and shrinkage estimators using the

ordinary least square (OLS), ridge and maximum likelihood (ML) estimators as

starting points. Hossain and Ahmed (2014) start by maximum partial likelihood

estimator and propose shrinkage and positive shrinkage estimators, while Roozbeh

(2015, 2016) develops shrinkage estimators in ridge regression.

However, in this study, we have different concerns. As a prelude, Tibshirani

(1996) proposed a new method for variable selection that produces an accu-

rate, stable, and parsimonious model, called least absolute shrinkage and selection

operator (LASSO). We define differenced-based LASSO (D-LASSO) estimator,

obtained by

β̂
D−LASSO

= arg min
β

{
‖yD −XDβ‖22 + λn ‖β‖1

}
, λn ≥ 0, (2.7)

where for an arbitrary vector v = (v1, . . . , vk)>, ‖v‖p =
(∑k

i=1 v
p
j

) 1
p

, and λn is

the tuning parameter, controlling the level of sparsity in β̂
D−LASSO

.

Now, the questions are as follows:

(1) How can we build the theory if we start with the D-LASSO instead of using

a differencing estimator of β?

(2) What will the form of shrinkage estimators be under restriction, when D-

LASSO is used as the starting point?
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In this paper, we cover the above issues. In the following section, the restricted

D-LASSO estimator is defined for inference under restriction, and the concept of

double shrinking is introduced.

3. Double Shrinking Notion

The differenced-based LASSO estimator has been denoted as β̂
D−LASSO

and termed

as unrestricted D-LASSO estimator. Now, suppose that some non-sample informa-

tion (a priori restriction on the parameters) about the whole covariates is available.

A set of q linear restrictions on the vector β can be written as Hβ = h. Or, we

can suppose that our model is subjected to lie in the linear sub-space restriction,

Hβ = h, (3.8)

where H is a q×p (q ≤ p) matrix of known elements, and h is a q vector of known

components. The rank of H is q, which implies that the restrictions are linearly

independent.

The restriction (3.8) may be (i) a fact known from theoretical or experimental

considerations, (ii) a hypothesis that may have to be tested or (iii) an artificially

imposed condition to reduce or eliminate redundancy in the description of model

(Sengupta and Jammalamadaka , 2003).

Our proposal is to consider the following estimator as the restricted differenced-

based LASSO (RD-LASSO) estimator ,

β̂
RD−LASSO

= β̂
D−LASSO

−Σ−1D H>(HΣ−1D H>)−1(Hβ̂
D−LASSO

− h), (3.9)

where ΣD = X>DXD. The above closed form RD-LASSO estimator cannot be

achieved via routine optimization techniques. Indeed, we proposed it by the anal-

ogy of differenced-based estimator of β subject to the restriction Hβ = h (Roozbeh

et al. , 2010).

When (3.8) is satisfied, the RD-LASSO estimator has a smaller asymptotic risk

than the D-LASSO estimator. However, for Hβ 6= h, the RD-LASSO estimator

may be biased and inconsistent in many cases. Now, how can we decide on D-

LASSO (as an unrestricted) or RD-LASSO (as a restricted) estimator, since we

do not know whether the restriction holds? To solve this, it is plausible to follow

Fisher’s recipe and define the preliminary test differenced-based LASSO (PTD-

LASSO) estimator by taking D-LASSO or RD-LASSO estimator according to the

acceptance or rejection of the null hypothesis, Ho : Hβ = h.
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This estimator will have the form

β̂
PTD−LASSO

= β̂
D−LASSO

− (β̂
D−LASSO

− β̂
RD−LASSO

)I(Ln ≤ Ln,α), (3.10)

where Ln,α is the upper α-level critical value of the exact distribution of the test

statistic Ln under Ho. In order to define test statistics, we need the following

theorem.

Theorem 3.1. (Yatchew , 1997) Under the assumed regularity conditions as n→
∞,

(n−m)
1
2 (β̂

D
− β)

D→ Np(0, (1 + 2δ)σ2Σ−1) (3.11)

where δ =
∑m
k=1

(∑m−k
j=0 djdj+k

)2
, and

s2D =
1

n−m
(yD −XDβ̂

D
)>(yD −XDβ̂

D
)>
P→ σ2

Σ̂ =
1

n−m
(X>DXD)

P→ Σ

where
D→ and

P→ denote convergence in distribution and probability, respectively.

Using Theorem 3.1 and following Saleh (2006), we can define the test statistics

as

Ln =
(Hβ̂

D
− h)>(HΣ−1H>)−1(Hβ̂

D
− h)

(1 + 2δ)s2D
. (3.12)

Indeed Ln has the non-central chi-square distribution with q degrees of freedom

(d.f.)and the non-central parameter ∆2, given by

∆2 =
(Hβ − h)>(HΣ−1H>)−1(Hβ − h)

(1 + 2δ)σ2
. (3.13)

Under the null hypothesis, Ho, the Ln is distributed as χ2
q, the central chi-square

with q d.f.

Here, we use the test as in (3.12), since we can build the asymptotic theory. We

think if one uses a test based on the D-LASSO, it makes the analytical computation

much easier; here, our aim is only the application aspect.

The PTD-LASSO estimator is highly dependent on the level of significance α

and has discrete nature, which is simplified to one of the extremes D-LASSO or

RD-LASSO estimator according to the output of the test. In this respect, making

use of a continuous and α-free estimator may make more sense. Now, we propose

a double shrinking idea which reflects a relevant estimator. It is well-known that

the LASSO estimator shrinks coefficients toward the origin, however, when the
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restriction Hβ = h is subjected to the model, it is of major importance that

the estimator is shrunk toward the restricted one as well. Hence, there must be

shrinking toward two directions or double shrinking concept, say. Consequently, we

combine the idea of James and Stein (1961) shrinkage and DLASSO to propose the

following Stein-type shrinkage differenced-based LASSO (SD-LASSO) estimator

β̂
SD−LASSO

= β̂
D−LASSO

− (p− 2)(β̂
D−LASSO

− β̂
RD−LASSO

)L−1n , (3.14)

where (p− 2) is the shrinkage constant.

The SD-LASSO may go past the RD-LASSO. So, we define the positive-rule

Stein-type shrinkage differenced-based LASSO (PRD-LASSO) estimator (PRSSLE)

given by

β̂
PRD−LASSO

= β̂
RD−LASSO

+ (1− (p− 2)L−1)I(Ln > (p− 2)),

×(β̂
D−LASSO

n − β̂
RD−LASSO

),

= β̂
SD−LASSO

− (1− (p− 2)L−1n )I(Ln ≤ (p− 2)),

×(β̂
D−LASSO

− β̂
RD−LASSO

). (3.15)

We note that, as the test based on Ln is consistent against fixed β such that Hβ 6=
h, the PTD-LASSO, SD-LASSO and PRD-LASSO are asymptotically equivalent

to the D-LASSO for fixed alternative. Hence, we will investigate the asymptotic

risks under local alternatives and compare the performance of the estimators.

4. Application

Mroz (1987) used a sample of 1975 Panel Study on Income Dynamics (PSID) labor

supply data to systematically study several theoretical and statistical assumptions

used in many empirical models of female labor supply. PSID data is freely available

from https://ideas.repec.org/p/boc/bocins/mroz.html.

The female labor, were collected from married white women between ages 30

and 60 in 1975, supply data consists of 753 observations on 19 variables: inlf

(= 1 if the labor force in 1975), hours (Hours worked in 1975), k5 (kids less than

6 years), k618 (kids 6-18 years), age (Woman’s age in years), educ (Years of

schooling), wage (Estimated hourly wage from earnings), repwage (Reported

wage ate interview in 1976), hushrs (Hours worked by husband in 1975), husage

(Husband’s age), huseduc (HUsband’s years of schooling), huswage (Husband’s

hourly wage in 1975), faminc (Family income in 1975), mtr (Federal marginal

tax rate facing woman), motheduc (Mother’s years of schooling), fatheduc

(Father’s years of schooling), unem (Unemployment rate in country of residence),

https://ideas.repec.org/p/boc/bocins/mroz.html
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city ( = 1 if living in SMSA), exper (Actual labor market experience), nwifeinc

((faminc - wage × hours)/1000).

Similar to Mroz (1987), we consider hours-woman’s hours of work in 1975,

as our response variable. Following Raheem et al. (2012), because of the nature

of our response variable, we only used the portion of the data when the women

were in labor force. Thus, we had 428 cases (rows) in our working data. Our

candidate full model consists of age, nwifeinc, k5, k618, wc (= 1 if educ≥ 12),

(textschc) (= 1 if huseduc≥ 12), unem, exper, andmtr. With the inclusion of

a nonparametric part, they suggested the following model:

hours = wc + g(nwifeinc) + mtr + exper + unem + k5 + age + k618 +

hc

Here nwifeinc is the nonparametric component.

Since one of the biggest problems in estimation is to determine H and h, we

suppose that H = I7. This choice is just for simplicity and also avoiding errors

obtained by incorrect selection of parameters. In order to show the impact of

correctness or incorrectness of hypothesis, let h = (0, 0, 0, 0, 0, 0, 0)>. The null

hypothesis changes into Ho : β = 0 and thus, all variables are insignificant.

Hall et al. (1990) suggested optimal differencing values by numerical analysis.

Here, we consider m = 6. Thus, using their suggestion, let

d = (0.9200,−0.2238,−0.1925,−0.1635,−0.1369,−0.1926,−0.0906)

and construct D matrix.

In the following, K-fold cross validation was used to obtain an estimate of

the prediction errors of the model. In a K-fold cross validation, the dataset is

randomly divided into K subsets of roughly equal size. One subset is left aside,

{(Xtest
D ,ytest

D )}, termed as test set, while the remaining K − 1 subsets, called the

training set, are used to fit model. The result estimator is called β̂
train

. The fitted

model is then used to predict the responses of the test data set. Finally, prediction

errors are obtained by taking the squared deviation of the observed and predicted

values in the test set, i.e.

PEk =
∥∥ytest

Dk − ŷtest
Dk

∥∥2 ; k = 1, . . . ,K,

where ŷtest
Dk = Xtest

Dk β̂
train

Dk . The process is repeated for all K subsets and the

prediction errors are combined. To account for the random variation of the cross

validation, the process is reiteratedN times and is estimated the average prediction
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error (APE) that is given by

APE =
1

N

N∑
i=1

(
1

K

K∑
k=1

PEki

)
,

where PEki is the prediction error of considering kth test set in ith iteration.

The performance of the arbitrary estimator, β̂
?
, with respect to the full model

estimator, β̂
D−LASSO

, is obtained by the below Efficiency (Eff) formula, that is

defined as

Eff(β̂
?
; β̂

D−LASSO
) =

APE(β̂
D−LASSO

)

APE(β̂
?
)

.

If the value of Eff is greater than 1, then β̂
?

performs better than β̂
D−LASSO

.

Table 1 shows the estimator and their Eff in case of N = 5000.

Table 1: The values of proposed estimators and their Efficiency
Variables D D-LASSO RD-LASSO PTD-LASSO SD-LASS PRD-LASSO

exper 30.26 23.57 0.00 23.57 18.41 18.41

mtr −416.00 −1213.50 0.00 −1213.50 −947.88 −947.88

wc −68.84 −45.56 0.00 −45.56 −35.59 −35.59

age −8.36 −5.92 0.00 −5.92 −4.62 −4.62

unem −9.85 −9.19 0.00 −9.19 −7.18 −7.18

k5 −128.1 −132.11 0.00 −132.11 −103.19 −103.19

k618 −43.06 −25.56 0.00 −25.56 −19.96 −19.96

hc 22.22 0.00 0.00 0.00 0.00 0.00

Eff − 1.00 0.95 1.08 1.12 1.14

Although, the RD-LASSO estimator does not have less prediction error in com-

parison with the D-LASSO estimator, the prediction error of the difference-based

preliminary test, Stein and positive rule Stein estimators are less than the LASSO

estimator. As we see in Table 1, these estimators shrink full model coefficients

towards a restricted estimator and improve the accuracy of the prediction error.

The differencing estimates used 6 - order (m = 6) differencing, we have used

the kernel regression procedure with bandwidth hn = 1.2 for estimation hours. In

order to estimate non-parametric effect, first we estimated the parameter by dif-

ferencing method, improved that and then , kernel approach applied to fit Zi(β̂
∗
) =

hoursi−xDiβ̂
∗

on nwifeinc where xi = (exper,mtr,wc,age,unem,k5,k618,hc)

and β̂
∗

is one of the differencing-based, differenced-based LASSO, and positive rule

Stein-type differenced-based LASSO estimators (Figure 1).
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Figure 1: Graph of the estimation of nonparametric function

5. Conclusions

In this paper, we proposed improved differenced-based LASSO estimators for

partially linear models by imposing a sub-space restriction to the linear part

of these models. Particularly, we introduced the preliminary test, Stain and

positive-rule Stein difference-based LASSO estimators. Indeed the test statistic for

Ho : Hβ = h plays a determining role. The nonparametric component is estimated

by using the Speckman approach based on the residual sum of squares method. As

an application, a real dataset analyzed, where a 10-folded cross-validation average

of the prediction errors evaluated for the differenced-based LASSO and its other

four variants. The new estimators dominated the LASSO in average prediction

error sense.
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