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Abstract:
Abstract:
In this paper, the existence and uniqueness of the numerical solution of the
Stochastic Differential Equations with Jumps(SDEwJs) under the one side
Lipschitz conditions and polynomial growth conditions are presented. The
Compensated split step θ(CSSθ) method introduce and try to bound the moment
of the numerical solutions also we analyse the strong convergence on the compact
domain. We discuss the stability of SDEwJs with constant coefficient and prove
some new relation between their coefficient. Finally, we present three examples
to investigate the theories and methods.
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1 Introduction

Throughout this paper, the numerical approximation of the Stochastic Differential

Equations (SDEs) with Poisson-driven jumps has been studied.

dx(t) = f(x(t−))dt+ g(x(t−))dW (t) + h(x(t−))dN(t), (1)

where x(t) ∈ Rn,f : Rn 7−→ Rn, g : Rn 7−→ Rnm, h : Rn 7−→ Rn for each t ≥ 0. To

make it simpler, it has been assumed that x(0) = x0 ∈ Rn is a deterministic vector

and x(t−) = lims7→t− x(s), also W (t) is an m−dimensional Brownian motion and

N(t) is a scalar Poisson process with intensity λ [2].

Recently, stochastic differential equations with jumps have been used to model

real-world phenomena such as weather, economics, biology (cancer) and physics.
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In particular, they have been utilized in mathematical finance to simulate asset

prices, interest rates and volatilities [1]. Most of the existing convergence theory

requires the coefficients of SDEwJs to satisfy a linear growth condition [2–4].

In the past decades, many authors devoted themselves to finding other conditions to

replace the linear growth condition by employing the Lyapunov-type functions [8].

To the best of the authors’ knowledge, there has been no literature concerned with

the related results on the numerical solution of SDEwJs under non-linear growth

conditions. While, this condition has often been met by many systems in practice

and the existing results of convergence are somewhat restrictive for the purpose of

practical applications.

Therefore, it is very important to establish the convergence theory of SDEwJs under

some weak conditions. In [9], Wei Mao et al. have presented hard condition for

a nonlinear growth condition for Euler-Maruyama that h(x) must satisfy the local

Lipschitz condition, whilst in this paper, we present weaker condition as follow:

If the constants α, β > 0 exist, such that the coefficients of equation (1) satisfy

2 < x, f(x) > +∥g(x)∥2 + ∥h(x)∥2 ⩽ α+ β∥x∥2 + γ(t)e−ξt, (2)

then

supE(∥x(t)∥2) <∞, ∀T > 0, (3)

where 0 ≤ t ≤ T , ∥x∥ denotes both the Euclidean vector norm and the Frobenius

matrix norm, also < x, y > denotes the scalar product of vectors x, y ∈ Rn.

Mao et. al. in [8] and Hutzenthaler et al. in [5,6] used this condition in the case of

super-linearly growing coefficients in without jump case. the convergence theorems

and the results that presented in this paper are different with convergence results

that presented in papers, [2–4,11,13].

However, as mentioned before, there has been no reported result bounding the

numerical solutions of SDEwJs under the coercivity condition (1.2). The EM ap-

proximation may not converge in the strong Lp-sense nor in the weak sense, to the

exact solution. For example, consider the following non-linear SDEs with Poisson

jump

dx(t) = (−2x− 5

2
x3(t))dt+ x2(t)dW (t) + (1 + x2(t))dN(t). (4)

The Brownian process W (t) whose almost all sample paths are continuous, the

Poisson random process N(t) is a jump process and has the sample paths which

are continuous.

In order to approximate SDEwJs (4) numerically, for any t, the partition P =

P∆t

∪
J has been defined, where P∆t = {tk = kt : k = 0, 1, 2, ..., N}, N∆t = T

and J = {ti : jump node} of the time interval [0, T ]. Subsequently, we define the

EM approximation Ytk ≈ x(tk) of (4) by where ∆Wtk = W (tk+1) − W (tk). M.

Hutzenthaler et al. in [5] has shown that

lim
∆t→0

E(∥ytn∥)2 = ∞, (5)
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for no-jump case. In a similar manner from [5], it can be shown that (5) satisfies

the jump equations (4). In the other words, it is necessary to modify the EM

scheme so as to prove the strong convergence theorem under condition (2). Thus,

the Compensated Split-Step θ (CSSθ) method for SDEwJs has been investigated.

In this paper, we will prove the convergence of the SDEwJs under the one-side

Lipschitz conditions and non-linear growth conditions and we try to bound the

moment of the numerical solutions.

The rest of the paper has been organized as follows. In Section 2, the existence and

uniqueness of solution concerning the equation (1) will be analysed. Subsequently,

the possible CSSθ method will be introduced in Section 3. In Section 4, the Forward-

Backward Euler-Maruyama (FBEM) Scheme is presented. In section 5, we discuss

the stability of SDEwJs with constant coefficient and prove some new relation

between their coefficient. Finally, we present three examples to investigate the

theories and methods.

2 Existence and Uniqueness of the Solution

For the existence and uniqueness of the solution for (1), we assume that all the

coefficient f , g and h satisfy the following assumptions:

The local Lipschitz condition: There is an integer constant m ≥ 1 and posi-

tive constant C(m) such that

∥f(x)− f(y)∥+ ∥g(x)− g(y)∥+ ∥h(x)− h(y)∥ ⩽ C(m)∥x− y∥, (6)

for all x, y ∈ Rn, with |x| ∨ |y| ≤ m.

Coercivity condition: There exists constants α, β ∈ R, ξ > 0 and non-negative

continuous function γ(t), t ∈ R+, such that

2 < x, fλ(x) > +∥g(x)∥2 + ∥h(x)∥2 ⩽ α+ β∥x∥2 + γ(t)e−ξt, (7)

for all x ∈ Rn.

Also, for arbitrary δ > 0, γ(t) satisfies γ(t) = o(eδt) [12].

Under Assumption 2, there exists a unique solution to (1) for any given initial value

x(0) = x0 ∈ Rn [8]. The reason for presenting and proving the following theorem

is that it reveals the upper bound for the probability of the process x(t) remaining

on a compact domain for a finite time T > 0. The bound will be used to derive the

main convergence theorem of this paper.

Theorem 2.1. There exists a unique, global solution x(t)t≥0 to equation (1) for

any given initial value x(0) = x0 ∈ Rn, when Assumption 2 holds. Moreover, the

solution has the properties that for any T > 0,

E∥x(T )∥2 ≤ (∥x0∥2 + 2αT + γe−ξT )exp(2βT ), (8)
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and

P (τm < T ) ≤ (
∥x0∥2 + 2αT + γe−ξT )exp(2βT )

m2
. (9)

For any positive integer m, where

τm = inf{t ≥ 0, ∥x(t)∥ > m}, (10)

and

γ = sup{γ(t) , 0 < t < T}. (11)

Proof : Under Assumption 2., suppose there exists a unique solution x(t) to

equation (1) for any given initial value x0 ∈ Rn. Applying the Ito’s formula to the

function V (x, t) = ∥x∥2, the diffusion operator has been computed

LV (x, t) = 2 < x, fλ(x) > +∥g(x)∥2, (12)

so by Assumption 2 we have

LV (x, t) ≤ α+ β∥x∥2 − ∥h(x)∥2 + γ(t)e−ξt, (13)

or

LV (x, t) ≤ α+ β∥x∥2 + γe−ξt. (14)

Therefore

E∥x(t ∧ τm)∥2 ≤ ∥x0∥2 + 2αT + γe−ξT +

∫ T

0

2βE∥x(s ∧ τm)∥2ds, (15)

and by using the Gronwall inequality we have

E∥x(T ∧ τm)∥2 ≤ (∥x0∥2 + 2αT + γe−ξT )exp(2βT ). (16)

Hence,

P (τm > T ) ≤ E∥x(T ∧ τm)∥2

m2
. (17)

By letting m −→ ∞ in (17) and applying Fatous lemma

E∥x(T )∥2 ≤ (∥x0∥2 + 2αT + γe−ξT )exp(2βT ). (18)

Which gives the other assertion (8) and completes the proof.

3 The Compensated Split Step θ method

The equation (1) can be rewritten in the new form of SDEwJs

dx(t) = fλ(x(t
−))dt+ g(x(t−))dw(t) + h(x(t−))dN̂(t), (19)
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where N̂(t) is a compensated Poisson process

N̂(t) = N(t)− λt, (20)

which N̂(t) is a martingale and

fλ(x) = f(x) + λh(x). (21)

It should be pointed out that fλ also satisfies a one sided Lipschitz condition.

The CSSθ method for (19) by Y0 = x(0−) can be defined with the constant step

size h = ∆t, such that P∆t = {tk = k∆t , k = 0, 1, 2, ...} on [0,∞] and jump time,

Jt = {ti : i = 1, 2, 3, ..., l} ⊆ [0, T ], then for P = P∆t ∪ Jt we have

y∗n = yn + [(1− θ)fλ(yn) + θfλ(y
∗)]∆t,

yn+1 = y∗n + g(y∗n)∆wn + h(y∗n)∆N̂n,
(22)

where N̂n = N̂(tn+1)− N̂(tn).

Provided that where θ = 1, the CSSθ method becomes the Compensated Split-

Step Backward Euler (CSSBE) method in [2]. We will give the following lemma to

answer the question of the existence of the numerical solution.

According to first equation in (22), the following can be deduced

y∗n − θfλ(y
∗)∆t = yn + (1− θ)fλ(yn)∆t,

based on [8]. we can define F : Rn → Rn such that F (x) = x− θfλ(x)∆t.

Clearly,Xtk is Ftk -measurable. Since the inverse function cannot be found explicitly,

we can find the inverse function F−1 using root-finding algorithms, such as Newton’s

method or any function that satisfies the fixed point theorem.

Proposition 3.1. Assume that f : R −→ R satisfies Assumption 2 and let θ ∈
[0, 1], 0 < ∆t < 1√

kλθ
, then in the first equation (22), we can uniquely solve the

equation for y∗n, with probability 1.

proof : see [7]

We can achieve

y∗n = F−1(yn + (1− θ)fλ(yn)∆t), (23)

and substitute it in the second equation, in order to solve the numerical method.

The additional parameter θ ∈ [0, 1] allows the implicitness of the numerical scheme

to be controlled, which may lead to various asymptotic behaviours of the equation

(3.4). Due to the presence of an implicit scheme, the availability of a unique solution

yn+1, where given ynhas to be proven for equation (22). To prove this, in addition

to Assumption 2, we ask that function fλ satisfies the one-sided Lipschitz condition.

There exists a constant (µ+ λLh) such that

∥ < x− y, fλ(x)− fλ(y) > ∥ ⩽ (µ+ λLh)∥x− y∥2, ∀x, y ∈ Rn. (24)
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It follows the fixed point theorem that a unique solution yn+1 to equation (22)

exists given yn , provided that ∆t <
1

θL
,(see [7]). In the next lemma, the fact

that the second moment of the CSSθ method in (22) is bounded (Theorem 3.4).

The stopping time technique has been employed in a similar way as in the proof of

Theorem 2.1 to achieve the bound. The following lemma shows that boundedness

of yn moments are guaranteed, provided that the moments of Ftn are bound.

Lemma 3.2. Under the Assumption 2 for F (x) = x− θfλ(x)∆t we have

∥x∥2 ≤ (1− 2βθ∆t)−1[∥F (x)∥2 + (2α+ γ(t)e−ξt)θ∆t], ∀x ∈ Rn. (25)

Proof. Let ∥F (x)∥2 =< F (x), F (x) > and using Assumption 2

∥F (x)∥2 =< F (x), F (x) >,

=< x− θfλ(x)∆t, x− θfλ(x)∆t >,

= ∥x∥2 − 2θ∆t < x, fλ(x) > +θ2∆2∥fλ(x)∥2,

≥ ∥x∥2 − 2θ∆t(α+ β∥x∥2 − 1

2
∥g(x)∥2 − 1

2
∥h(x)∥2 + γ(t)e−ξt),

= ∥x∥2(1− 2θ∆tβ)− 2αθ∆t+ ∥g(x)∥2θ∆t+ ∥h(x)∥2θ∆t,
− γ(t)e−ξtθ∆t ≥,
= ∥x∥2(1− 2θ∆tβ)− (2α+ γ(t)e−ξt)θ∆t,

(26)

complete the proof.

The stopping time has been defined λm as follows

λm = inf{n : ∥yn∥ > m}, (27)

the following lemma is not trivial when ∥yn∥ > m.

For n ∈ [0, λm], we have the following lemma.

Lemma 3.3. Under Assumptions 2 for p ≥ 2 and a sufficiently large integer m,

there exists a constant C(p,m), such that

E[∥ytk∥p1[0,λm](n)] < C(p,m), for n ≥ 0. (28)

Proof : From the equation (22)

y∗n = yn + [(1− θ)fλ(yn) + θfλ(y
∗)]∆t,

yn+1 = y∗n + g(y∗n)∆wn + h(y∗n)∆N̂n.
(29)

With Assumption 2 and F (x) = x− θfλ(x)∆t,

y∗tk = F (ytk) + (fλ(ytk) + θfλ(y
∗
tk
))∆t,

F (ytk+1
) = y∗tk + g(y∗tk)∆wtk + h(y∗tk)∆N̂tk .

(30)
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It can be written as

∥F (ytk+1
)∥2 =< F (ytk+1

), F (ytk+1
) >

=< F (ytk) + (fλ(ytk) + θfλ(y
∗
tk
))∆t+ g(y∗tk)∆wtk + h(y∗tk)∆N̂tk

F (ytk) + (fλ(ytk) + θfλ(y
∗
tk
))∆t+ g(y∗tk)∆wtk + h(y∗tk)∆N̂tk >

= ∥F (ytk)∥2 + ∥λ(ytk)∥2∆t2

+ θ2∥fλ(y∗tk)]∥
2∆t2 + (∥g(ytk)∥2 + θ∥g(ytk)∥2)∆t

+ 2 < F (ytk), fλ(ytk)∆t > +2 < F (ytk), θfλ(y
∗
tk
)∆t > +∆Mtk ,

(31)

by setting fλ(y
∗
tk
) = fλ(ytk) + ϵ,

∥F (ytk+1
)∥2 ≤ ∥F (ytk)∥2 + ∥fλ(ytk)∥2∆t2

+ θ2∥fλ(ytk)]∥2∆t2 + ∥θϵ∆t∥2

+ 2 < ytk , fλ(ytk) > ∆t− 2θ∥fλ(ytk)]∥2∆t2

+ 2 < ytk , θfλ(ytk)∆t > −2θ2∥fλ(ytk)]∥2∆t2 + 2 < F (ytk), θϵ∆t >

+ (∥g(ytk)∥2 + θ∥g(ytk)∥2)∆t+∆Mtk ,

(32)

hence, based on Assumption 2

∥F (ytk+1
)∥2 ≤ ∥F (ytk)∥2 + (1− 2θ − θ2)∥fλ(ytk)∥2∆t2 + ∥θϵ∆t∥2

+ 2 < ytk , fλ(ytk) > ∆t+ 2 < ytk , θfλ(ytk)∆t >

+ 2 < ytk , θϵ∆t > (∥g(ytk)∥2 + θ∥g(ytk)∥2)∆t+∆Mtk ,

(33)

consequently we have the new condition for θ such that

(1− 2θ − θ2) ≤ 0, (34)

resulting in

∥F (ytk+1
)∥2 ≤ ∥F (ytk)∥2 + ∥θϵ∆t∥2

+ (α+ β∥ytk∥2 − ∥h(x)∥2 + γ(t)e−ξt)(1 + θ)

+ 2 < ytk , θϵ∆t > +∆Mtk .

(35)

By considering [8], we have

(

n∑
i=1

ai)
p/2 ≤ 4p/2−1(

n∑
i=1

a
p/2
i ), for ai ≥ 0. (36)

Using the above inequality, the following can be obtained

∥F (ytk+1
)∥p ≤ 4p/2−1(∥F (ytk)∥p + ∥θϵ∆t∥p

+ ((α+ β∥ytk∥2 + γ(t)e−ξt)(1 + θ)p/2

+ (2∥ytk∥∥θϵ∆t∥)p/2 + ∥∆Mtk+1
∥p/2.

(37)
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As a consequence

E[∥F (ytk+1
)∥p1[0,λm](n)] ≤ 4p/2−1(E[∥F (ytk)∥p1[0,λm](n)]

+ ∥θϵ∆t∥p + (α+ βm2 + γe−ξT )(1 + θ)p/2

+ (2m∥θϵ∆t∥)p/2 + E[∥∆Mtk+1
∥p/21[0,λm](n)]).

(38)

Now we can write ∆Mtk as follows

∆Mtk+1
= ∥g(y∗tk)∆wtk∥2 + ∥h(y∗tk)∆N̂tk∥2

− (∥g(ytk)∥2 + θ∥g(ytk)∥2)∆t+ 2 < F (ytk), g(y
∗
tk
)∆wtk >

+ 2 < F (ytk), h(y
∗
tk
)∆N̂n > +2 < fλ(ytk)∆t, θfλ(y

∗
tk
)∆t >

+ 2 < fλ(ytk)∆t, g(y
∗
tk
)∆wtk > +2 < fλ(ytk)∆t, h(y

∗
tk
)∆N̂tk >

+ 2 < θfλ(ytk)∆t, g(y
∗
tk
)∆wtk > +2 < θfλ(y

∗
tk
)∆t, h(y∗tk)∆N̂tk >

+ 2 < g(y∗tk)∆wtk , h(y
∗
tk
)∆N̂tk > .

(39)

From equation (36), (39) and Cauchy inequality

E[∥∆Mtk+1
∥p/2]1[0,λm](n) ≤ 4p/2−1E(∥g(y∗tk)∆wtk∥p + ∥h(y∗tk)∆N̂tk∥p

− (∥g(ytk)∥p + θp/2∥g(ytk)∥p)(∆t)p/2

+ 2p/2∥F (ytk)∥p/2∥g(y∗tk)∆wtk∥p/2

+ 2p/2∥F (ytk)∥p/2∥h(y∗tk)∆N̂n∥p/2

+ 2p/2∥fλ(ytk)∆t∥p/2∥θfλ(y∗tk)∆t∥
p/2

+ 2p/2∥fλ(ytk)∆t∥p/2∥g(y∗tk)∆wtk∥p/2

+ 2p/2∥fλ(ytk)∆t∥p/2∥h(y∗tk)∆N̂tk∥p/2

+ 2p/2∥θfλ(ytk)∆t∥p/2∥g(y∗tk)∆wtk∥p/2

+ 2p/2∥θfλ(y∗tk)∆t∥
p/2∥h(y∗tk)∆N̂tk∥p/2

+ 2p/2∥g(y∗tk)∆wtk∥p/2∥h(y∗tk)∆N̂tk∥p/2)1[0,λm](n).

(40)

Due to Assumption 2, ∥F (x)∥ and ∥g(x)∥ has been bounded for ∥y∥ < m. Where,

there exists a constant C(m, p), such that

E[∥∆Mtk+1
∥p/2]1[0,λm](n) ≤

E[m1 +m2∥g(y∗tk)∆wtk∥p/2

+m3∥h(y∗tk)∆N̂tk∥p/2]1[0,λm](n),

(41)

where m1,m2 and m3 are constant. Now by holding this holder inequality

E[∥∆Mtk+1
∥p/2]1[0,λm](n) ≤ C(m, p)[1 + (E∥g(y∗tk)∥

p1[0,λm](n))
1/2(E∥∆wtk∥p)1/2

+ (E∥h(y∗tk)∥
p1[0,λm](n))

1/2(E∥∆N̂tk∥p)1/2].
(42)
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Since there exists a positive constant C(p), such that E∥∆wtk∥p
∧
E∥N̂tk∥p ≤ C(p),

the following can be deduced

E[∥F (ytk)∥p]1[0,λm](n) ≤ C(p,m).

The coefficients of the equation (19) satisfy the polynomial growth condition. In

this regard, there exists a pair of constants k ≥ 1 and C(k) > 0 such that

∥f(x)∥ ∨ ∥g(x)∥ ∨ ∥h(x)∥ ≤ C(k)(1 + ∥x∥k), ∀x ∈ Rn. (43)

It is time to establish the fundamental results of this paper that reveals the bound-

edness of the equation (19), under Assumptions 2 and 3.

Theorem 3.4. Let Assumptions 2, 3, 3 hold, and
√
2 − 1 ≤ θ ≤ 1. Then, for

any T > 0, there exists a constant C(T ) > 0 such that the CSSθ scheme has the

following property

sup
∆t≤∆t∗

( sup
0≤tk≤T

E∥ytk∥2) < C(T ).

Proof. By (31), we can represent the CSS θ scheme (22) as

F (ytk+1
) = F (ytk) + (fλ(ytk) + θfλ(y

∗
tk
))∆t+ g(y∗tk)∆wtk + h(y∗tk)∆N̂tk .

Consequently, writing ∥F (yn+1)∥2 =< F (yn+1), F (yn+1) > and utilizing Assump-

tion 2,

∥F (ytk+1
)∥2 ≤ ∥F (ytk)∥2 + ∥θϵ∆t∥2

+ (α+ β∥ytk∥2 − ∥h(x)∥2 + γ(t)e−ξt)(1 + θ)∆t

+ 2 < ytk , θϵ∆t > +∆Mtk+1
.

(44)

By the cauchy inequality and ∥h(x)∥2(1 + θ)∆t ≥ ∥θϵ∆t∥2,

∥F (ytk+1
)∥2 ≤ ∥F (ytk)∥2 + (α+ γ(t)e−ξt)(1 + θ)∆t

+ β(1 + θ)∥ytk∥2∆t+ 2α1∥ytk∥∆t+∆Mtk+1
,

(45)

is a local martingale.

∥F (ytk+1
)∥2 ≤ ∥F (ytk)∥2 + (α+ γ(t)e−ξt)(1 + θ)∆t,

+ β(1 + θ)(∥ytk∥2 + 2
α1

β(1 + θ)
∥ytk∥)∆t+∆Mtk+1

,
(46)

or

∥F (ytk+1
)∥2 ≤ ∥F (ytk)∥2 + (α+ γ(t)e−ξt)(1 + θ)∆t

− α2
1

β(1 + θ)
∆t+∆Mtk+1

.
(47)
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Let N be any non-negative integer such that N∆t ≤ T . By summing up both

sides of inequality (47) from k = 0 toN ∧λm, the expression below can be deduced

∥F (ytN∧λm+1
)∥2 ≤ ∥F (yt0)∥2 + (α+ γ)(1 + θ)T

− α2
1

β(1 + θ)
T +

l∑
J=0

(N∧λm)J∑
kJ=0

∆Mtk+1
,

(48)

where J = {ti : i = 1, 2, 3, ..., l} is jump time, then

∥F (ytN∧λm+1
)∥2 ≤ ∥F (yt0)∥2 + (α+ γ)(1 + θ)T

− α2
1

β(1 + θ)
T +

l∑
J=0

NJ∑
kJ=0

∆Mtk+1
1[0,km](n).

(49)

Applying Lemma 3.2, Assumption 3 and noting that ytk and 1[0,km](n) are Ftk -

measurable while ∆tk is independent of Ftk . Finally, the equation presented below

can be derived

∥F (ytN∧λm+1
)∥2 ≤ ∥F (yt0)∥2 + (α+ γ)(1 + θ)T − α2

1

β(1 + θ)
T, (50)

in equation (50) where N∆t ≤ T , m→ ∞ and applying Fatous lemma, we get

∥F (ytN+1
)∥2 ≤ ∥F (yt0)∥2 + (α+ γ)(1 + θ)T − α2

1

β(1 + θ)
T, (51)

by Lemma 3.2, the assertion follows.

4 Forward-Backward Euler-Maruyama (FBEM) S-

cheme

In this section, a continuous extension of a numerical method has been introduced

which enables us to use the powerful continuous-time stochastic analysis in order

to formulate theorems on numerical approximations and useful in the proof of

Forthcoming Theorem 4.2. Now with the extended formula from [8], the following

can be defined

η(t) := tk t ∈ [tk, tk+1), k ≥ 0,

η+(t) := tk+1 t ∈ [tk, tk+1), k ≥ 0.
(52)

Suppose continuous version of the θ-EM for jump equation is given by

y(t) = yt0 + θ

∫ t

0

f(yµ+(s))ds+ (1− θ)

∫ t

0

f(yµ(s))ds

+

∫ t

0

g(yµ(s))dw(s) +

∫ t

0

h(yµ(s))dN̂(s), t ≥ 0.

(53)
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According to findings presented by [8], y(t) is not Ft-adapted since it does not meet

the fundamental requirements of the classical stochastic analysis. For more detail, a

new numerical method has been introduced and labelled as the Forward-Backward

Euler-Maruyama (FBEM) method.

We define the discrete FBEM by

y∗tk = ŷtk + f(ytk)∆t

ŷtk+1
= y∗tk + g(y∗tk)∆wtk + h(y∗tk)∆N̂tk .

(54)

And the continuous FBEM by

ŷtk+1
= ŷt0 +

∫ t

0

f(yµ(s))ds+

∫ t

0

g(yµ(s))dw(s) +

∫ t

0

h(yµ(s))dN̂(s), t ≥ 0. (55)

Note that the continuous and discrete FBEM schemes coincide at the grid points,

that is, ŷ(tk) = ŷtk , for k ≥ 0.

4.1 Strong Convergence on the Compact Domain

It this section, the strong convergence theorem has been proven. This has been

carried out by showing that both schemes of the FBEM (54) and the CSSθ (22)

stay close to each other on a compact domain. Then, an estimation has been made

of the probability that both continuous FBEM (54) and CSSθ (22) will not explode

on a finite time interval.

Lemma 4.1. Under Assumptions 2, 3, 3,
√
2− 1 < θ ≤ 1, any integer p ≥ 2 and

m ≥ ∥y0∥, there exists a constant C(m, p) such that

E[∥ŷtk − ytk∥p1[0,λm](n)] ≤ C(p,m)p, ∀k ∈ N. (56)

Proof: From both methods, the FBEM (54) and the CSSθ (22)

ŷtk+1
− ytk+1

= ŷtk − ytk + θ[fλ(ytk)− fλ(y
∗
tk
)]∆t, (57)

with Minkowski inequality in norm p

∥ŷtk+1
− ytk+1

∥p ≤ ∥ŷtk − ytk∥p + ∥θ[fλ(ytk)− fλ(y
∗
tk
)]∆t∥p, (58)

by summing up both sides of the equation

∥ŷtN − ytN ∥p ≤ θ

N−1∑
k=0

∥fλ(ytk)− fλ(y
∗
tk
)∆t∥p, (59)

expectation of both sides

E[∥ŷtN − ytN ∥pp1[0,λm](n)] ≤ 4p−1θ

N−1∑
k=0

E[∥fλ(ytk)− fλ(y
∗
tk
)∥∆t∥pp1[0,λm](n)], (60)
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from fλ(y
∗
tk
) = fλ(ytk)+ϵ we then see easily that there exists a constant C(p,m) ≥

0, such that

E[∥ŷtN − ytN ∥pp1[0,λm](n)] ≤ C(m, p)∆tp, (61)

and (56) obtained.

The following Theorem provides us with a similar estimate for the distribution of

the first passage time for the continuous FBEM (53) and CSSθ (22) methods that

we have obtained for the SDEwJs (1) in Theorem 2.1.

Theorem 4.2. Under the Assumptions 2, 3 , 3 and
√
2− 1 ≤ θ ≤ 1 for any given

ϵ > 0, there exists a positive integer N0 such that for every m ≥ N0, we can find a

positive number ∆t0 = ∆t0(m) provided that ∆t ≤ ∆t0.

P (ϑm < T ) ≤ ϵ, for T > 0.

Where ϑm = inf{t > 0 : ∥X̂(t)∥ ≥ m , or ∥Xη(t)∥ > m}.

Proof: By the Ito lemma for SDEs with Poisson jump

∥X̂(T ∧ ϑm)∥2 = ∥X0∥2 +
∫ T∧ϑm

0

(2 < X̂(s), f(Xη(s)) > +∥g(Xη(s))
2)ds

+ 2

∫ T∧ϑm

0

< X̂(s), g(Xη(s)) > dw(s) +

∫ T∧ϑm

0

(X̂(s)− X̂(s−))dN(s)

= ∥X0∥2 +
∫ T∧ϑm

0

(2 < X̂(s)−Xη(s) +Xη(s), f(Xη(s)) > +∥g(Xη(s))∥2)ds

+ 2

∫ T∧ϑm

0

< X̂(s), g(Xη(s)) > dw(s) +

∫ T∧ϑm

0

(X̂(s)− X̂(s−))dN(s)

≤ ∥X0∥2 +
∫ T∧ϑm

0

(2 < Xη(s), f(Xη(s)) > +∥g(Xη(s))∥2)ds

+

∫ T∧ϑm

0

∥X̂(s)−Xη(s)∥∥f(Xη(s))∥ds

+ 2

∫ T∧ϑm

0

< X̂(s), g(Xη(s)) > dw(s)+∫ T∧ϑm

0

∥X̂(s)− X̂(s−)∥dN(s),

by Assumption 2,

∥f(x)∥2 ≤ 2(C(m)∥x∥2 + ∥f(0)∥2,
∥g(x)∥2 ≤ 2(C(m)∥x∥2 + ∥g(0)∥2,
∥h(x)∥2 ≤ 2(C(m)∥x∥2 + ∥h(0)∥2,

for ∥X∥ ≤ m.
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It can be expressed as

E∥X̂(T ∧ ϑm)∥2 ≤ ∥X0∥2 + 2α1T + 2βE

∫ T∧ϑm

0

∥Xη(s) − X̂(s) + X̂(s)∥2ds,

+ C(m)E

∫ T∧ϑm

0

∥Xη(s) − X̂(s))∥ds.

For the rest of the proof see Theorem 4.2 in [8].

5 Linear mean-square stability

This section focuses on linear mean-square stability. Here, we are concerned with

the regime where t → ∞ with ∆t fixed. Following the approach used in the deter-

ministic case, we examine the behaviour of the method on a linear test equation.

We consider the case where f , g and h in the equation (1) are scalar and multi-

plicatively linear, that is

dS(t) = aS(t−)dt+ bS(t−)dW (t) + cS(t−)dN(t), (62)

where a, b and c are real constants, we assume S(0) ̸= 0 with probability one. Note

that equation (62) is a natural generalization of both the classical linear equation

used to study the stability of methods for deterministic ODEs. We also remark

that equation (62) has been proposed as a model in mathematical finance [10].

Theorem 5.1. The equation (62) is mean-square stability if and only if

a <
λ

2
, and − 1−

√
1− 2a

λ
< c < −1 +

√
1− 2a

λ
. (63)

Proof: The equation (5.1) has solution

S(t) = S(0)exp{a− b2

2
)t+ bW (t)}(1 + c)N(t), (64)

for c ̸= −1, [11,13].

Using E((1 + c)2N(t)) = exp(λc(2 + c)t), we have

E[S(t)2] = E[S(0)2exp(2(a− b2

2
)t]E[exp(2bW (t)]E[(1 + c)2N(t)]

= E(S(0)2)exp((2a+ b2 + λc(2 + c))t).

(65)

Hence, mean-square stability (of the zero solution) for c ̸= −1 in (62) may be

characterized by

Limt−→∞E|S(t)|2 = 0 ⇔ 2a+ b2 + λc(2 + c) < 0. (66)
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And it is straightforward to check that (66) remains true when c = −1.

We can rewrite (66) as follow

b2 < −(2a+ λc(2 + c)),

where b2 > 0, so

2a+ λc(2 + c) < 0,

c2 + 2c+
2a

λ
< 0,

(c+ 1)2 < 1− 2a

λ
, (67)

then

a <
λ

2
, and − 1−

√
1− 2a

λ
< c < −1 +

√
1− 2a

λ
. (68)

From Theorem 5.1, few comments are in order regarding the parameters in (66).

(i)(ii)(i) The scalar Poisson intensity, λ > 0,

(ii) For any b ∈ Rn,

2a+ λc(2 + c) < 0,

(iii) The diffusion parameter b does not matter, but for the drift parameter a <
λ

2
and the jump parameter c

−1−
√

1− 2a

λ
< c < −1 +

√
1− 2a

λ
,

(iv) It is interesting to note that if a ≃ λ

2
or (a→ λ

2
) we must have c ≃ −1, then

2a+ b2 + λc(2 + c) ≃ λ+ b2 − λ,

and the drift parameter must be zero (b ≃ 0).

(v) If the jump parameter c = 0 or c = −2 then the drift parameter a < 0.

(vi) If a ≃ −b
2

2
(a→ −b

2

2
) then the jump parameter −2 < c < 0.

(vii) If b = c = λ then c3 + 3c + 2a = 0 and with c = c − 1 we can rewrite

c3 − 3c+2a+2 < 0, so with ∆ = a(a+2) we have three situation, such that

(a) If a < −2 or a > 0 then ∆ > 0, and we have only one real jump

parameter c.

(b) If a = −2 or a = 0 then ∆ = 0, and we have two real jump parameter c.

(c) If −2 < a < 0 then ∆ < 0, and we have three real jump parameter c.
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(viii) If a = b = λ, then a2 + a((c+ 1)2 + 1) < 0.

(a) If a > 0 then a+ ((c+ 1)2 + 1) < 0 and It is contradiction.

(b) If a < 0 then a+ ((c+ 1)2 + 1) > 0 and we choose the jump parameter

c such that (c+ 1)2 < −(1 + a).

(ix) If a = b then

2a+ a2 + λc(c+ 2) < 0,

(1 + a)2 < 1− λc(c+ 2),

we know (1 + a)2 > 0, then

1− λc(c+ 2) > 0,

(c+ 1)2 < 1− 1

λ
,

so λ > −1.

Theorem 5.2. The CSSθ applied to (62) is Mean-square stable if and only if

Limt−→∞E|S(t)|2 = 0 ⇔ ∆t <
1

a+ λc
. (69)

Proof. From (22) we have

Yn+1 = (
1 + (1− θ)(a+ λc)∆t

1− θ(a+ λc)∆t
)(1 + b∆Wn + c∆̂N)Yn,

nothing that E(∆W ) = 0, E(∆W )2 = ∆t, E(∆̂N) = 0 and E(∆̂N)2 = λ∆t, so we

can write

E|Yn+1|2 = (
1 + (1− θ)(a+ λc)∆t

1− θ(a+ λc)∆t
)2(1 + b2∆t+ λc2∆t)E|Yn|2. (70)

We conclude that Limn−→∞E|Yn|2 = 0, if

(
1 + (1− θ)(a+ λc)∆t

1− θ(a+ λc)∆t
)2(1 + b2∆t+ λc2∆t) < 1,

but (1 + b2∆t+ λc2∆t) > 1, then

1 + (1− θ)(a+ λc)∆t

1− θ(a+ λc)∆t
< 1, (71)

1 +
(a+ λc)∆t

1− θ(a+ λc)∆t
< 1,

(a+ λc)∆t

1− θ(a+ λc)∆t
< 0.
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With elimination (a+ λc)∆t and substitute ∇ =
1

(a+ λc)∆t
, we have

1

∇− θ
< 0, (72)

we have (∇− θ) < 0, then

∆1t <
1

a+ λc
, (73)

and prove the theorem.

Corollary 5.3. If we use the split step θ method (non compensated), the equation

(73) can be replace by

∆2t <
1

a
.

5.1 Numerical experiments

In this section, we present several numerical experiments that corroborate the

strong convergence. Two examples have been presented in order to test the de-

signed program in MATLAB simulating environment. Here, the random numbers

generated by using the command randn(N1). The command randn(N1) creates

an N1 step matrix of independent N(0; 1) samples. In order to make a repeatable

simulation, Matlab allows generating the same random numbers with similar ini-

tial states. Here, the initial value with rng(′default′) and after that randn(N1)

has been set, Hence, different simulations can be performed by resetting the initial

value.

Consider a simple case of equation (1), where f(x(t)) = ax(t), g(x(t)) = bx(t) and

h(x(t)) = cx(t), (see [11,13])

dx(t) = ax(t−)dt+ bx(t−)dw(t) + cx(t−)dN(t), t ≥ 0, (74)

with x(0) = 1, and exact solution,

x(t) = x(0)exp((a− b

2
)t+ bw(t))(1 + c)N(t).

Clearly, the operators f ,g and h satisfy the Assumption 2 for (α, β, γ) = (1, 6, 1).

Example 5.4. a = 1, b = 1, c = 0.5,λ = 1.

Remark 5.5. From theorem 5.1 part 8, Example 5.4 is convergent, but isn’t mean

square stable, whilst ∆t <
1

1.5
=

2

3
= 0.67

Example 5.6. a = 2, b = 2, c = −0.9,λ = 9.
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Figure 1: CSSθ method of Example 5.4

Figure 2: CSSθ method of Example 5.6

Therefore, it proves that assumptions 2, 3 and 4 have been satisfied. Conse-
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quently, the approximate solution will converge to the true solution for any t ≥ 0,

in the sense of Theorem 3.4, provided that ∆t is sufficiently small. To confirm our

convergence order, we apply the CSSθ methods to Examples 5.4 and 5.6 and plot

them in Figures 1 and 2. Using two different step sizes: ∆t = 2−q, with q = 4, 8

and θ = 0.5.

Remark 5.7. From Theorem 5.1 part 9 the example II convergence, mean square

stable and ∆t <
1

2− 0.81
= 0.840.

Example 5.8. This example has been constructed to demonstrate the effectiveness

and experiment of theoretical results of our theory.

dx(t) = (−2x− 5

2
x3(t))dt+ x(t)2dw(t) + (1 + x2(t))dN(t), (75)

wheref(x) = −2x− 5

2
x3, g(x) = x2, h(x) = 1+x2 with initial value x0 = 1. Setting

λ = 2 for the Poisson process intensity and solve this example over T = 2. Also

the operators f ,g and h satisfy the Assumption 2 for (α, β, γ) = (1, 1, 1). Note

that the coefficients in example satisfy assumption 2, 3, 3 and consequently, the

approximate solution will converge to the true solution for any t ≥ 0. The exact

Figure 3: CSSθ method of Example 5.8

solution of Example 5.8 for some sample path and the CSSθ approximations has

been illustrated in Figure 3. Then, the numerical solutions with two different step

sizes: ∆t = 2−q, with q = 4, 8 and λ = 2, θ = 0.5 has been simulated.
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6 Conclusion

In this paper, the CSSθ and FBEM methods for Numerical solutions of SDEs with

Poisson jump has been presented and analyzed. We showed the strong convergence

of CSS θ method under coercivity condition, where
√
2 − 1 < θ ≤ 1, the drift

term f has a one-sided Lipschitz condition , the diffusion term g and jump term

h satisfy global Lipschitz condition. Also we proved the p-th moments of the

numerical solution are bounded for p > 2 on compact domain. Furthermore, we

discussed about stability of SDEwJs with constant coefficients and presented new

useful relations between their coefficients.
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