
Journal of Mathematics and Modeling in Finance (JMMF) Vol.1, No.1, Fall & Winter 2020 181181

Economic Models Involving Time Fractal

Alireza Khalili Golmankhane1, Karmina K. Ali2,3, Resat Yil-
mazer3, Mohammed K. A. Kaabar4

1 Department of Physics, Urmia Branch, Islamic Azad University, Urmia, Iran.

a.khalili@iaurmia.ac.ir

2 Faculty of Science, Department of Mathematics, University of Zakho, Iraq.

karmina.ali@uoz.edu.krd

3 Faculty of Science, Department of Mathematics, Firat University, Elazig, Turkey.

ryilmazer@firat.edu.tr

4 Department of Mathematics and Statistics, Washington State University, USA

mohammed.kaabar@wsu.edu

Abstract:
Abstract:
In this article, the price adjustment equation has been proposed and stud-
ied in the frame of fractal calculus which plays an important role in mar-
ket equilibrium. Fractal time has been recently suggested by researchers
in physics due to the self-similar properties and fractional dimension.
We investigate the economic models from the viewpoint of local and
non-local fractal Caputo derivatives. We derive some novel analytical
solutions via the fractal Laplace transform. In fractal calculus, a useful
local fractal derivative is a generalized local derivative in the standard
computational sense, and the non-local fractal Caputo fractal derivative
is a generalization of the non-local fractional Caputo derivative. The
economic models involving fractal time provide a new framework that
depends on the dimension of fractal time. The suggested fractal models
are considered as a generalization of standard models that present new
models to economists for fitting the economic data. In addition, we carry
out a comparative analysis to understand the advantages of the fractal
calculus operator on the basis of the additional fractal dimension of time
parameter, denoted by α, which is related to the local derivative, and
we also indicate that when this dimension is equal to 1, we obtain the
same results in the standard fractional calculus as well as when α and
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the nonlocal memory effect parameter, denoted by γ, of the nonlocal
fractal derivative are both equal to 1, we obtain the same results in the
standard calculus.

Keywords: Fractal calculus, the fractal market equation, the local fractal
Laplace transform, the nonlocal fractal Laplace transform.

Classification MSC2010: 28A80, 91B50, 91B55, 91B24, 91B02, 74D10.

1 Introduction

Fractal geometry is an extension of classical geometry. The word ”frac-
tal” was invented in the 1960s by B. Mandelbrot. Fractal geometry is
used to illustrate real objects like trees, lightning, meandering rivers, and
coastlines [1–9]. Fractals are geometric structures where their fractal
dimension exceeds their topological dimension. Fractals have many prop-
erties such as complicated structure, self-similarity of structures, discrete
scale symmetry, and fractal dimension which can be a real number. It is
well known that many processes in nature can be represented by fractals;
such types can be found anywhere in nature [1–15].

The analysis on fractals was constructed using various techniques, such
as harmonic analysis, probabilistic methods, measure theory, fractional
calculus, fractional spaces, and time-scale calculus [16–33]. A Riemann-
like calculus, named fractal calculus or Fα-calculus, was formed on fractal
sets, which is algorithmic and can be applied easily [34–38]. Fractal cal-
culus has been applied in optics and solid-state physics, and it has been
used to define a fractal logistic equation, fractal Shannon entropy, and
fractal mean-square calculus [39–43]. The Fourier and Laplace trans-
forms have been introduced for Fα-calculus in [39]. The analog of the
Sumudu transform in Fα-calculus has been introduced in [44]. The ap-
pearance of various types of anomalous diffusion on the same completely
disconnected set is presented in [40]. Fractal time was considered in
many mathematical models for fractal-time processes [45–50]. Therefore,
mathematical economics which is a interesting field of research in theo-
retical and applied sciences has attracted the interests of researchers due
to its important role in proposing new mathematical models arising from
economic phenomena and processes [62]. As a result, with the help of
fractional calculus, many economic models can be formulated in the sense
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of fractional-order derivatives; hence, the dynamics of economic processes
with memory effect and nonlocality can be well-described (for more back-
ground information about a survey of some recent proposed mathematical
models with continuous time for interpreting the dynamics of economic
models with long memory, we refer to [62], and see also [63, 64]). Due
to geometrical fractal properties, fractals have been widely seen and ap-
plied in economics such as money flow, sales data, transactions’ intervals,
network structures of economic agents (i.e. money transfer in banks’ net-
work), market price fluctuation, income distributions, and market proper-
ties [65]. Therefore, simple mathematical models of fractals are needed to
be proposed and analyzed to construct more realistic economic models for
a possible comparative analysis with real data in economy in order to pro-
vide a good prediction for the complex real world economy as mentioned
in [65]. Motivated by those previous research studies and the experimen-
tal results of the demand and supply balance where fractal properties
can be seen in many economic data due to the fact that economic models
are generally around the critical point of the phase transition and market
price fluctuations, macroscopic financial data analysis of companies, and
open markets’ price fluctuations in [66], we involve the fractal time in our
proposed economic models. For more detailed analysis of macroeconomic
models in steadystate fractal, we refer to [67]. This paper is organized as
follows: In Section 2, we provide a review of basic tools. We present a
fractal economic model with its solutions in Section 3. In Section 4, we
give a conclusion about our research work.

2 Some fundamental tools

In this section, we summarize and review some basic tools.

2.1 Economic models

Mathematical economic models, symbolizing economic procedure by cer-
tain variables, allowing economists to make expressive and favorable de-
mands regarding controversial circumstances. As expected, economists
have benefited from mathematical economic models which help in making
strong predictions about maximum gain. Investigating the relationship
between demand and supply, specifically those correlated with a price
adjustment, has dealt with a primary state for equilibrium progressively.
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Both of the market equilibrium and economic development play a major
role in addressing real-world problems. In addition, market competition
plays an important role for buyers and sellers of merchandise. Buyers
and sellers represent the two economic actors for goods whose costs may
rise or fall quickly. For more details, we refer to [51–60]. It is really hard
to identify whether buyers select cheap products or expensive products,
since snob impact may cause buyers to select expensive products. There-
fore, there is a considerable difficulty concerning the buyer’s options. A
totally competitive market is formed by several buyers and sellers of an
economic item where each item has no control over the price of the mar-
ket. In this model, the total claimed amount by the product’s purchasers
is represented as a function of the product price known as the demand
function. Similarly, the total amount provided by the sellers of product
is expressed as a function of the price of the product known as the supply
function. We consider two methods and their solutions as follows:
First model: Let us consider the demand and supply functions of
the form [51–59]

qd(t) = d0 − d1p(t) and qs(t) = s0 − s1p(t), (1)

respectively where p is the market price of the product, qd is the quantity
demanded, qs is the quantity supplied, and d0, d1, s0, s1 are positive
constants. It is easy to see that the equilibrium price can be achieved
by considering qd = qs, and it is given by

p∗ =
(d0 + s0)

(d1 + s1)
. (2)

Economists believe that markets are in equilibrium, meaning that the
supply of a product is precisely equivalent to the demand of the product.
For example, consider the basic price adjustment equation:

dp

dt
= λ (qd − qs) , (3)

where λ > 0 is the speed of adjustment constant. This shows that
price increases when demand exceeds supply and decreases when supply
exceeds demand. Inserting Eq. (1) in Eq. (3), we get

p′ (t) + λ (d1 + s1) p (t) = λ (d0 + s0) . (4)
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The solution of Eq.(4) is

p (t) = p∗ + [p(0)− p∗]e−λ(d1+s1). (5)

If t→ ∞, then we have p(t) = p∗ which is called globally stable.
Second model: By adding the expectations of agents factor in
Eq.(1), we have

qd (t) = d0 − d1p (t) + d2p
′ (t) and qs (t) = s0 − d1p (t) + s2p

′ (t) , (6)

where d2 and s2 are supplemental factors. By equating qd(t) and qs(t)
as we did above, we obtain

p′ (t) + λ
(d1 + s1)

(d2 + s2)
p (t) = λ

(d0 + s0)

(d2 + s2)
. (7)

Therefore, the solution of Eq.(7) is

p (t) = p ∗+(b− p∗) eµt, (8)

where µ = (d1+s1)
(d2+s2)

and p (t) is called market clearing time paths. In

addition, when p′(t) = 0 for each t ≥ 0, then the market is in dynamic
equilibrium which means equilibrium in a changing economy. We can
easily show that the dynamic equilibrium in this model is p(t) = p∗, ∀ t.

2.2 Fractal calculus

In this subsection, we give a brief review of local and non-local fractal
calculus.

2.3 Staircase functions

In this subsection, we present some basic tools of fractal calculus on thin
Cantor-like set (κ) which is shown in Fig. 1a [34–36,61].
Definition 2.1.1. Let p[a1, a2] be a subdivision of an interval I = [a1, a2]
which is a collection of points {a1 = t0, t1, ..., tn = a2}, such that ti < ti+1.
For more details, we refer to [34–36,61].
Definition 2.1.2. Assume that κ ⊂ R, is a thin Cantor-like set and
p[a1, a2] is a subdivision. The mass function is given by [34–36,61]

Ψα (κ, a1, a2) = lim
ς→0

Ψα
ς , (9)
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where

Ψα
ς = inf

{p[a1,a2]:|p|≤ς}

m−1∑
j=0

Γ (α + 1) (tj+1 − tj)
αϕ (κ, [tj+1 − tj]) (10)

and

ϕ (κ, [tj+1 − tj]) =

{
1, κ ∩ [tj+1 − tj] ̸= ∅;
0, otherwise.

(11)

|p| = max
0≤j≤m

(tj+1 − tj) .

Definition 2.1.3. Assume that c0 ∈ R. The staircase function of order
α is given by [34–36]

Sα
κ (t) =

{
Ψα (κ, c0, t) , if t ≥ c0,

−Ψα (κ, c0, t) , otherwise.
(12)

The integral staircase function is illustrated in Fig. 1b.
Definition 2.1.4. The Ψ−dimension is defined using the mass function
as [34–36]

dimΨ (κ ∩ [a1, a2]) = inf {α : Ψα (κ, a1, a2) = 0} ,
= sup {α : Ψα (κ, a1, a2) = ∞} .

(13)

Fig. 1c presents Ψ− dimension which is an intersection point of the red
line with the blue line.
Definition 2.1.5. The characteristic function χκ(α, t) for a given thin
Cantor set is defined by [34–36]

χκ(α, t) =


1

Γ (α + 1)
, t ∈ κ,

0, otherwise.

(14)
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(κ = 1/2) by iteration.
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(b) The integral staircase func-
tion for the thin Cantor set κ
for the case of κ = 1/2.
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(c) Ψ − dimension of the thin
Cantor set κ = 1/2.
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(d) Characteristic function thin
Cantor set with κ = 1/2.

Figure 1: Graphs corresponding to thin Cantor set with κ = 1/2.

In Fig. 1d, we have plotted the characteristic function of thin Cantor
set.

2.4 Local Fractal Calculus

Definition 2.2.1. If κ is α-perfect set, then the κ-derivative of f (t) at
t is defined by [34–36]

Dα
κf (t0) =

κ- limt→t0

f (t)− f (t0)

Sα
κ (t)− Sα

κ (t0)
, if t0 ∈ κ,

0 otherwise,

(15)
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if the limit exists.
Definition 2.2.2. The κ-integral of f (t) on [a1, a2] is defined by [34–36]∫ a2

a1

f (t) dακt ≈
n∑

j=1

fj (t) (S
α
κ (tj)− Sα

κ (tj−1)). (16)

2.5 Non-Local Fractal Calculus

Definition 2.3.1 For a function f(t), t ∈ κ, the fractal left-Riemann-
Liouville integral is defined by [34–37]

aJγt f (t) =
1

Γα
κ (γ)

∫ t

a

f (x)

(Sα
κ (t)− Sα

κ (x))α−γ d
α
κx. (17)

where t > a.
Definition 2.3.2 The fractal left-sided Caputo derivative is given
by [37]

C
a D

γ
t f (t) =

1

Γα
κ (n− γ)

∫ t

a

(Dα
κ )

nf(x)

(Sα
κ (t)− Sα

κ (x))
−nα+γ+α

dακx. (18)

where nα− α < γ ≤ nα, n ∈ N.
Definition 2.3.3 The fractal left-sided RiemannLiouville deriva-
tive is given by [37]

aDγ
t f (t) =

1

Γα
κ (n− γ)

(Dα
κ )

n

∫ t

a

f (x)

(Sα
κ (t)− Sα

κ (x))−nα+γ+αd
α
κx. (19)

where nα− α ≤ γ < nα, n ∈ N.
We define here the fractal Laplace transforms in order to apply them to
the economic model.
The fractal Laplace transform (FLT) of a function f (t) , where t is
in the thin Cantor-like sets, is presented by [37]

B (w) = Lα
κ (f) =

∞∫
0

exp (−Sα
κ (t)Sα

κ (w)) f (t) dακt, (20)

where B (w) and L (f) : f (t) → B (w) are called the fractal Laplace
transforms of f (t) .
If ∃ M,T > 0, and atα < Sα

κ (t) < btα; a, b ∈ R [50] such that

e−εSα
κ (t)|f(t)| < e−εtα|f(t)| ≤M ∀ t > T, (21)
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then the fractal integral in Eq.(22) exists.
The inverse fractal Laplace transform is defined as follows:

f(t) = (Lα
κ)

−1 (B (w)) . (22)

The fractal convolution is defined as

f(t) ∗ g(t) =
∫ t

0

f(t− τ)g(τ)dακτ =

∫ t

0

f(τ)g(t− τ)dακτ, (23)

and its fractal Laplace transform is given by

Lα
κ(f(t) ∗ g(t)) = B(w)G(w), (24)

where G (w) = Lα
κ (g).

The fractal Laplace transform of the local fractal derivative is
defined by

Lα
κ ((D

α
t )

nf (t)) = Sα
κ (w)n Lα

κ (f (t))−
n−1∑
k=0

Sα
κ (w)n−k−1 (Dα

κ,t)
nf |t=0.

(25)
The fractal Laplace transform of the fractal left-sided RiemannLiou-
ville derivative is defined by

Lα
κ((0D

γ
t )f (t)) = Sα

κ (w)γ B(w)−
n−1∑
k=0

Sα
κ (w)k [0Dγ−k−1

κ,t f (t)]t=0. (26)

The fractal Laplace transform of the fractal Caputo derivative is
defined by [37]

Lα
κ

(
C
0 D

γ
t f (t)

)
= Sα

κ (w)
γLα

κ (f (t))−
n−1∑
j=0

Sα
κ (w)

γ−j−1(Dα
κ )

j(f (t) |t=0.

(27)
The fractal Mittag-Lefler function of one parameter is given by [37]

Eα
κ,γ (t) =

∞∑
j=0

Sα
κ (t)

j

Γα (γj + 1)
, γ > 0. (28)

Some important formulas of local and non-local fractal calculus can be
stated as follows:
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Dα
κcχκ = 0, c is constant, (29)

0Dγ
t cχκ =

cSα
κ (t)

−γ

Γα
κ(1− γ)

(30)

Dα
κS

α
κ (t) = χκ(α, t) (31)

Dα
κS

α
κ (t)

m = mχκS
α
κ (t)

m−1 (32)

Dα
κ sin(S

α
κ (t)) = χκ(α, t) cos(Sα

κ (t)) (33)

Dα
κ (f(t)g(t)) = Dα

κ (f(t))g(t) + f(t)Dα
κ (g(t)), (34)

0Dγ
t f(t)g(t) =

∞∑
n=0

(
γ

n

)
0Dn

t f(t)0D
γ−n
t g(t), (35)∫

Sα
κ (t)

ndακt =
Sα
κ (t)

n+1

n+ 1
+ c (36)

sin(Sα
κ (t)) =

∞∑
i=1

(−1)i−1S
α
κ (t)

2i−1

(2i− 1)!
, (37)

Lα
κ

(
Eα

κ,γ (−atγ)
)

=
Sα
κ (w)

γ−1

(Sα
κ (w)

γ + a)
(38)

Lα
κ

(
1− Eα

κ,γ (−atγ)
)

=
a

Sα
κ (w) (Sα

κ (w)
γ + a)

. (39)

3 Application

In this section, we apply our main results for economic models which
are investigated in details via local and nonlocal fractal Laplace trans-
forms. The crucial claim is to obtain much better results via underlying
derivatives and integrals for differentiable functions.

3.1 Economic model in the frame of local fractal
derivative

Local fractal first model: The price adjustment equation in local
fractal calculus is presented without taking into account the expectations
of the agent (for standard version see [51–53]) as follows:

Dα
κ,tp (t) + λ (d1 + s1) p (t) = λ (d0 + s0) , (40)
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Figure 2: The graph of the local fractal first model

using the initial condition p (0) = b.
By applying the local fractal Laplace transform to both sides of Eq. (40),
we obtain

pακ (w) =
λ (d0 + s0)

Sα
κ (w) (Sα

κ (w) + λ (d1 + s1))
+

b

(Sα
κ (w) + λ (d1 + s1))

. (41)

By taking the inverse Laplace transform of Eq. (41), we get the following
solution:

p (t) = p ∗+(b− p∗) e−λ(d0+s0)Sα
κ (t). (42)

By using Sα
κ (t) ≤ tα, we have

p (t) ≈ p ∗+(b− p∗) e−λ(d0+s0)tα , (43)

where p∗ = d0+s0
d1+s1

. In Figs. 2a and 2b, we have plotted Eqs.(42) and (43)
for the case when p∗ = 1.02.
Local fractal second model: The price adjustment equation in local
fractal calculus is presented by taking into account the expectations of
the agents (for standard version see [51–53]) as follows:

Dα
κ,tp (t)−

(d1 + s1)

(d2 + s2)
p (t) = −(d0 + s0)

(d2 + s2)
, (44)

using the initial conditions p (0) = b.
By applying the local fractal Laplace transform to both sides of Eq. (44),
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we get

pακ (w) = −(d0 + s0)

(d1 + s1)

1

Sα
κ (w)

(
Sα
κ (w)− (d1+s1)

(d2+s2)

) +
b(

Sα
κ (w)− (d1+s1)

(d2+s2)

) .
(45)

By taking the inverse Laplace of Eq. (45), the following solution can be
obtained as follows:

p (t) = p ∗+(b− p∗) e
(d1+s1)
(d2+s2)

Sα
κ (t)

. (46)

By Sα
κ (t) ≤ tα, we get

p (t) ≈ p ∗+(b− p∗) e
(d1+s1)
(d2+s2)

tα
, (47)

where p∗ = d0+s0
d1+s1

.

3.2 Economic model in the frame of non-local frac-
tal Caputo derivative

Non-local fractal first model: The price adjustment equation in non-
local fractal calculus is presented without allowing the expectations of
agents (for the fractional standard calculus, we refer to [54–59]) as follows:

C
0 D

γ
κ,tp (t) + λ (d1 + s1) p (t) = λ (d0 + s0) , (48)

using p (0) = b.
By applying the non-local fractal Laplace transform to (48), we get

pακ (w) =
λ (d0 + s0)

Sα
κ (w) (Sα

κ (w)
γ + λ (d1 + s1))

+
bSα

κ (w)
γ−1

(Sα
κ (w)

γ + λ (d1 + s1))
,

which implies the following:

pακ (w) =
(d0 + s0)

(d1 + s1)

λ (d1 + s1)

Sα
κ (w) (Sα

κ (w)
γ + λ (d1 + s1))

+
bSα

κ (w)
γ

Sα
κ (w) (Sα

κ (w)
γ + (λd1 + s1))

. (49)
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By taking the inverse Laplace of both sides of Eq. (49), the following
solution can be achieved:

p (t) =
(d0 + s0)

(d1 + s1)

(
1− Eα

κ,γ (−λ (d1 + s1)S
α
κ (t)

γ)
)

+ bEα
κ,γ (−λ (d1 + s1)S

α
κ (t)

γ) . (50)

In view of Eq.(28), Eq. (50) takes the following form:

p (t) =
(d0 + s0)

(d1 + s1)

(
1−

∞∑
j=0

(
(−λ (d1 + s1)S

α
κ (t)

γ)
j

Γ (γj + 1)

))

+ b

∞∑
j=0

(
(−λ (d1 + s1)S

α
κ (t)

γ)
j

Γ (γj + 1)

)
. (51)

In view of Sα
κ (t) ≤ tα, we have

p (t) ≈ (d0 + s0)

(d1 + s1)

(
1−

∞∑
j=0

(
(−λ (d1 + s1) t

αγ)j

Γ (γj + 1)

))

+ b
∞∑
j=0

(
(−λ (d1 + s1) t

αγ)j

Γ (γj + 1)

)
. (52)

In Figs. 3a, 3c, and 3b, 3d, we have plotted Eqs. (51) and (52), respec-
tively.

Non-local fractal second model: we consider a model that takes
into account the expectations of agents. The price adjustment equation
with non-local fractal Caputo derivative is given by

C
0 D

γ
κ,tp (t)−

(d1 + s1)

(d2 + s2)
p (t) =

− (d0 + s0)

(d2 + s2)
, (53)

using p (0) = b.
By applying the non-local fractal Caputo Laplace transform to Eq. (53),
we get

pακ (w) = −(d0 + s0)

(d2 + s2)

1

Sα
κ (w)

(
Sα
κ (w)

γ − (d1+s1)
(d2+s2)

) +
bSα

κ (w)
γ−1(

Sα
κ (w)

γ − (d1+s1)
(d2+s2)

) ,
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(b) The sketch of Eq. (52) using
d0 = 30; s0 = 20; d1 = 40; s1 =
5; b = 0.1;λ = 0.02; γ = 0.5.
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(c) The sketch of Eq. (51) using
d0 = 30; s0 = 20; d1 = 40; s1 =
5; b = 0.1;λ = 0.02;α = 0.5.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

t

0.1

0.2

0.3

0.4

0.5

0.6

0.7

p(
t)

=0.2
=0.6
=0.8

(d) The sketch of Eq. (52) using
d0 = 30; s0 = 20; d1 = 40; s1 =
5;λ = 0.02; b = 0.1;α = 0.5

Figure 3: The graph of non-local fractal first model

which implies the following:

pακ (w) =
(d0 + s0)

(d1 + s1)

− (d1+s1)
(d2+s2)

Sα
κ (w)

(
Sα
κ (w)

γ − (d1+s1)
(d2+s2)

)+ bSα
κ (w)

γ

Sα
κ (w)

(
Sα
κ (w)

γ − (d1+s1)
(d2+s2)

) .
(54)

By taking the inverse Laplace of both sides of Eq. (54), we get the
following solution:

p (t) =
(d0 + s0)

(d1 + s1)

(
1− Eα

κ,γ

(
(d1 + s1)

(d2 + s2)
Sα
κ (t)

γ

))
+bEα

κ,γ

(
(d1 + s1)

(d2 + s2)
Sα
κ (t)

γ

)
.

(55)



Paper 11: Economic Models Involving Time Fractal 195

With the help of Eq.(28), Eq.(55) takes the following form:

p (t) =
(d0 + s0)

(d1 + s1)

1−
∞∑
j=0

((
(d1+s1)
(d2+s2)

)
Sα
κ (t)

γ
)j

Γ (γj + 1)

+b
∞∑
j=0

((
(d1+s1)
(d2+s2)

)
Sα
κ (t)

γ
)j

Γ (γj + 1)
.

(56)
By applying Sα

κ (t) ≤ tα, we obtain

p (t) ≈ (d0 + s0)

(d1 + s1)

1−
∞∑
j=0

((
(d1+s1)
(d2+s2)

)
tαγ
)j

Γ (γj + 1)

+ b
∞∑
j=0

((
(d1+s1)
(d2+s2)

)
tαγ
)j

Γ (γj + 1)
.

(57)
Remark: Note that one can obtain the standard results in our research

study by choosing α = γ = 1. From financial and economic point of view,
our obtained results in figures 2-3 can be interpreted as follows: On one
hand, in figure 2(a), the geometrical property of fractal can been seen
breaking down on a large time scale where the market price is fluctuating
where it is discrete at some points and then it starts going on continuous
fluctuations. In figure 2(b), the critical point can be seen at p(t) ≈ 0.65
where t = 1 where typical economic systems are around the critical point.
On the other hand, in figure 3(a), the market price fluctuation is discrete
and the price is tending like a zigzag with stabilization from t = 0.4 to
t = 0.6. In figure 3(c), the geometrical property of fractal can been seen
here breaking down on a short time scale where the market price tends to
be more discrete from t = 0 to t = 0.3 and from t = 0.65 to t = 1 when
γ = 0.6; 0.8, while it is more continuous from t = 0 to t = 1 when γ = 0.2
with less price fluctuations. Then, the economic system stabilizes from
t = 0.35 to t = 0.64. In figure 3(b), the critical point can be seen at
p(t) ≈ 0.65 where t = 1 which is in agreement with figure 2(b). In figure
3(d), one critical point can be seen at p(t) ≈ 0.52 where t = 0.45 for
γ = 0.2; 0.8, and another critical point can be seen at p(t) ≈ 0.52 where
t = 0.65 for γ = 0.6; 0.8.

Future Research Work: This research study can be extended further
to discuss market interaction such as companies interaction data, money
flow data, material flow data, and sales data analysis [65].
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4 Conclusion

In this study, we have investigated market equilibrium models from the
viewpoint of the fractal local derivative and non-local fractal Caputo
derivative. The price adjustment equation, which has a significant posi-
tion in the marketplace in order to achieve equilibrium, is solved by the
underlying fractional derivatives by both considering and not considering
the perceptions of the agents. Thus, four different solutions have been
obtained for each sense. The fractal Laplace transform has been used
to obtain some new analytical solutions for the models under considera-
tion. The advantage of these models over their corresponding classical
versions is the presence of one arbitrary order of derivatives in the local
fractal sense that has a physical meaning, and two arbitrary orders in
the non-local fractal sense that allow taking the benefits of memory ef-
fect. In addition, we have analyzed the obtained solutions in-depth with
illustrated descriptions and comparative analysis. We have also demon-
strated two cases when α = 1 and α = γ = 1, we obtain the same results
in the standard fractional version and standard Calculus version, respec-
tively. To study the effect of the fractal and fractional-order derivative,
we have changed the value of α, and fixed the value of γ in Figs. 3a and
3b, while we have also changed the value of γ and fixed the value of α in
Figs 3c and 3d.
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[44] A. K. Golmankhaneh, C. Tunç, Sumudu transform in fractal calculus, Appl.
Math. Comput., 350, (2019), 386-401.

[45] A. Parvate, A. D. Gangal, Fractal differential equations and fractal-time dynam-
ical systems, Pramana, 64(3), (2005), 389-409.

[46] M. F. Shlesinger, Fractal time in condensed matter, Annu. Rev. Phys. Chem.,
39(1),(1988), 269-290.



Bibliography 199

[47] M. F. Shlesinger, Williams-Watts dielectric relaxation: a fractal time stochastic
process, J. Stat. Phys., 36(5-6), (1984), 639-648.

[48] G. Braden, Fractal Time: The Secret of 2012 and a New World Age: Hay House
Inc, (2010).

[49] K. Welch, A Fractal Topology of Time: Deepening into Timelessness, Fox Finding
Press; 2nd Edition, 2020.

[50] A. K. Golmankhaneh, S. Ashrafi, D. Baleanu, A. Fernandez, Brownian Motion on
Cantor Sets, Int.J. Nonlin. Sci. Num, 2020, DOI: https://doi.org/10.1515/ijnsns-
2018-0384.

[51] A. C. Chiang, Fundamental methods of mathematical economics, 1984.

[52] A. Takayama, Mathematical economics, Cambridge University Press, 1985.

[53] D. Cohen-Vernik, A. Pazgal, Price adjustment policy with partial refunds, J.
Retail, 93(4)(2017), 507-26.

[54] V.E. Tarasov, On History of Mathematical Economics: Application of Fractional
Calculus, Mathematics,7 (2019) 509.
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