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1. Introduction

The reliability function denoted by R(t) is defined as the probability of failure-free

operation until time t. Thus, if the random variable X denotes the lifetime of

an item or system, then R(t) = P(X > t). Another measure of reliability under

stress-strength set-up is the probability P = P(X > Y ), which represents the

reliability of an item or system of random strength X subject to random stress

Y , under a bivariate setting. These two reliability measures are frequently used in

biostatistics, agriculture, engineering, and related fields. Hence, estimation is of

importance. A lot of work has been done in the literature for the estimation and

testing of the parameter, R(t) and P under progressive censoring.

For a review of related studies, we refer to Pugh (1963), Basu (1964), Tong

(1974), Tong (1975), Kelley et al (1976), Sathe and Shah (1981), Chao (1982),

Awad and Gharraf (1986), Constantine et al (1986), Bhattacharya (1989),

Chaturvedi and Rani (1997), Chaturvedi and Rani (1998), and Chaturvedi and

Surinder (1999) among others. Baklizi (2003) proposed shrinkage estimators

of R(t) for one-parameter exponential distribution. Chaturvedi and Nandchahal

(2016) and Chaturvedi and Shantanu (2017) estimated R(t), by type-I and type-II

censorings and in order to estimate P, used complete sample case.

There are many scenarios in life-testing and reliability experiments in which units

are lost or removed from the experimentation before failure. The damage may

be unintentional, or it may be designed in the study. Unintentional damage may

occur, for example, in the event of an unexpected breakdown of an experimental

unit, or if an individual understudy drops out, or if the experimentation itself has

to be stopped due to some unforeseen circumstances such as lack of funding, lack

of access to testing facilities, etc. However, more often, units are removed from

the preplanned and deliberate test, and to free up testing facilities for other exper-

iments, to save time and money, or use a simple analysis that often results. Then

in some cases, when there are live units on the test, the intentional deletion of the

items or the end of the experiment may be due to ethical considerations. It has

been used very effectively for analyzing lifetime data, especially when the data is

censored. Among the various censoring schemes, the Type II progressive censoring

scheme has become a very common design in the last decade because it allows the

experimenter to omit active units during the experiment. So in this paper, we

consider progressive Type-II censoring schemes. Under this scheme of censoring,

from a total of n units placed on a life-test, only m are completely observed until

failure. At the time of the first failure, R1 of the n−1 surviving units are randomly

withdrawn (or censored) from the life-testing experiment. At the time of the next
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failure, R2 out of the n− 2−R1 surviving units are censored, and so on. Finally,

at the time of the m-th failure, all the remaining Rm = n−m−R1 − ...−Rm−1

surviving units are censored. Note that censoring occurs here progressively in m

stages. Clearly, this scheme includes as special cases the complete sample situation

(when m = n and R1 = ... = Rm = 0) and the conventional Type-II right censor-

ing situation (when R1 = ... = Rm−1 = 0 and Rm = n −m). In this censoring

scheme, R1, R2, . . . , Rm (and therefore m) are all prefixed. Consequently, here the

censoring times (T ’s) are all random, but the numbers of items to fail before each

censoring time are all fixed. For more details see Balakrishnan et al (2000).

Suppose n independent units are placed on a life-test with the corresponding fail-

ure times X1, X2, ..., Xn being identically distributed with cumulative distribution

function F (x) and probability density function f(x). Suppose further that the

prefixed number of failures to be observed is m and that the progressive Type-II

right censoring scheme is (R1, R2, . . . , Rm). Then, we shall denote the m com-

pletely observed failure times by X
(R1,R2,...,Rm)
i:m:n , i = 1, 2, . . . .,m. For simplicity

in notation, when it is clear as to what the censoring scheme is, we will use the

simplified notation Xi:m:n, i = 1, 2, . . . ,m, to denote these failure times bearing in

mind that these still depend on the particular choice of (R1, R2, . . . , Rm) units. we

can write down the joint probability density function (pdf) of all m progressively

Type-II right censored order statistics as

fX1:m:n,X2:m:n,...,Xm:m:n(x) = c

m∏
i=1

f(xi){1− F (xi)}Ri , x1 < x2 < ... < xm, (1.1)

where

x = x1, x2, ..., xm, c = n(n−R1 − 1) . . . (n−R1 −R2 − ...−Rm−1 −m+ 1).

In sequel, we employ a family of lifetime distributions for the model of f(.) in

(1.1). Let the random variable X follows a distribution having the pdf

f(x; a, λ,θ) = λG′(x; a,θ)exp{−λG(x; a,θ)} ;x > a ≥ 0, λ > 0. (1.2)

Here, G(x; a,θ) is a function of x and may also depend on the (known) parameters

a and θ may be vector valued. Moreover, G(x; a,θ) is monotonically increasing

in x with G(a; a,θ) = 0; G(∞; a,θ) = ∞ and G′(x; a,θ) denotes the derivative

of G(x; a,θ) with respect to x. For more details see Chaturvedi and Nandcha-

hal (2016). We call this family of lifetime distribution as CN with mentioned

parameters and designate X ∼ CN (a, λ,θ, G). Hence

R(t) = exp(−λG(t; a,θ)) (1.3)
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and the hazard rate has form h(t) = λG′(t; a,θ).

Let Sm =
∑m
i=1G(Xi; a,θ) +

∑m
i=1RiG(Xi; a,θ). Then the likelihood function is

given by

L(λ|x1:m:n, x2:m:n, . . . , xm:m:n; a;θ) = cλm
m∏
i=1

G′(Xi; a,θ) exp(−λSm) (1.4)

The maximum likelihood estimators (MLEs) of λ and R(t) are, respectively, given

by

λ̂ =
m

Sm
, (1.5)

R̂(t) = exp

{
− m

Sm
G(t; a,θ)

}
. (1.6)

For the estimation of λ, we use the likelihood method. Let X ∼ CN (a, λ1,θ1, G)

is independent of Y ∼ CN (a, λ2,θ2, G). Then, we have

P =
λ1

λ1 + λ2
. (1.7)

The MLE of P has form

P̂ =
λ̂1

λ̂1 + λ̂2

, (1.8)

where λ̂1 = m1

Sm1
and λ̂2 = m2

Tm2
, where

Sm1
=

m1∑
i=1

G(Xi; a,θ1) +

m1∑
i=1

RiG(Xi; a,θ1)

Tm2
=

m2∑
i=1

G(Yi; a,θ2) +

m2∑
i=1

RiG(Yi; a,θ2).

The purpose of this study is to provide MLE for proposed parameters. Therefore,

we organize our paper as follows. We also derive exact formulas for the properties

of estimators in this section. Section 2 contains an extensive simulation study

to evaluate the performance of the proposed estimators. Section 3 is devoted to

the estimation involving real situations, numerically. We conclude our paper in

Section 4.

1.0.1 Small sample properties

In this section, we derive the bias, variance, and MSE of the proposed estimators.

For the notation convenience, let



The Reliability Characteristics Estimation 75

• ϕ4 = E(R̂(t)) = 2(mλG(t;a,θ))
m
2

Γ(m) Km(2
√
mλG(t; a,θ))

• ϕ5 = E(R̂2(t)) = 2(2mλG(t;a,θ))
m
2

Γ(m) Km(2
√

2mλG(t; a,θ))

where Kr(.) is the modified Bessel function of the second kind of order r. (see

Watson (1995))

The following theorem gives the bias expression of the estimator of R(t):

Theorem 1.1. The bias expressions for the estimator is given by

Bias(R̂(t)) = ϕ4 −R(t)

For the proof, refer to Appendix.

The next Theorem gives the MSE expression.

Theorem 1.2. The MSE expressions of the estimator is given by

MSE(R̂(t)) = ϕ5 − 2R(t)ϕ4 +R2(t)

For the proof refer to Appendix.

The following result will be used in the algorithm of bootstrap confidence interval

(CI).

Corollary 1.3. The variance expressions of the estimator is given by

Var(R̂(t)) = ϕ5 − (ϕ4)2 (1.9)

1.1 Estimation of P

As we estimated MLE for P in formula 1.8 we try asses this estimator in small

samples.

If we define statistic L =
Sm1

Tm2
, then it follows the F-distribution with (2m1, 2m2)

degrees of freedom and having the pdf

f(F ) =

(
m1

m2

)m1

B(m1,m2)
.

Fm1−1[
1 + m1

m2
F
]m1+m2

; 0 < F <∞.

Making the transformation

W =

(
1 +

λ2

λ1
F

)−1

,

the pdf of W comes out to be

f(w) =

(
m2λ2

m1λ1

)m2

B(m1,m2)
.

wm2−1(1− w)m1−1[
1 +

(
m2λ2

m1λ1
− 1
)
w
]m1+m2

; 0 < w < 1.
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1.1.1 Small sample properties

For the ease of use, let

• ψ1 = E(P̂) = E

(
1 +

λ̂2

λ̂1

)−1

= E

(
1 +

λ2

λ1
F

)−1

= E(W),

• ψ2 = E(P̂2) = E(W2).

The following theorem gives the bias expression of the estimator of the P:

Theorem 1.4. The bias expressions for the unrestricted, the estimator is given

by

Bias(P̂) = ψ1 −P

For the proof refer to Appendix.

Theorem 1.5. The MSE expressions for ML estimator are given by

MSE(P̂) = ψ2 − 2Pψ1 + P2

,

The proof is similar to Theorem 1.2.

Corollary 1.6. The variance expression of the estimator is given by

Var(P̂) = ψ2 − ψ2
1 (1.10)

2. Simulation Study

Here we conduct a Monte Carlo simulation study with a small sample size to assess

the performance of meteorologies developed in this paper.

The simulation composition and assumptions are as follows:

R(t): The true value of reliability is taken to be {0.50, 0.55, 0.60, 0.65, 0.70}.
m: number of observations is taken to be 10.

R = (R1, . . . , Rm): progressive Type-II censoring scheme and is taken to be

R = (25, 10, 7, 5, 3, 10, 9, 5, 7, 9) and R = (5, 4, 3, 2, 1, 1, 1, 1, 1, 71).

t: truncation time point which is equal to 3.

For each combination of R, 1000 samples of size 50, 100 and 200 were generated
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from the distribution given in (1.2), taking G(x; a;θ) = x. The proposed estima-

tors for R(t) are calculated under progressive Type-II censoring and their CIs are

computed. let (L,U) be a CI of R(t) and (Li, Ui), i = 1, 2, . . . , 1000, observed

values of lower and upper bounds of the proposed CI. Thus average of expected

length and coverage probability are respectively, given by

EL =
1

1000

1000∑
i=1

(Ui − Li) CP =
1

1000

1000∑
i=1

I(Li ≤ R ≤ Ui),

Tables 1 represents the coverage probability (CP) and expected length (EL) of the

estimators for R(t) under progressive Type-II censoring scheme from an exponen-

tial model. The Algorithm 1 is used to obtaining bootstrap-t CIs based on the

idea of Efron (1982).

According to this Table 1 we can see that the proposed estimator almost has good

CP and short ELs, so it has good performance. Furthermore when the R(t) is

close to 1, it performs better than when it is close to 0.5. Because the CPs of

the estimator are getting higher and Els are getting shorter values by approaching

the R(t) to 1. Another thing is, that there is no evidence of different performance

between the two mentioned progressive censoring schemes. Their performances

are almost the same.

The indices of the simulation for for the P are as follows:

P: the true value of P = P(X > Y ) are taken to be

{.5, .55, .58, 0.6, .63, 0.65, .68, .7, .73, .75, .78, .8, .85, .9}
m1: number of X observations is taken to be 10.

m2: number of Y observations is taken to be 8.

R = (R1, . . . , Rm1): progressive Type-II censoring scheme for X is taken to be

R = (25, 10, 7, 5, 3, 10, 9, 5, 7, 9).

R′ = (R′1, . . . , R
′
m2

): progressive Type-II censoring scheme Y is taken to be R′ =

(20, 10, 5, 5, 10, 10, 9, 43).

For each combination of P, 1000 samples of size n1 = 100 were generated for X

from the distribution given in (1.2), taking λ1 = 0.3 and G(x; a1; θ1) = x and 1000

samples of size n2 = 120 were generated for Y from the same distribution with

λ2 = 1
P − 1 and G(y; a2; θ2) = y. The proposed estimator for P is calculated

under progressive Type-II censoring and their CIs are computed. The Algorithm

2 is used to obtaining bootstrap-t CIs by proposed estimators for P.

The results of simulation presented in Table 2. As one can see, unlike the ML

estimator for the R(t), the MLE of P has very high CPs close to 1 and short ELs,

so it has very good performance in both of the CI algorithms. Further more, the

ELs are getting shorter when the P is closer to 1.
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Algorithm 1 Bootstrap-t CI for R(t) based on the bootstrap variance estimate

Step 1. Based on the independent observed samples X
(R1,R2,...Rm)
i:m:n , i = 1, ...,m

with progressive Type-II right censoring scheme (R1, R2, . . . , Rm), λ̂ and R̂(t)

estimators from (1.5) and (1.6) respectively.

Step 2. Generate X?
i:m:n ∼ Exp(λ̂), i = 1, ...,m. Use them to obtain λ̂? and R̂?(t).

Step 3. Repeat Step 2 for B times and derive R̂?(b)(t), b = 1, . . . , B.

Step 4. For each iteration of Step 3, design another parametric bootstrap proce-

dure to estimate the standard deviation of R̂?(b)(t), say σ̂(R̂?(b)(t)). More pre-

cisely, repeat Step 2 for b′ = 1, . . . , B′′, with λ̂? instead of λ̂, and then calculate

σ̂(R̂?(b)(t)) =

√√√√ 1

B′ − 1

B′∑
b=1

(R̂??(b′)(t)− R̄??(t))2

where R̄??(t) = 1
B′

∑B′

b′=1 R̂
??
(b′)(t).

Step 5. Let t? =
(
t?(1), . . . , t

?
(B)

)>
, where t?(b) =

R̂?(b)(t)−R̂(t)

σ̂(R̂?
(b)

(t))
, b = 1, . . . , B.

Step 6. Compute the 100(1 − α)% bootstrap-t CI for R(t) as(
R̂(t)− t?1−α2 σ̂(R̂(t)), R̂(t)− t?α

2
σ̂(R̂(t))

)
, where t?γ is 100γ%th percentile

of t? given by Step 5 and σ̂(R̂(t)) =

√
V̂ar(R̂(t)) given by (1.9).

Table 1: The CP and EL of R(t).

R = (25, 10, 7, 5, 3, 10, 9, 5, 7) R = (5, 4, 3, 2, 1, 1, 1, 1, 1)

R(t) n CP.R̂(t) EL.R̂(t) n CP.R̂(t) EL.R̂(t)

1 0.55 100 0.86 0.34 50 0.87 0.35

2 0.55 200 0.88 0.34 100 0.86 0.34

3 0.60 100 0.86 0.33 50 0.88 0.33

4 0.60 200 0.86 0.33 100 0.88 0.32

5 0.65 100 0.87 0.32 50 0.88 0.32

6 0.65 200 0.88 0.31 100 0.90 0.31

7 0.70 100 0.91 0.28 50 0.92 0.28

8 0.70 200 0.90 0.29 100 0.88 0.28
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Algorithm 2 Bootstrap-t CI for P based on the bootstrap variance estimate

Step 1. Based on the independent observed samples X
(R1,R2,...Rm1 )
i:m1:n1

, i = 1, ...,m1

with progressive Type-II right censoring scheme (R1, R2, . . . , Rm1
) and

Y
(R′

1,R
′
2,...R

′
m2

)

j:m2:n2
, j = 1, ...,m2 with progressive Type-II right censoring scheme

(R′1, R
′
2, . . . , R

′
m2

), λ̂1, λ̂2 and P̂ from (1.5) and (1.8) respectively.

Step 2. Generate X?
i:m1:n1

∼ Exp(λ̂1), i = 1, ...,m1 and Y ?j:m2:n2
∼ Exp(λ̂2), j =

1, ...,m2. Use them to obtain λ̂?1, λ̂?2 and P̂?.

Step 3. Repeat Step 2 for B times and derive P̂?
(b), b = 1, . . . , B.

Step 4. For each iteration of Step 3, design another parametric bootstrap pro-

cedure to estimate the standard deviation of R̂?(b)(t), say σ̂(P̂?
(b)(t)). More

precisely, repeat Step 2 for b′ = 1, . . . , B′′, with λ̂?1 and λ̂?2 instead of λ̂1 and λ̂2,

and then calculate

σ̂(P̂?
(b)) =

√√√√ 1

B′ − 1

B′∑
b=1

(P̂??
(b′) − P̄??)2

where P̄?? = 1
B′

∑B′

b′=1 P̂??
(b′).

Step 5. Let t? =
(
t?(1), . . . , t

?
(B)

)>
, where t?(b) =

P̂?
(b)−P̂

σ̂(P̂?
(b)

)
, b = 1, . . . , B.

Step 6. Compute the 100(1 − α)% bootstrap-t CI for P as(
P̂ − t?1−α2 σ̂(P̂), P̂ − t?α

2
σ̂(P̂)

)
, where t?γ is 100γ%th percentile of t?

given by Step 5 and σ̂(P̂) =

√
V̂ar(P̂) given by (1.10).
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Table 2: The CP and EL of P.
P̂

Boot. Asymp.

P CP EL CP EL

1 0.50 0.99 0.56 0.95 0.45

2 0.55 1.00 0.56 0.95 0.45

3 0.58 0.99 0.55 0.96 0.44

4 0.60 1.00 0.54 0.95 0.44

5 0.63 0.99 0.52 0.96 0.43

6 0.65 0.99 0.51 0.96 0.42

7 0.68 0.98 0.49 0.94 0.40

8 0.70 0.99 0.47 0.94 0.39

9 0.73 0.98 0.45 0.95 0.37

10 0.75 0.98 0.42 0.95 0.35

11 0.78 0.98 0.39 0.95 0.33

12 0.80 0.97 0.36 0.94 0.31

13 0.85 0.95 0.29 0.94 0.25

14 0.90 0.93 0.21 0.93 0.18

3. Examples On Real Data

In this section, we analyze the performance of the proposed estimators using two

real data sets. The first one is the estimation of R(t) and the second example is

for P.

3.1 Time to the breakdown of an insulating fluid between

electrodes

Here, we consider the real data set used in Lawless (1982). These data are

from Nelson and Winter (1982), concerning the time to the breakdown of an

insulating fluid between electrodes at a voltage of 34 kV (minutes). The 19 times

to breakdown are

0.96 4.15 0.19 0.78 8.01 31.75 7.35 6.50 8.27 33.91 32.52 3.16 4.85 2.78 4.67 1.31

12.06 36.71 72.89

Therefore, we observe 9 progressively censoring values under scheme (R1 = 2, R2 =

2, R3 = 0, R4 = 0, R5 = 0, R6 = 0, R7 = 1, R8 = 1, R9 = 4) as

0.19 0.78 1.31 2.78 4.15 4.67 4.85 6.50 8.01
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Table 3: Estimators of R(t) in time to breakdown data .

Estimated value Variance Bootstrap CI B=200 Asymp. CI

R̂(t) 0.7041 0.0067 (0.59490, 0.8605) (0.5884, 0.9092)

Chaturvedi and Malhotra (2017) applied the Kolmogorov-Smirnov (K-S) test as

well as the Chi-Square test to show that the Weibull distribution is a suitable for

the fixed voltage level, time to breakdown data. The MLEs of the parameters of

Weibull distribution are as p̂ = 0.7708, λ̂ = 6.8865. Hence R̂(t)|t=2 = 0.7488.

3.2 Stress-Strength of the carbon fibers

In this part, we analyze the data reported by Bader and Priest (1982) . This data

represents the strength measured in GPA for single carbon fibers and impregnated

1000-carbon fiber tows. Single fibers were tested under tension at gauge lengths

of 20mm (Data Set 1) and 10mm (Data Set 2) with sample sizes 69 and 63, re-

spectively. These data have been used previously by Raqab and Kundu (2005),

Kundu and Gupta (2006), Kundu and Raqab (2009), Asgharzadeh et al (2011)

and Chaturvedi and Nandchahal (2016). Kundu and Gupta (2006) analyzed

these data sets using two-parameter Weibull distribution after subtracting 0.75

from both these data sets. After subtracting 0.75 from all the points of these

data sets, Kundu and Gupta (2006) observed that the Weibull distributions with

equal shape parameters fit to both the data sets. The MLEs of the parameters

of Weibull distribution fitting data set 1 are λ̂1 = 0.0046 and p̂1 = 5.5049 respec-

tively. Similarly, for the data set 2, λ̂2 = 0.0023 and p̂2 = 5.0494. For comparing

results, we have used two different progressively censored samples using two dif-

ferent sampling schemes tabulated in Tables 4 and 5, generated by Asgharzadeh

et al (2011). The generated data and corresponding censored schemes have been

presented in Table 6. The point and interval estimation for the P are calculated

and presented in Table 7. By the estimated value of P as 0.1767, we conclude

that the carbon fiber with gauge length 20mm has less strength than gauge length

10mm.

4. Conclusion

In this paper, we discussed reliability characteristics such as R(t) and P param-

eters in progressively censored samples of a family of lifetime distributions. We
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Table 4: Data Set 1 (gauge length of 20 mm):

1.312 1.314 1.479 1.552 1.700 1.803 1.861 1.865 1.944 1.958

1.966 1.997 2.006 2.021 2.027 2.055 2.063 2.098 2.140 2.179

2.224 2.240 2.253 2.270 2.272 2.274 2.301 2.301 2.359 2.382

2.382 2.426 2.434 2.435 2.478 2.490 2.511 2.514 2.535 2.554

2.566 2.570 2.586 2.629 2.633 2.642 2.648 2.684 2.697 2.726

2.770 2.773 2.800 2.809 2.818 2.821 2.848 2.880 2.954 3.012

3.067 3.084 3.090 3.096 3.128 3.233 3.433 3.585 3.585

Table 5: Data Set 2 (gauge length of 10 mm):

1.901 2.132 2.203 2.228 2.257 2.350 2.361 2.396 2.397 2.445

2.454 2.474 2.518 2.522 2.525 2.532 2.575 2.614 2.616 2.618

2.624 2.659 2.675 2.738 2.740 2.856 2.917 2.928 2.937 2.937

2.977 2.996 3.030 3.125 3.139 3.145 3.220 3.223 3.235 3.243

3.264 3.272 3.294 3.332 3.346 3.377 3.408 3.435 3.493 3.501

3.537 3.554 3.562 3.628 3.852 3.871 3.886 3.971 4.024 4.027

4.225 4.395 5.020

Table 6: Data and the corresponding censored schemes.

i, j 1 2 3 4 5 6 7 8 9 10

xi 1.312 1.479 1.552 1.803 1.944 1.858 1.966 2.027 2.055 2.098

Ri 1 0 1 2 0 0 3 0 1 50

yj 1.901 2.132 2.257 2.361 2.396 2.445 2.373 2.525 2.532 2.575

R′j 0 2 1 0 1 1 2 0 0 44

Table 7: Estimators of P for gauge data .

α = 0.05 Estimated value Asymp. CI Boot. CI

P̂ 0.1767 (0.0156 0.3377) (0.1311 0.2535)
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estimated the ML for these parameters and derived distributional properties of

them. The numerical analysis showed that the proposed estimators have good

performances and are better when the parameters are close to 1.

Appendix

In this section, we provide the sketch of proofs of theorems.

Proof of Theorem 1.1:

Bias(R̂(t)) = E
(
R̂(t)−R(t)

)
= E(e−

m
Sm

G(t;a,θ))−R(t)

=

∫ ∞
0

exp{−mG(t; a,θ)

Sm
}λ

mSm−1
m e−λSm

Γ(m)
dsm −R(t)

=
1

Γ(m)

∫ ∞
0

wm−1 exp{−(
2mλG(t; a,θ)

w
+
w

2
)}dw −R(t)

=
2

Γ(m)
{mλG(t; a,θ)}m2 Km(2

√
mλG(t; a,θ))−R(t) = ϕ4 −R(t),

Proof of Theorem 1.2:

MSE(R̂(t)) = E
(
R̂(t) −R(t)

)2
= E

(
R̂2
)
− 2R(t)E(R̂) +R2(t)

= E

(
exp(−4mλG(t; a,θ)

w
)

)
− 2R(t)E

(
exp(−2mλG(t; a,θ)

w
)

)
+R2(t)

=
2(2mλG(t; a,θ))

m
2

Γ(m)
Km(2

√
2mλG(t; a,θ))

−4R(t)
(mλG(t; a,θ))

m
2

Γ(m)
Km(2

√
mλG(t; a,θ)) +R2(t)

= ϕ5 − 2R(t)ϕ4 +R2(t).

Proof of Theorem 1.4:

Bias(P̂) = E(P̂)−P = E(W)−P = ψ1 −P.
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