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Abstract:
Abstract:
This article’s primary goal is to compute an explicit transmutation-based solution
to a degenerate hyperbolic equation of second order in terms of time. To reduce
a new problem to a problem that has already been solved, or at the very least to
a smaller problem, is a standard mathematics strategy known as the transmuta-
tions method. similar to utilizing heat equations to solve wave equations. Using
transmutation methods, we solve this problem using the well-known Kolmogorov
equation. We present the solution of wave equations using transmutation methods
and show that it is equivalent to the solution obtained by applying the Fourier
transform in order to support our methodology.
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1 Introduction

The purpose of this article is to compute an explicit transmutation-based solution

to the following degenerate hyperbolic partial differential equation (PDE):∂ttu−∆xu− ⟨x,∇yu⟩ = 0 , Rnx × Rny × (0,∞)

u(x, y, 0) = 0 , ∂tu(x, y, 0) = ψ(x, y)
(1)

This PDE is highly degenerate since it is missing the diffusive term ∆yu. The cor-

responding parabolic Cauchy problem was first introduced by Andrey Kolmogorov

in a famous 1934 note [1]:{
∂f
∂t −∆xf − ⟨x,∇yf⟩ = 0, R2n × (0,∞)

f(x, y, 0) = ψ(x, y), (x, y) ∈ R2n
(2)
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Many believe Andrey Kolmogorov to be the greatest mathematician in Russian

history, as well as one of the most brilliant mathematicians the world has ever seen.

He was a guy of various interests, and thanks to his originality and cunning mind,

he made contributions to a wide range of mathematical fields.

In his seminal 1934 paper [1] on Brownian motion Kolmogorov introduced the

aforementioned highly degenerate equation 2 for which the Cauchy problem admits

an explicit fundamental solution C∞ off the diagonal, thus effectively proving the

hypoellipticity of his operator thirty years prior to Hormanders celebrated work.

This equation is crucial to the kinetic theory of gases.

Let us take a brief detour into the context of ”Kinetic Theory of Gases,” which

can be explained as follows. The kinetic theory of gases attempts to explain the

microscopic properties of a gases, such as volume, pressure, and temperature, as

well as transport properties such as viscosity, thermal conductivity and mass diffu-

sivity in terms of the motion of its molecules. The gas is assumed to consist of a

large number of identical, discrete particles called molecules, a molecule being the

smallest unit having the same chemical properties as the substance.

The kinetic theory of gases was historically the first formal application of statis-

tical mechanics concepts. Maxwell, Boltzmann, and Clausius developed key com-

ponents of the kinetic theory between 1860 and 1880. Kinetic theories are available

for gas, solid as well as liquid. [19]

Although the Cauchy problem (1) doesn’t appear to have a well-developed theory,

this PDE also does appear to have a direct application in the kinetic theory of

gases for the study of the density of a system of N gas particles in the phase space

that models the collision of particles in a specific surrounding bath, where the

aggregation of particles induces friction contribution [18]. The density of particles

with constant velocity one and location (x, y) ∈ R2n at time t is represented by

u = u(x, y, t) in this equation, which is a member of a class of evolution equations

emerging in the kinetic theory of gases. [17]

As mentioned, it appears that no explanation has yet been put forth to address

the Cauchy problem (1). Therefore, we refer to the publications of two scientists

named Berg and Detmand in 1968. They sought a method for deriving the answer

to a partial derivative problem of the second order from the first order, and vice

versa, in the article on problems relating to partial derivatives [2]. By employing the

Laplace transform and Laplace inverse in this research, they were able to accomplish

their objective under suitable boundary conditions. This is an important step in

the transformation methods community.

Following that, they presented applications of their method in a subsequent

article [3]. They solved the wave equations, radial wave equations, and eigenvalue

solutions using a previously proven method. In another paper [4], they extended

their research to find an arithmetic operator that calculates the solution of partial

differential equations. In 1969, they broadened their research and developed their

method for solving Drickel problems with initial values. In an article about a class of
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Drickel problems and initial values [6], they introduced the transformation method

and showed the validity of their method with an example.

Then in 1974, Ruben Hersh wrote a comprehensive article [5] about transforma-

tion methods. In this article, he mentioned different types of conversion methods

and provided various examples. And he introduced the transformation method

as a standard mathematical strategy to reduce it to a previously solved problem,

or at least to a simpler one, when faced with a new problem. For example, it is

possible to reduce a problem with unit coefficient to one with ordinary coefficients;

reducing the problem containing a small parameter to a parameter independent of

the parameter; Converting the second-order equation to the first-order equation or

vice versa; And to convert a Gorsa problem to a Cauchy problem or vice versa,

he pointed out. To say briefly, these authors demonstrated a number of relation-

ships between solutions to first order and second order PDEs with initial boundary

conditions in the articles [2], [3], and [4].

In the sight of these researches, we would like to present the theory on the explicit

solution of 1, for which no theory has yet been developed. Furthermore, we will

demonstrate that, under the suitable boundary conditions, the solution of the heat

equation associated with the Laplace inverse conversion yields the solution of the

initial value problem for the wave equation. To better understand the transmuta-

tion methods strategy, consider the following proposition, which finds the solution

of the heat equation from the solution of the wave equation.

Proposition 1.1. From solution of Wave equation to solution of Heat

equation

Suppose we have a solution to the Cauchy problem of the wave equation:∂ttu−∆xu = 0 , Rn × (0,∞)

u(x, 0) = φ(x) , ∂tu(x, 0) = 0
(3)

And let G(σ, t) as defined in the following be the heat kernel in the space variable

σ ∈ R and time variable t ∈ R≥0:

G(σ, t) = (4πt)−
1
2 e−

σ2

4t (4)

Let us now define a function using the formula:

v(x, t) =

∫
R
G(σ, t)u(x, σ)dσ = Pt(u(x, .))(0) (5)

We claim that the function v(x, t) defined by the solution of the wave equation is

the solution of the heat equation:∂tv −∆xv = 0 , Rn × (0,∞)

v(x, 0) = φ(x)
(6)
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Proof. Let us first demonstrate that heat kernel (4) is a solution of the following

heat equation: ∂tG−∆σG = 0 , R× (0,∞)

G(σ, 0) = 0 ,
(7)

The first condition is self-evident. Let’s compute its derivatives to prove the deriva-

tives part:

∂G

∂σ
(σ, t) =

−2σ
4t

(4πt)−
1
2 e−

σ2

4t

∂2G

∂σ2
(σ, t) =

−2
4t

(4πt)−
1
2 e−

σ2

4t +
σ2

4t2
(4πt)−

1
2 e−

σ2

4t

∂G

∂t
(σ, t) = −1

2
t−

3
2 (4π)−

1
2 e−

σ2

4t +
σ2

4t2
(4πt)−

1
2 e−

σ2

4t

We can conclude from the above calculation that (4) satisfies (7). The derivative of

v(x, t) can now be computed using Fobini Theorem, integration by parts, and (7)

as follows:

∂v

∂t
(x, t) =

∂

∂t

∫
R
G(σ, t)u(x, σ)dσ =

∫
R

∂G

∂t
(σ, t)u(x, σ)dσ =∫

R

∂2G

∂σ2
(σ, t)u(x, σ)dσ =

∫
R
G(σ, t)

∂2u

∂σ2
(x, σ)dσ

Due to the (3), we have ∂2u
∂σ2 (x, σ) = ∆xu, therefore:

∂v

∂t
(x, t) =

∫
R
G(σ, t)∆xu(x, σ)dσ =

∆x

∫
R
G(σ, t)u(x, σ)dσ = ∆xv(x, t)

This computation demonstrates that vt − ∆xv = 0 in Rn × (0,∞). Furthermore,

for the initial condition:

lim
t→o+

v(x, t) = lim
t→o+

∫
R
G(σ, t)u(x, σ)dσ =

lim
t→o+

Pt(u(x, .))(0) = u(x, 0) = φ(x)

This satisfies the Cauchy problem for the heat equation.

In this paper, we want to proceed in the opposite direction, knowing that v(x, t)

is the solution to the Cauchy problem (75), and then find a new function u(x, t)
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that solves the Cauchy problem (3). As previously stated, this is the transmutation

technique, which employs solutions of other problems to find a solution to the

current one.

For precision,let

D = (D1, D2, · · · , Dn), x = (x1, x2, · · · , xn)

with

Di =
∂

∂xi

and let P (x,D) be a finite order linear partial differential operator (usually elliptic

type). Then consider the following pair of problems:
∂
∂tu(x, t) = P (x,D)u(x, t), t > 0

u(x, 0) = ϕ(x)

B(x,D)u(x, t) = f(x, t) x ∈ S, t > 0

(8)

And 
∂2

∂t2 v(x, t) = P (x, t)v(x, t) t > 0

v(x, 0) = 0 vt(x, 0) = ϕ(x)

B(x,D)v(x, t) = g(x, t) x ∈ S, t > 0

(9)

The purpose of this paper will be to use the inverse Laplace transform to relate

the solvability of problem (8) to the solvability of problem (9). The use of the

Laplace transform imposes constraints on the functions f(x, t) and g(x, t), but these

conditions are met in a wide range of applications. To preserve and demonstrate

the technique’s essential simplicity, we use strictly formal methods of proof. Most

of the derived results are easily verified to hold in general. The basic theorem will

be treated rigorously later.

In the following section, we will first use Fourier transforms and characteristic

methods to solve the wave and Kolomogorov partial differential equations. In the

following sections, we will prove the relationships between solutions of (8) and (9).

Finally, an explanation of how to use the transmutation technique to solve the (1)

is provided, along with evidence that the solution of the wave equation using the

transmutation technique is equivalent to the solution using the Fourier transform

and characteristics methods.

2 Classical Methods

In this chapter, we will solve the wave and Kolomogorov partial differential equa-

tions using the Fourier transform and characteristic methods. Let’s proceed with

the wave equation based on the book of Nicola Garofalo in [7].
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2.1 Wave equation

Wave equation in n-dimentional space on a function f that lives in space-time Rn+1

for given data φ and ψ is defined as follows:∂ttf − c2∆xf = 0 , Rn × (0,∞)

f(x, 0) = φ(x) , ∂tf(x, 0) = ψ(x)
(10)

It is sufficient for our purposes to limit ourselves to solving this PDE for n = 3.

Theorem 2.1. Let φ ∈ C3(R3), ψ ∈ C2(R3), and define

f(x, t) =
1

4πc2t2

∫
S(x,ct)

{φ(y) + ⟨∇φ(y), y − x⟩+ tψ(y)}dσ(y) (11)

Then, f ∈ C2(R3× (0,∞))∩C1(R3× (0,∞)) and such function provides the unique

solution to the Cauchy problem (10) for n = 3.

Fourier Transform: Let’s take a brief detour into the meaning of the Fourier

transform and its basic properties before moving on to the proof of this theorem.

The Fourier transform of a function g(x) is denoted by ĝ(ξ). With ξ ∈ R3 we denote

the Fourier transform of function g(x) as:

ĝ(ξ) =

∫
Rn

e−2πi⟨ξ,x⟩g(x)dx (12)

Fourier transform is a linear operator with the following properties:

• If translation operator is defined as Th(x) = x+ h, h ∈ Rn then :

T̂hg(ξ) = e2πi⟨ξ,h⟩ĝ(ξ) (13)

• If dilation operator is defined as δλ(x) = λx, λ > 0 then :

δ̂λg(ξ) = λ−nĝ
( ξ
λ

)
(14)

• Fourier transform derivatives can be simplified as follows:

∂̂xig(ξ) = 2πiξiĝ(ξ) (15)

∂̂xixjg(ξ) = −4π2ξiξj ĝ(ξ) (16)

• Another important property of Fourier transform is:

x̂ig(ξ) = −
1

2πi
∂ξi ĝ(ξ) (17)
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Proof. To prove theorem (2.1), we must first apply the Fourier transform to the

PDE (10). Therefore, with ξ ∈ R3 we denote the Fourier transform of function

f(x, t) as:

f̂(ξ, t) =

∫
R3

e−2πi⟨ξ,x⟩f(x, t)dx (18)

Now we apply the Fourier transform to the PDE (10) for n = 3:∂̂ttf − ĉ2∆xf = 0 , R3 × (0,∞)

f̂(ξ, 0) = φ̂(ξ) , ∂̂tf(ξ, 0) = ψ̂(ξ)
(19)

Based on the properties of Fourier transform, we can compute:

• ∂̂ttf = ∂ttf̂ . Because Fourier is with respect to the space variable, we can

use Fobini’s theorem to extract the derivative with respect to time from the

Fourier transform.

• ĉ2∆xf = c2
∑3
i=1 ∂̂xixif = c2

∑3
i=1(2πiξ)

2f̂ = −4π2c2|ξ|2f̂

Therefore, we can rewrite (19) like:∂ttf̂ + 4π2c2|ξ|2f̂ = 0 ,

f̂(ξ, 0) = φ̂(ξ) , ∂̂tf(ξ, 0) = ψ̂(ξ)

If we fix variable ξ ∈ R3, then it’s possible to change variable f̂(ξ, t) = y(t) and

obtain the following ordinary differential equation:y′′(t) + 4π2c2|ξ|2y(t) = 0 ,

y(0) = φ̂(ξ) , y′(0) = ψ̂(ξ)

This is a harmonic oscillator case of an ODE with the following solution:

y(t) = A cos (2πc|ξ|t) +B sin (2πc|ξ|t)

We can compute A and B based on the initial conditions and obtain:

y(t) = φ̂(ξ) cos (2πc|ξ|t) + ψ̂(ξ)

2πc|ξ|
sin (2πc|ξ|t) (20)

Fourier transform of the measure carried by a sphere: Before continuing

the proof of the theorem, let’s take another detour. According to the book [7], the

Fourier transform of the measure carried by a sphere is defined as follows:

d̂σR =

∫
SR

e−2πi⟨ξ,x⟩dσ(x), SR = {x ∈ R3s.t|x| = R} (21)
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This is a spherically symmetric function whose value can be computed and is as

follows:

d̂σR = 4πR2 sin (2π|ξ|R)
2π|ξ|R

, ∀ξ ∈ R3 (22)

To simplify the process, let’s use the following notation:

D̂σR =
1̂

4π2R2
dσR(ξ) =

sin (2π|ξ|R)
2π|ξ|R

(23)

Returning to the theorem proof, in (20) we can replace sin (2π|ξ|ct)
2π|ξ|c by

tD̂σct = t̂Dσct and

cos (2π|ξ|ct) = d

dt

sin (2π|ξ|ct)
2π|ξ|c

=
d

dt
t̂Dσct(ξ)

As a result, we can rewrite the right hand side of the (20) as follows:

y(t) = φ̂(ξ)
̂d

dt

(
tDσct

)
(ξ) + ψ̂(ξ)t̂Dσct(ξ) (24)

Convolution and spherical average: Let’s take a last detour before conclud-

ing the theorem’s proof. Convolution of two function g(x) and v(x) is:

g(x) ∗ v(x) =
∫
Rn

g(t)v(x− t)dt (25)

There is a crucial theorem about convolution that proves

g(x) ∗ v(x) = v(x) ∗ g(x) (26)

Furthermore, a critical property of the Fourier transform regarding convolution

states that if g, v ∈ L1(Rn), then

ĝ ∗ v = ĝv̂ (27)

In addition, there is a key principle known as the metaprinciple, which states:

ĝ = v̂ ⇔ g = v (28)

Having said that, let us define the spherical average a function g : Rn → R denoted

by Mg(x, r) as follows:

Mg(x, r) =
1

σn−1rn−1

∫
S(x,r)

g(y)dσ(y) (29)

such that the sphere S(x, r) has the following definition:

S(x, r) = {y ∈ Rn s.t |x− y| ≤ r}
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and σn−1 is the area of sphere equal to

σn−1 =
2πn/2

Γ(n/2)
(30)

which Γ(x) =
∫∞
0
tx−1e−tdt is the Euler Gamma function. The key characteristic

of these definitions based on the book [7] is that:

(g ∗DσR)(x) =Mg(x,R) (31)

Returning to the theorem proof based on the key feature (31), we can

rewrite right hand side of equation (24) as follows:

y(t) =
̂d

dt

(
tMφ(., ct)

)
(ξ) + ̂(

tMψ(., ct)
)
(ξ)

Now based on the metaprinciple (28) and applying the derivatives, we have:

u(x, t) =Mφ(x, ct) + t
d

dt

(
Mφ(x, ct)

)
+ tMψ(x, ct) (32)

Finally, we obtain the solution (11) by calculation the spherical averages and deriva-

tives which completes the proof.

2.2 Kolmogorov Equation

In this section, we demonstrate how, by combining the Fourier transform with the

method of characteristics, we can provide an analytical solution to the Cauchy

problem for the Kolmogorov equation from [7]. In what follows, we will use the

ordered couple (x, y), such that x, y ∈ Rn to represent the generic point in R2n in

the following Cauchy problem:∂tf −∆xf − ⟨x,∇yf⟩ = 0, R2n × (0,∞)

f(x, y, 0) = ψ(x, y), (x, y) ∈ R2n
(33)

with ψ ∈ C0(R2n). Due to the missing diffusion term ∆yf , equation (33) is highly

degenerate. Let’s find the solution of this hypoelliptic PDE. Suppose ξ, η ∈ Rn,
and we denote the dual variable of the point (x, y) ∈ R2n in the partial Fourier

transform by (ξ, η) ∈ R2n:

f̂(ξ, η, t) =

∫
R2n

e−2πi(⟨ξ,x⟩+⟨η,y⟩)f(x, y, t)dxdy (34)

We now proceed similarly to what we did for wave equation in previous section and

apply to Kolmogrov PDE (33) a partial Fourier transform with respect to (x, y):∂̂tf − ∆̂xf − ̂⟨x,∇yf⟩ = 0, R2n × (0,∞)

f̂(ξ, η, 0) = ψ̂(ξ, η), (ξ, η) ∈ R2n
(35)
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Each term in this system can be simplified using the Fourier properties (15), (16),

and (17). In the previous section, we demonstrated how to simplify ∂̂tf and ∆̂xf .

Now, let’s compute ̂⟨x,∇yf⟩:

̂⟨x,∇yf⟩ =
n∑
i=1

x̂i∂yif = − 1

2πi

n∑
i=1

∂ξi(∂̂yif) = −
n∑
i=1

∂ξi(ηif̂)

= −
n∑
i=1

ηi∂ξi f̂ = −⟨η,∇ξ f̂⟩

Now we can rewrite (35) as follows:∂tf̂ + 4π2|ξ|2f̂ + ⟨η,∇ξ f̂⟩ = 0,

f̂(ξ, η, 0) = ψ̂(ξ, η)

By change of variable f̂(ξ, η, t) = v(ξ, η, t), we obtain the following corresponding

Cauchy problem:∂tv + 4π2|ξ|2v + ⟨η,∇ξv⟩ = 0, R2n × (0,∞)

v(ξ, η, 0) = ψ̂(ξ, η), (ξ, η) ∈ R2n
(36)

We employ characteristic methods to solve this PDE. To do so, consider the vector

field Ṽ (ξ, η, t) = (η, 0, 1) in R2n+1, which yields:⟨
∇(ξ,η,t)v, Ṽ

⟩
= −4π2|ξ|2v (37)

Starting at the point (ξ, η, t) ∈ R2n+1, we now construct the characteristic lines

meaning that the following curves

α : R→ R2n+1

α(s) = (ξ(s), η(s), t(s))

Are solutions of the Cauchy problem for the following vector-valued ODE:

α′(s) = Ṽ (α(s)), α(0) = (ξ, η, t)

This system can be written as:ξ′(s) = η(s),

ξ(0) = ξ

η′(s) = 0,

η(0) = η

t′(s) = 1,

t(0) = t
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With the following solution:

ξ(s) = ξ + sη, η(s) = η, t(s) = t+ s

We can easily see that θ(s) is satisfied by the following linear ODE if we define

θ(s) = v(α(s)) and use the (37):

θ′(s) =
⟨
∇(ξ,η,t)v(α(s)), Ṽ (α(s))

⟩
= −4π2|ξ(s)|2θ(s) = −4π2|ξ + sη|2θ(s)

which shows that a constant A exists such that

θ(s) = Ae−4π2
∫ s
0
|ξ+τη|2dτ

To compute A, notice that

θ(−t) = f̂(ξ − tη, η, 0) = ψ̂(ξ − tη, η)

Therefore,

A = ψ̂(ξ − tη, η)e−4π2
∫ t
0
|ξ−τη|2dτ

Now using the condition θ(0) = f̂(ξ, η, t), we obtain:

f̂(ξ, η, t) = ψ̂(ξ − tη, η)e−4π2
∫ t
0
|ξ−τη|2dτ (38)

We want to recover f from such an explicit formula. We should be able to express

the right-hand side of (38) as a Fourier transform using the following algebraic

facts:

Lemma 2.2. Let A ∈ Mn×n, B ∈ Mn×m, C ∈ Mm×n, and D ∈ Mm×m and

assume that A be invertible. Consider the partitioned matrix

K =

(
A B

C D

)
One has

det(K) = det(A).det
(
(D − CA−1 −B)

)
If furthermore A,B,C −DB−1A, and D − CA−1B are invertible, then

K−1 =

(
A−1 − (C −DB−1A)−1CA−1 (C −DB−1A)−1

−(D − CA−1B)−1CA−1 (D − CA−1B)−1

)
If instead A,C,B −AC−1D, and D − CA−1B, are invertible, then

K−1 =

(
A−1 −A−1B(B −AC−1D)−1 −A−1B(D − CA−1B)−1

(B −AC−1D)−1 (D − CA−1B)−1

)
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Now define the linear operator T (t) : R2n → R2n for t ∈ R as follows:

T (t) =

(
In On

−tIn In

)
where the blocks In and On are the identity and zero matrices in Rn. From Lemma

(2.2) we have det(T (t)) ≡ 1 for every t ∈ R and

T (t)−1 =

(
In On

tIn In

)
It is worth noting that the following notation At represents the matrix A’s transpose.

We have for the adjoint of T (t),

T (t)t(ξ, η) = (ξ − tη, η) (39)

Now let’s take a detour here and learn the following proposition from [7] chapter 5,

which is required to compute the initial condition of (35).

Proposition 2.3. Let us indicate with Gl(n) , the collection of all invertible linear

mappings on Rn. Also, We indicate with O(n) all orthogonal transformations of

Rn onto itself. Now assume that A ∈ Gl(n). If f ∈ L1(Rn), then one has:

f̂(Atξ) = |det(A)|−1 ̂f ◦A−1(ξ) (40)

In particular, if T ∈ O(n), then

f̂ ◦ T = f̂ ◦ T

and therefore the Fourier transform of a spherically symmetric function is itself a

spherically symmetric function.

Now by applying this proposition to (39), we obtain:

ψ̂(ξ − tη, η) = ̂ψ ◦ T (t)−1(ξ, η) (41)

Therefore, we can rewrite (38) as follows:

f̂(ξ, η, t) = ̂ψ ◦ T (t)−1(ξ, η)e−4π2
∫ t
0
|ξ−τη|2dτ (42)

Consider the following degenerate matrix to find a Fourier equivalent for the expo-

nential term on the right hand side of (42):

Q =

(
In On

On On

)
Therefore,
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QT (t)t(ξ, η) = Q(ξ − tη, η) = (ξ − tη, 0)

Now, we can compute the |ξ − τη|2 using these calculations.

|ξ − τη|2 =
⟨
QT (τ)t(ξ, η), T (τ)t(ξ, η)

⟩
=
⟨
T (τ)QT (τ)t(ξ, η), (ξ, η)

⟩
(43)

Thus, we can rewrite the exponential term in (42) as follows:

e−4π2
∫ t
0
|ξ−τη|2dτ = e−4π2

∫ t
0 ⟨T (τ)QT (τ)t(ξ,η),(ξ,η)⟩dτ

= e−4π2⟨(∫ t
0
T (τ)QT (τ)tdτ)(ξ,η),(ξ,η)⟩

Now if we define the following matrix:

C(t) =

∫ t

0

T (τ)QT (τ)tdτ =

(
tIn − t

2

2 In

− t
2

2 In
t3

3 In

)

Even though matrix T (τ)QT (τ)t =

(
In −τIn
−τIn τ2In

)
is not invertible for any τ > 0,

from lemma (2.2) we get:

detC(t) =

(
1

3
− 1

4

)n
t4n = 12−nt4n > 0 ∀t > 0 (44)

Therefore, if we define

K(t) = t−1C(t) =

(
In − t

2In

− t
2In

t2

3 In

)
(45)

Now in order to compute the Fourier transform of the term

1√
detK(t)

(4πt)−
2n
2 e−
⟨K(t)−1.,.⟩

4t

we need the following theorem from [7] chapter 5.

Theorem 2.4. For any t > 0 and ξ ∈ Rn one has(
e−4π2t|.|2

)
(̂ξ) = (4πt)−

n
2 e−

|ξ|2
4t (46)

On the other hand, one also has the following inverse formula

̂(
(4πt)−

n
2 e−

|.|2
4t

)
x→ξ

(ξ) = e−4π2t|ξ|2 (47)
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More in general, if A ∈Mn×n(Rn) is a matrix such that At = A, and A > 0, then

(
e−4π2t⟨A.,.⟩

)
(̂ξ) =

1√
detA

(4πt)−
n
2 e−
⟨A−1ξ,ξ⟩

4t (48)

and thus the inverse is

̂(
1√
detA

(4πt)−
n
2 e−

⟨A−1.,,⟩
4t

)
x→ξ

(ξ) = e−4π2t⟨Aξ,ξ⟩ (49)

Returning to our computations and applying (49), we can conclude that

̂(
1√

detK(t)
(4πt)−

2n
2 e−

⟨K(t)−1.,.⟩
4t

)
(ξ, η) = e−4π2t⟨K(t)(ξ,η),(ξ,η)⟩ (50)

= e−4π2
∫ t
0
|ξ−τη|2dτ

With these calculations and convolution properties of Fourier transform, we can

rewrite (42) as follows:

f̂(ξ, η, t) = ̂ψ ◦ T (t)−1(ξ, η)

̂(
1√

detK(t)
(4πt)−

2n
2 e−

⟨K(t)−1.,.⟩
4t

)
(ξ, η) =

̂(
(ψ ◦ T (t)−1) ∗ 1√

detK(t)
(4πt)−

2n
2 e−

⟨K(t)−1.,.⟩
4t

)
(ξ, η)

Now that we have this formula, we can apply the metaprinciple and obtain:

f(x, y, t) =
(4π)−n√
det tK(t)

∫
R2n

e−
⟨K(t)−1(x−x′,y−y′),(x−x′,y−y′)⟩

4t ψ ◦ T (t)−1(x′, y′)dx′dy′

(51)

With the following change of variable

(x̄, ȳ) = T (t)−1(x′, y′)

such that

(x′, y′) = T (t)(x̄, ȳ) = (x̄, ȳ − tx̄)

and dx′dy′ = dx̄dȳ, we finally obtain

f(x, y, t) =
(4π)−n√
det tK(t)

∫
R2n

e−
⟨K(t)−1(x−x̄,y−ȳ+tx̄),(x−x̄,y−ȳ+tx̄)⟩

4t ψ(x̄, ȳ)dx̄dȳ (52)
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This formula (52) solves the Cauchy problem (33). To obtain a simplified version

of this formula, first compute the inverse form of the matrix K(t):

K(t)−1 =

(
4In

6
t In

6
t In

12
t2 In

)
(53)

And therefore we easily can compute the exponential power as follows:

⟨
K(t)−1 (x− x̄, y − ȳ + tx̄) (x− x̄, y − ȳ + tx̄)

⟩
=4

(
|x− x̄|2 + 3

t
⟨x− x̄, y − ȳ + tx̄⟩+ 3

t2
|y − ȳ + tx̄|2

)
=4

(
|x− x̄|2

4
+

3

t2

∣∣∣∣y − ȳ + tx̄+
t

2
(x− x̄)

∣∣∣∣2
)

= |x− x̄|2 + 12

∣∣∣∣y − ȳt +
x+ x̄

2

∣∣∣∣2
Also the coefficient term can be computed as follows:

(4π)−n√
det tK(t)

=
(4π)−n√
12−nt4n

=
3

n
2

(2π)n
t−2n

Now if we define function p(x, y, x̄, ȳ, t) like:

p(x, y, x̄, ȳ, t) =
3

n
2

(2π)n
t−2nexp

{
− 1

4t

(
|x− x̄|2 + 12

∣∣∣∣y − ȳt +
x+ x̄

2

∣∣∣∣2
)}

(54)

Finally, the simplified version of the final solution is as follows:

f(x, y, t) =

∫
R2n

p(x, y, x̄, ȳ, t)ψ(x̄, ȳ)dx̄dȳ (55)

3 Transmutation Methods

As previously stated, the main goal of this article is to present an explicit solution

for the degenerate hyperbolic equation (1) by employing transmutations methods

that reduce the problem to a previously solved problem, or at least to a simpler

problem, which in our case is the parabolic Kolmogorov Cauchy problem (2). To

accomplish this, we use a particular transmutation technique that was implemented

in [2], [3], and [6]. Suppose that

D = (D1, D2, · · · , Dn) x = (x1, x2, · · · , xn) Di =
∂

∂xi
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And define the following multi-index:

Dα = Dα1
1 , Dα2

2 , · · ·Dαn
n ,

such that

P (x,D) =
∑

α:0≤|α|≤m

aα(x)D
α

Where |α| = α1 + · · ·+ αn and aα(x) are given functions of x. Finally, let S(x) =

0 denote a cylindrical surface in (x, t) space and B(x,D) a linear nontangential

boundary operator whose domain is the manifold S(x) = 0. The smoottmess

required of this cylinder will depend upon the operator B(x,D). Now consider the

following initial boundary value problems of the form:
∂tu(x, t) = P (x,D)u(x, t), t > 0

u(x, 0) = ϕ(x)

B(x,D)u(x, t) = f(x, t), x ∈ S, t > 0

(56)

And 
∂ttv(x, t) = P (x,D)v(x, t), t > 0

v(x, 0) = 0, vt(x, 0) = ϕ(x)

B(x,D)v(x, t) = g(x, t), x ∈ S, t > 0

(57)

For the time being, we will assume that ϕ(x) has continuous derivatives of sufficient

higher order to ensure the existence and continuity of B(x,D)ϕ(x) and P (x,D)ϕ(x).

Finally, we assume that on S(x) = 0, ϕ(x) and all of its derivatives, up to those

involved in B(x,D), vanish.

The focus of this paper will be on relating the solvability of (56) to the solvability

of (57) using the inverse Laplace transform based on the proofs provided in [2], [3]

and [6]. The use of the Laplace transform will inevitably impose constraints on the

functions f(x, t) and g(x, t), but these conditions are met in many applications. The

inverse Laplace transform of the function ψ(x, s) will be denoted by the following

symbol:

L−1
s ψ(x, s)s→τ

Where s represents the variable in the transformed function ψ(x, s), and τ repre-

sents the variable in the inverted function.

Theorem 3.1. If u(x, t) solves (56) and

g(x, t) = Γ

(
3

2

)
L−1
s

{
s−

3
2 f

(
x,

1

4s

)}
s→t2

(58)

Then the following v(x, t) solves (57):

v(x, t) = Γ

(
3

2

)
L−1
s

{
s−

3
2u

(
x,

1

4s

)}
s→t2

(59)
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provided the inverse Laplace transform exists.

The inverse of this theorem is provided in the following.

Theorem 3.2. If v(x, t) solves (57) and

f(x, t) =
1

2
√
πt

3
2

∫ ∞

0

ξe−
ξ2

4t g(x, ξ)dξ (60)

Then the following u(x, t) solves (56):

u(x, t) =
1

2
√
πt

3
2

∫ ∞

0

ξe−
ξ2

4t v(x, ξ)dξ (61)

provided the integrals exist for t > 0.

Proof of theorem (3.1) and (3.2). Problems (56) and (57) will be reduced to

the same problem using variable transformations and the introduction of the Laplace

transform. To begin, we change variables u(x, t) and v(x, t) as follows:

u(x, t) =u∗(x, t) + ϕ(x)

v(x, t) =v∗(x, t) + tϕ(x)

Then (56) and (57) transform, respectively, into the problemsu∗t (x, t) = P (x,D)u∗(x, t) + P (x,D)ϕ(x) u∗(x, 0) = 0

B(x,D)u∗(x, t)|s = f(x, t) (since B(x,D)ϕ(x) = 0 on S)
(62)

And 
v∗tt(x, t) = P (x,D)v∗(x, t) + tP (x,D)ϕ(x)

v∗(x, 0) = 0 v∗t (x, 0) = 0

B(x,D)v∗(x, t)|s = g(x, t),

(63)

In (63), introduce the change of variables t = τ
1
2 then it becomes:

4τv∗ττ + 2v∗τ = P (x,D)v∗(x, τ
1
2 ) + τ

1
2P (x,D)ϕ(x)

v∗(x, 0) = 0 limτ→0 v
∗
τ (x, τ

1
2 ) = 0

B(x,D)v∗(x, τ
1
2 )|s = g(x, τ

1
2 )

(64)

Now introduce the Laplace transform in (64) by transforming on the variable τ with

transformed variable s. Then v̄∗(x, s) the Laplace transform of v∗(x, τ
1
2 ), satisfies

the problem4s2 ∂
∂s v̄

∗(x, s) + 6sv̄∗(x, s) + P (x,D)v̄∗(x, s) +
Γ( 3

2 )
s
3
2
P (x,D)ϕ(x) = 0

B(x,D)v̄∗(x, s)|s = ḡ(x, s)
(65)
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with ḡ(x, s) the Laplace transform of g(x, τ
1
2 ). Finally, a multiplication of the

equation and conditions in (65) by s
3
2

Γ( 3
2 )

leads to the problem


4s2 ∂

∂s

{
s
3
2 v̄∗

Γ( 3
2 )

}
+ P (x,D)

{
s
3
2 v̄∗

Γ( 3
2 )

}
+ P (x,D)ϕ(x) = 0

B(x,D)

{
s
3
2

Γ( 3
2 )
v̄∗(x, s)

}
|s = s

3
2

Γ( 3
2 )
ḡ(x, s)

(66)

In (62), introduce the change of variables t = 1
4s for s > 0. Then (62) transforms

into the problem4s2 ∂
∂su

∗ (x, 1
4s

)
+ P (x,D)u∗

(
x, 1

4s

)
+ P (x,D)ϕ(x) = 0

B(x,D)u∗
(
x, 1

4s

)
|s = f

(
x, 1

4s

) (67)

with

lim
s→∞

u∗
(
x,

1

4s

)
= 0

A comparison of (66) and (67) shows that the functions u∗(x, 1
4s ) and s

3
2 (v̄∗(x, s)/Γ

(
3
2

)
)

satisfy, firstly the same differential equation and secondly the same boundary con-

ditions provided that

(a) f(x,
1

4s
) =

s
3
2

Γ
(
3
2

) ḡ(x, s)
(b) lim

s→∞
s

3
2 v̄∗ (x, s) = 0

(68)

The conditions (68 a) are those covered by the hypotheses (58) and (60). Imposing

these conditions along with (68 b), we get

v̄∗ (x, s) = Γ

(
3

2

)
s−

3
2u∗

(
x,

1

4s

)
(69)

and the result (61) follows by inversion and our definitions of u∗ and v∗. The result

(59) also follows from (69). This completes the proof.

4 Explicit Solutions

In this section, we’ll make good on our promises to solve problems (1) and (3) using

transmutation methods. We intend to solve problem (1) first, and then demonstrate

that the solution is correct by proving that the solution to problem (3) computed

using the transmutation method is identical to the one computed using Fourier

transforms. First, let us provide an explicit solution to the following degenerate

hyperbolic equation:
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∂ttu−∆xu− ⟨x,∇yu⟩ = 0 , Rnx × Rny × (0,∞)

u(x, y, 0) = 0 , ∂tu(x, y, 0) = ψ(x, y)

using transmutations methods. By theorem (3.1) and using the solution of kol-

mogorov equation (55), we can conclude that if f(x, y, t) is the solution of kolmogrov

problem then

u(x, y, t) = Γ

(
3

2

)
L−1
s

{
s−

3
2 f

(
x, y,

1

4s

)}
s→t2

(70)

where f(x, y, t) can be written as follows based on the computation presented in

the (2.2):

f(x, y, t) =
3

n
2 t−2n

(2π)n

∫
R2n

e
− 1

4t

(
|x−x̄|2+12| y−ȳ

t + x+x̄
2 |2

)
ψ(x̄, ȳ)dx̄dȳ (71)

According to the linearity of Laplace inverse transform and Fobini theorem, we can

simplify (70) as follows:

u(x, y, t) = Γ

(
3

2

)
L−1
s

{
s−

3
2
3

n
2 (4s)2n

(2π)n

∫
R2n

e
−s

(
|x−x̄|2+12

∣∣∣4s(y−ȳ)+ x+x̄
2

∣∣∣2)
ψ(x̄, ȳ)dx̄dȳ

}
s→t2

change of variable as x− x̄ = ξ , y − ȳ = η

=

√
π

2

3
n
2 (2)3n

πn
L−1
s

{
s−

3
2

∫
R2n

s2ne
−s

(
|ξ|2+12

∣∣∣4sη+ 2x−ξ
2

∣∣∣2)
ψ(ξ − x, η − y)dξdη

}
s→t2

=

√
π

2

3
n
2 (2)3n

πn

∫
R2n

L−1
s

{
s−

3
2 s2ne

−s

(
|ξ|2+12

∣∣∣4sη+ 2x−ξ
2

∣∣∣2)}
s→t2

ψ(ξ − x, η − y)dξdη

Now we should compute the Laplace inverse part as follows:

L−1
s

{
s−

3
2 s2ne

−s

(
|ξ|2+12

∣∣∣4sη+ 2x−ξ
2

∣∣∣2)}
s→t2

= L−1
s

{
s−

1
2 s2n−1e

−s

(
|ξ|2+12

∣∣∣4sη+ 2x−ξ
2

∣∣∣2)}
s→t2

= (2n− 1)!

√
π

t4n+1
δ(t2 − ξ2) ∗ L−1

s

{
e
−s

(
|ξ|2+12

∣∣∣4sη+ 2x−ξ
2

∣∣∣2)}
s→t2

= (2n− 1)!

√
π

t4n+1
δ(t2 − ξ2) ∗

e

(
2x−ξ

2

)2

t2 − 4η(2x− ξ)
∗

1

t− 192η2

In the following theorem, we can present the final solution to our main problem

(1).

Theorem 4.1. Suppose we have the following degenerate hyperbolic partial differ-

ential equation:∂ttu−∆xu− ⟨x,∇yu⟩ = 0 , Rnx × Rny × (0,∞)

u(x, y, 0) = 0 , ∂tu(x, y, 0) = ψ(x, y)
(72)
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The following function satisfies this PDE equation:

u(x, y, t) =
3

n
2 (2)3n−1

t4n+1πn−1

∫
R2n

Z(ξ, η, x, t)ψ(ξ − x, η − y)dξdη (73)

where

Z(ξ, η, x, t) = (2n− 1)! δ(t2 − ξ2) ∗ e(
2x−ξ

2 )
2

t2 − 4η(2x− ξ)
∗ 1

t− 192η2
(74)

We now want to use the solution of the heat equation and transmutation methods

to compute the solution of the wave equation.

Proposition 4.2. From solution of Heat equation to solution of Wave

equation

Suppose we have a solution to the Cauchy problem of the Heat equation:∂tu−∆xu = 0 , Rn × (0,∞)

u(x, 0) = ψ(x)
(75)

Then the solution to the following wave equation:∂ttf −∆xf = 0 , Rn × (0,∞)

f(x, 0) = 0 , ∂tf(x, 0) = ψ(x)
(76)

Is computed using:

f(x, t) = Γ

(
3

2

)
L−1
s

{
s−

3
2u

(
x,

1

4s

)}
s→t2

(77)

Proof. Consider the following fundamental solution of heat equation 75:

u(x, t) = (4πt)−
n
2

∫
Rn

e−
|x−y|2

4t ψ(y)dy (78)

By theorem (3.1) and using the solution of heat equation (78), we can conclude

that

f(x, t) = Γ

(
3

2

)
L−1
s

{
s−

3
2u

(
x,

1

4s

)}
s→t2

(79)

Let’s keep expanding the computations until we get the form (32), which verifies

our claim that the transmutation method is a correct method for solving a PDE. If

we subsitute the heat equation solution (75), we obtain:



Paper 12: Explicit solutions of Cauchy problems with Transmutations methods 189

f(x, t) = Γ

(
3

2

)
L−1
s

{
s−

3
2

(π
s

)−n
2

∫
Rn

e−s|x−y|
2

ψ(y)dy

}
s→t2

=

1

2π
L−1
s

{
s−

3
2 s

3
2

∫
Rn

e−s|x−y|
2

ψ(y)dy

}
s→t2

=

1

2π
L−1
s

{∫
Rn

e−s|x−y|
2

ψ(y)dy

}
s→t2

=

1

2π
L−1
s

{
lim
r→∞

∫
B(x,r)

e−s|x−y|
2

ψ(y)dy

}
s→t2

Where B(x, r) = {y ∈ Rn s.t |x− y| ≤ r}. According to Cavalieri’s principle∫
B(x,r)

g(x)dx =

∫ r

0

∫
S(x,r)

g(y)dσ(y)dr (80)

We can now proceed with the calculations using this principle:

f(x, t) =
1

2π
L−1
s

{
lim
r→∞

∫ r

0

∫
S(x,r)

e−sr
2

ψ(y)dσ(y)dr

}
s→t2

1

2π
L−1
s

{
lim
r→∞

∫ r

0

e−sr
2

∫
S(x,r)

ψ(y)dσ(y)dr

}
s→t2

According to the definition of spherical average of a function (29), we can compute

the second integral as follows:

f(x, t) =
1

2π
L−1
s

{
lim
r→∞

∫ r

0

e−sr
2 (

4πr2Mψ(x, r)
)
dr

}
s→t2

=

2

∫ ∞

0

L−1
s

{
e−sr

2
}
s→t2

r2Mψ(x, r)dr

We can compute the inverse laplace inverse as follows:

f(x, t) = 2

∫ ∞

0

δ
(
t2 − r2

)
r2Mψ(x, r)dr =

2

∫ ∞

0

1

2r

[
δ (t− r) + δ (t+ r)

]
r2Mψ(x, r)dr =∫ ∞

0

(rMψ(x, r)) δ (t− r) dr +
∫ ∞

0

(rMψ(x, r)) δ (t+ r) dr =∫ ∞

0

(rMψ(x, r)) δ (t− r) dr +
∫ 0

−∞
(zMψ(x,−z)) δ (t− z) dr
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Since spherical average function is spherically symmetric, we have

f(x, t) =

∫ ∞

0

(rMψ(x, r)) δ (t− r) dr +
∫ 0

−∞
(zMψ(x, z)) δ (t− z) dr =∫ ∞

0

(rMψ(x, r)) δ (t− r) dr +
∫ 0

−∞
(rMψ(x, r)) δ (t− r) dr =∫ ∞

−∞
(rMψ(x, r)) δ (t− r) dr

Using the following Dirac delta property:∫ ∞

−∞
g(y)δ (x− y) dy = g(x) (81)

Finnally, we achieve the form (32) for when φ(x) = 0,

f(x, t) =

∫ ∞

−∞
(rMψ(x, r)) δ (t− r) dr = tMψ(x, t)

This concludes our claim.

5 Conclusion

Finally, we learned how to use a strategy in this paper to divide a difficult problem

into two simpler ones and solve them using an equivalent problem of lower degree

in terms of time. These methods can aid in the solution of previously unsolved

PDEs. The explicit solution computed in this article can also address a number

of other issues related to gas kinetic theory. For future studies, we recommend

developing an analogous numerical method based on the transmutation technique

with optimal error margins.
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[18] Y. Zhu, Velocity averaging and Hölder regularity for kinetic Fokker-Planck equations with
general transport operators and rough coefficients, preprint arXiv:2010.03867, 2020.

[19] C. Imbert and L. Silvestre, The schauder estimate for kinetic integral equations, Pre-print,
arXiv:1812.11870v2, 2019.

How to Cite: Mahdieh Aminian Shahrokhabadi1, Hossein Azari2, Explicit solutions of Cauchy
problems for degenerate hyperbolic equations with Transmutations methods, Journal of
Mathematics and Modeling in Finance (JMMF), Vol. 2, No. 1, Pages:169–191, (2022).

The Journal of Mathematics and Modeling in Finance (JMMF) is licensed under a

Creative Commons Attribution NonCommercial 4.0 International License.




