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Abstract:
Abstract:
In this paper, we considered a Bayesian hierarchical method using the hyper prod-
uct inverse moment prior in the ultrahigh-dimensional generalized linear model
(UDGLM), that was useful in the Bayesian variable selection. We showed the pos-
terior probabilities of the true model converge to 1 as the sample size increases. For
computing the posterior probabilities, we implemented the Laplace approximation.
The Simplified Shotgun Stochastic Search with Screening (S5) procedure for gen-
eralized linear model was suggested for exploring the posterior space. Simulation
studies and real data analysis using the Bayesian ultrahigh-dimensional general-
ized linear model indicate that the proposed method had better performance than
the previous models. Keywords: Ultrahigh dimensional; Nonlocal prior; Optimal

properties; Bayesian Variable Selection; Generalized Linear Model.
JEL Classification: C68, G10, C45.

1 Introduction

Identifying a sparse subset from a large number of covariates per observation to

balance parsimony and predictive power in high dimensional statistical problems,

especially in generalized linear model (GLM), is a variety of scientific research and

technological development.

When the number of covariates grows at a sub-exponential rate of n, variable se-

lection is the first step for dimension reduction to estimate the parameters of the

model. Our objective is to fit a GLM by efficiently estimating regression coefficients

β and use it for subsequent inference. Recently, many common methods for select-

ing variables from both pluralistic and Bayesian perspectives have been developed.

Most of the frequentist methods can be interpreted from a Bayesian perspective,

because they share the basic desire of shrinkage toward sparse models. In the con-
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text of Bayesian testing in regression models, [10] have shown that the local priors

(LPs) put a positive probability on the null value of the parameter whereas nonlocal

priors (NLPs) put zero probability on the null value. Thus, NLPs consider a clear

separation between the null hypothesis that some regression coefficients are equal

to zero and the alternative hypothesis that these coefficients are different from zero.

Now, let Yn = (y1, y2, · · · , yn)
′
be n-dimensional response vector of Gaussian lin-

ear model Yn ∼ N(Xnβ, ϕkIn) where Xn is a n× p design matrix with n sample

size and p number of covariates, β ∈ Rp is vector of parameters of interest and

ϕk ∈ R+ is a fixed dimension nuisance parameter. Since, we do not know which

covariates truly predict yn, we consider k = 2p models by setting the elements in

β to zero. Let M denote the model space that collects all the model indices k; i.e.,

M = {k : k ⊆ {0, 1}p}. The nonlocal priors, moment (pMOM) and product inverse

moment (piMOM) priors are introduced by [10] as follows

πM (β | ϕk, τ, r,Mk) =
∏
j∈Mk

[(2r − 1)!!]−1
β2r
j

(τϕk)r
N (βj ; 0, τϕk) (1)

πI (β | ϕk, τ, r,Mk) =
∏
j∈Mk

(τϕk)
r
2

Γ( r2 ) |βj |
(r+1)

exp

{
−τϕk
β2
j

}
(2)

Here τ and r are scale parameter and the order of the density, respectively, and

(.)!! is double factorial. They find one important result in Bayesian estimation that

NLPs discard spurious covariates faster than the sample size n grows, but main-

tains an exponential rate to detect non-zero coefficients.

In Bayesian model selection with the p ≤ n setting, [11] have presented model

selection procedures based on NLPs with strong model selection property. As the

sample size n increases, the posterior probabilities of the true model converge to

1. With the p≫ n setting, [20] studied high-dimensional estimation problems and

obtained the rate of convergence of the Johnson-Rossell moment and inverse mo-

ment of a model when meets Walker’s condition. They have shown that for NLP

in the linear models, based on the Bayesian model averaging (BMA), spurious pa-

rameters shrink either at fast polynomial or quasi-exponential rates as the sample

size n increases, while non-spurious parameter estimates are not shrunk.

[22] have studied the behavior of nonlocal priors for variable selection and their con-

sistency properties in linear regression and also proposed the scalable and efficient

algorithm, Simplified Shotgun Stochastic Search with Screening (S5), to explore

the massive model space. They bound the model space by placing a uniform prior

on the space of the model to induce a penalty on the size of the model space in

ultrahigh-dimensional setting. They need this bound to ensure that the least square

estimator of a model is consistent when a model contains the true model. Similar

priors have been considered in the literature by [9], [13] and [1].

For generalized linear regression with the p ≤ n setting, [21] established the pos-

terior convergence rate for NLPs in a logistic regression model and propose the
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Metropolis-Hastings algorithm for computation. [24] propose hyper nonlocal priors

for variable selection in generalized linear models. They combine the Fisher infor-

mation matrix with the Johnson-Rossell moment and inverse moment priors and

assign hyper priors to the scale parameters.

They show that if diag(Ik0) = Ik0 is unit Fisher information matrix evaluated at

β = 0, piMOM priors will be

πI (βk |Mk) = πI (βk | k) = (τ)
r|k|
2 |Ik0|−

r
2

(Γ
(
r
2

)
)|k|

×exp{− (τ)
(
βk

⊤Ik0βk

)−1

}
|k|∏
i=1

|βki|−(r+1)
.

(3)

According to [24], while these priors are useful for variable selection in GLM, but

they require the specification of prior scale parameter at nonlocal prior. To over-

come this difficulty, they assign the inverse gamma hyper prior to scale parameter

in pmGLM and a gamma hyper prior to scale parameter in pimGLM that are able

to learn about the prior scale parameter from data and provid robust inferential

results. They call them, hyper nonlocal (HYN) priors.

Under certain regularity conditions, they have shown that HYN priors methods

achieve variable selection consistency. That is, the posterior probabilities of the

true model converge to 1 as the sample size increases. This means the prior proba-

bilities of HYN identify the true model much faster.

With the p > n settings, [16] develop Bayesian variable selection in logistic models

for binary outcomes in genomic studies of the piMOM density class of NLPs. [17]

propose Bayesian variable selection method using NLP (BVSNLP) for high and

ultrahigh dimensional datasets with survival time as a result and using piMOM on

nonzero regression coefficients.

[1] undertake high-dimensional posterior consistency properties for the class of

pMOM of NLPs.

However, as far as we know, to date there have been no published manuscript in

case of hyper nonlocal priors for variable selection in high-dimensional generalized

linear models. Motivated by this gap, our first goal is to investigate the model

selection properties of the hyper product inverse moment prior in a UDGLM.

We use piMOM priors because as [17] mention, the piMOM priors assign negligible

probability to a wider range near zero than do pMOM priors. The pMOM priors de-

crease to zero at the polynomial rate while the piMOM priors decrease much faster

with exponential rate. On the other hand, pMOM priors have tails that converge

to zero at an exponential rate, while piMOM priors have heavier Cauchy-like tails.

In the p≫ n setting, [22] have studied consistency properties of piMOM priors for

linear models, but this property does not apply to pMOM priors.

It is known that the computation problem can arise for Bayesian approaches due to

the non-conjugate structure in generalized linear regression. Therefore, our second

goal is to develop efficient algorithms to explore the massive posterior space. These

are challenging goals of course, as the posterior distributions are not available in
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closed form for this type of nonlocal priors.

First, we obtained the posteriors via Laplace approximation, and then implemented

the efficient Simplified Shotgun Stochastic Search with Screening (S5) presented

by [22] algorithm to explore the sparsity pattern of the regression coefficients in

generalized linear regression. Finally, our proposed method was validated through

simulation studies and illustrated by a real data. The Golub leukemia data ( [6])

is publicly available and has good clinical annotations. We discriminated between

two types of acute leukemia, myeloid (AML) and lymphoblastic (ALL). This data

set contains 72 samples and 7,129 genes. The design matrix consisted of gene ex-

pression levels produced by cDNA microarrays from bone marrow samples, and was

pre-processed by RMA ( [8]).

The remainder of this article is organized as follows. Section 2 presents problem of

modeling on the UDGLM and Methodology. In this section we compute the MAP

estimator by selecting the best estimator with the 0−1 loss function and use model

selection method with a Laplace integration procedure to compute posterior model

probabilities. Section 3 studies their optimal properties as theoretical properties.

Section 4 studies Computational Strategy. Section 5 presents a simulation stud-

ies to investigate the performance of our proposed method under binomial models.

Section 6 illustrates the application of our method with the analysis of the real

data example on the Golub leukemia data to discriminate between two types of

acute leukemia, myeloid (AML) and lymphoblastic (ALL). Section 7 concludes the

document with discussions and possible directions for future research directions.

For greater clarity, proofs are presented in the Appendix.

2 Problem modeling

2.1 Methodology

Let yn = (y1, . . . , yn) be an n-dimensional response vector and Xn be a n × p

design matrix, where n is the sample size and p is the total number of covariates,

k ⊆ {0, 1}p index a model consisting of a subset of columns of Xn, |k| is the

cardinality of subset k and M denotes the model space that collects all the model

indices k; i.e., M = {k : k ⊆ {0, 1}p}. Then, with a given link function g(.), we

consider model k of the form

ηki = g(E(yi | xk)) = β0 +X⊤
kiβk, (4)

where β0 denotes the intercept, Xk is design matrix for model k, Xki is the ith

row of Xk, βk denotes the corresponding vector of nonzero regression coefficients.

Thus, considering the intercept, model k has dimension |k|+ 1. We are interested

in selecting the best subset of covariates to predict response variable, where y can

follow any probability distribution in the exponential family including binomial,

Poisson and negative binomial, and the Xks can be continuous or discrete.
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We assume that the true model exists, and is defined as the smallest model in the

model space M that contains the true data-generating distribution. Consequently,

the problem of selecting the best subset is now equivalent to the problem of identi-

fying the true model in M.

Then, for a given model k, the likelihood function of yn = (y1, . . . , yn) given linear

predictors ηk = (ηk1, . . . , ηkn)
⊤ and dispersion parameter ϕ is

f(yn | ηk, ϕ) =

n∏
i=1

a(yi,
ϕ

wi
) exp

{
wi(yiθ(ηki)− b(θ(ηki)))

ϕ

}
(5)

For proposed Bayesian variable selection approach, we assume the dispersion pa-

rameter ϕ is known and assign an improper uniform prior for the intercept β0.

According to [24] in the pimGLM prior, we assign for τ a gamma hyper prior with

shape parameter a and rate parameter b. 1 induces prior dependence among the

regression coefficients and difference of pimGLM and hpimGLM. The rate of decay

at the null, indicates the rate of Bayes factor in favor of the null hypothesis. Mean-

while, the heaviness of the tail indicates the degree of robustness to large effect size.

It shows that scale mixturing goes to zero faster than pimGLM, but preserves the

same tail heaviness.

According to the equation (3), the class of hpimUGLM for unknown regression

coefficients βk is given by

π (βk | ϕ, r, a, b) =
baΓ( r|k|2 + a)

Γ(a)Γ
(
r
2

)|k| |Ik0|− r
2×exp

{
b+ (βk

⊤Ik0βk)
−1
}− r|k|

2 −a
×

|k|∏
i=1

|βki|−(r+1)
.

(6)

Equations (5) and (6) are valid for the p < n settings. In order to use these equa-

tions in our proposed Bayesian variable selection approach in ultrahigh-dimensional

settings (p ≫ n), we need to restrict the size of largest model because of having

nonsingular Gram matrix. According to [9], we consider a uniform prior on the

model space and the model space prior is assumed as follows

π(k) ∝ I (|k| ≤ mn) (7)

where mn =
(

n
log p

)α
for 0 < α < 1, is a positive integer restricting the size of

the largest model, and a uniform prior is placed on the model space restricting our

analysis to models having size less than or equal to mn.

According to [19], suppose that prior distribution π(β) is available then the pos-

terior distribution π (βk | yn) can be derived from the observation distribution

f (yn | βk). The posterior distribution can be used to describe the properties of βk.

The way of selecting a best estimator is using a loss criterion. With the 0−1 loss

function, a possible estimator of βk based on posterior is the maximum a posteriori

(MAP) estimator which also maximizes π (βk | yn) π (βk | k).
By the hierarchical Bayesian model (5) to (7) and Bayes rule, the resulting posterior
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Figure 1: A depiction of Nonlocal prior density function pimGLM (solid line) and
hyper product inverse moment hpimGLM (long-dash line), priors under a binomial
GLM with n = 30, w = 30, p = 1, r = 1 and X is a vector with elements that are
normal N(0, 1).

probability for βk is denoted by,

π(βk | yn) =
ℓ(βk)π(βk | k)π(k)∑
k∈M ℓ(βk)π(βk | k)π(k)

∝ ℓ(βk)π(βk | k)π(k), (8)

posterior mode is defined by

β̂k = argmax
β

π(βk | yn). (9)

Depending on the complexity of the loss and the posterior distribution, the esti-

mator will be determined analytically or numerically. Of course in our proposed

method, the closed form of these posterior probabilities cannot be obtained due

to not only the nature of GLMs but also the structure of hpimGLM prior. There-

fore, special efforts need to be devoted to computational strategy. We use Laplace

approximation ( [23], among others; [12]; [18]) to maximize the logarithm of the

unnormalized joint posterior density with one of several optimization algorithms

and the goal is to estimate the posterior mode and variance of each parameter.

We use the limited memory version of the BroydenFletcherGoldfarbShanno opti-

mization algorithm (L-BFGS) which is particularly suited to problems with very

large number of variables ( [14])) to find the MAP, which requires only the initial

values and the computation of the scoring function to obtain the posterior mode

and numerical Hessian matrix. For implementing Laplace approximation, we use

Maximum Likelihood Estimation (MLE) as initial values of parameters because

the global posterior mode under the true model converges toward the MLE with

probability one.
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The first order derivatives vector U = (U0, ..., U|k|)
⊤ of the log likelihood function

of GLM with respect to the coefficient vector βk is U = 1
ϕX

⊤WM(Y −µ), where

W is the diagonal matrix of working weights and M is the diagonal matrix of link

derivatives
(

dηi
dµi

)
.

Thus, according to [24], the scoring function of posterior probability for hpimGLM

can be written as follow:

ShpimGLM =
1

ϕ
X⊤WM(Y−µ)+

(r |k|+ 2a)
[
diag(β̂−3β⊤)I−1

k0

]
β−1

(b+ tr((diag(ββ⊤)Ik0)−1))
−(r+1)1|k|⊗β̂−1.

(10)

Where⊗ denotes the Hadamard product that is element-wise multiplication, diag(Ik0) =

Ik0 shows unit Fisher information matrix evaluated at β = 0 and 1|k| denote the

length-|k| vector of ones.
In variable selection perspective, the essence is to force the estimated model to be

sparse by penalizing dense models. By the hierarchical Bayesian model (5) to (7)

and Bayes’ rule, the resulting posterior probability for model k is denoted by,

π(k | yn) =
π(k)mk(yn)∑
j∈M π(j)mj(yn)

, (11)

where mk(yn) is the marginal density of yn under model k given by

mk(yn) =

∫
exp {ℓ(βk)} π(βk | k) dβk, (12)

and log likelihood function is

ℓ(βk) = log (f(yn | ηk, ϕ)) =

n∑
i=1

{yiθi(βk)− b(θi(βk)) + a(yi)} . (13)

In particular, these posterior probabilities can be used to select a model by com-

puting the posterior mode which is defined by

k̂ = argmax
k

π(k | yn). (14)

3 Theoretical properties

In this section, we present some theoretical results for Bayesian model selection

based on the hpimUGLM. We consider a known dispersion parameter ϕ = 1 and

a canonical link function such that θ(ηi) = ηi for i = 1, 2, ..., n. We show that the

proposed Bayesian model enjoys desirable theoretical properties.

Let t ⊆ [p] = {1, 2, ..., p} be the true model, which means that the nonzero locations

of the true coefficient vector are t = {j, j ∈ t}. We consider t as a fixed vector.

As mentioned in [2], log likelihood function for a generalized linear model of the
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exponential family is

ℓ(βk) = log (f(yn | ηk, ϕ)) =
n∑
i=1

{
wi
ϕ
(yiθi(ηki)− b(θi(ηki))) + a(yi,

ϕ

wi
)

}
, (15)

where linear predictor is ηki = g(E(yi | xk)) = X⊤
kiβk and the Hessian (Second

derivative of log likelihood function) is

H(βk) =

(
∂2ℓ(βk)

∂βk∂β⊤
k

)
=

n∑
i=1

(
∂ (yi − µi)

∂βk
(

wi
ϕV (µi)

xk

(dηki

dµi
)
) + (yi − µi)

∂

∂βk
(

wi
ϕV (µi)

xk

(dηki

dµi
)
)

)
(16)

The unit Fisher information matrix (standardized by sample size n) which in the

prior leads to feasible and efficient computation, is expectation of the negative

Hessian,

E(−H(βk)) = I(β0,k) =
1

n

n∑
i=1

(− wi
ϕV (µi)

xix
⊤
i

(dηki

dµi
)2
) =

1

ϕνn
X⊤
kWXk (17)

Here, W is an n × n diagonal matrix with diagonal elements wi, which denotes

known weight. For example, in a binomial regression model, it is the number of

trials for observation i, and ν = V (µi) =
dµi

d βk
= d2 b(βk)

d β2
k

is variance function that

for Binomial distribution is µi(1 − µi) where µi =
exp(x⊤

ikβk)

1+exp(x⊤
ikβk)

. We use the nota-

tion diag(I(β0,k)) = I(β0,k) as unit Fisher information matrix evaluated at β and

diag(Ik0) = Ik0 as unit Fisher information matrix evaluated at β = 0.

We consider the following regularity conditions for theoretical properties of our

posterior:

Condition (A1): For some 0 < α < 1,

log p = O(nα) (18)

mn = (
n

log p
)α (19)

0 <τ ≤ log p (20)

Condition (A1) ensures that our proposed method can accommodate high dimen-

sions where the number of covariates grows at a sub-exponential rate of n. Also

specifies the parameter mn in the uniform model space prior that restricts our anal-

ysis on a set of reasonably large models. The scale parameter τ in the nonlocal

prior density reflects the dispersion of the nonlocal prior density around zero, and

implicitly determines the size of the regression coefficients that will be shrunk to

zero.
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Condition (A2): For some 0 < α < 1,

max
i,k

|xik| ≤ 1 (21)

lim
p→∞

p∑
k=1

|β∗
k | <∞ (22)

∥β0,t∥22 = O((log p)
α
) (23)

In condition (A2), for simplicity we will assume that all covariates are bounded

and standardized such that max
i,k

|xik| ≤ 1 for all k = 1, ....,mn. The regression

parameter β∗ corresponding to the true model are bounded, which satisfies some

”sparseness” conditions, when most components of β∗ are very small in magnitude.

The last assumption in this Condition says that the magnitude of true regression

parameter is bounded above (log p)
α
up to some constant, which allows the magni-

tude of regression parameter to increase to infinity.

Condition (A3): For some λ > 0, suppose the ordered eigenvalues 0 ≤ λ1 ≤
λ2 ≤ ... ≤ λmax of unit Fisher information matrix I(β0,k) and the Gram matrix(
X⊤

k Xk

n

)
over model k, then,

0 < λ ≤ min
k : |k|≤mn

λ1 (I(β0,k)) ≤ max
k : |k|≤mn

λmax

(
X⊤

k Xk

n

)
≤ (log p)

α
. (24)

As [15] has noted, restricted eigenvalue conditions are routinely assumed in high-

dimensional theory to guarantee some level of curvature of the objective function

and are satisfied with high probability for sub-Gaussian design matrices.

Also the minimum of the minimum eigenvalue of I(βk0) and the maximum of the

maximum eigenvalue of the Gram matrix
(
X⊤

k Xk

n

)
are bounded above and below

overall sub models k with |k| ≤ mn are allowed to decrease with increasing n and

p and causes none singularity and invertible in symmetric matrixes Ik0 and I(β0,k),

and consistency for posterior probability.

Condition (A4)(Beta-min condition): Let t ⊆ [p] = {1, 2, ..., p} be the true model,

for some constant C > 0,

min
k∈t

β2
k ≥ C max


|t| max

k : |k|≤t
λmax

(
X⊤

k Xk

n

)
log p

n
,

1

log p

 (25)

The beta-min condition is a lower bound for nonzero regression parameters. In

general, this type of condition is necessary for catching every nonzero regression

parameter. Due to Conditions (A1) and (A3), the right-hand side of Condition

(A4) decreases to zero as n→ ∞ thus it allows the smallest nonzero coefficients to

tend to zero as we observe more data.

Suppose conditions (A1) - (A4) hold. Let π(t | yn) denote the posterior probability
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of the true model obtained under the hyper product inverse moment nonlocal prior

(hpimUGLM) over coefficients. Also, assume a uniform prior on all models of size

less than or equal to mn, i.e., π(k) ∝ I(|k| ≤ mn) . Then, π(t | yn) converges to
one in probability as n goes to ∞.

π(t | yn)
P−→ 1 , as n→ ∞. (26)

We know that

π(t | yn) = π(t = k | yn) + π(t⊂
̸=
k | yn) + π(t ̸= k | yn) (27)

Let K1 =

{
k : |k| ≤ mn , t⊂

̸=
k

}
and K2 = {k : |k| ≤ mn , t ̸= k }, by Bayes’

rule and the resulting posterior probability for model k, this equation is denoted

by

π(t | yn) =
π(t)mt(yn)∑
k π(k)mk(yn)

=

[
1 +

∑
k:k∈K1

π(k)mk(yn)

π(t)mt(yn)
+

∑
k:k∈K2

π(k)mk(yn)

π(t)mt(yn)

]−1

.

(28)

Following [1] expression, in order to proof “Strong selection consistency Theorem”,

we have to show two more theorems, the first one is “No super set theorem”:∑
k:k∈K1

π(k)mk(yn)

π(t)mt(yn)
=

∑
k:k∈K1

π(k | yn)
π(t | yn)

P−→ 0 as n→ ∞ (29)

It says that, asymptotically, posterior will not include unnecessarily many variables

and not over fit the model.

The second theorem is “Posterior ratio consistency theorem”:∑
k:k∈K2

π(k)mk(yn)

π(t)mt(yn)
=

∑
k:k∈K2

π(k | yn)
π(t | yn)

P−→ 0 as n→ ∞ (30)

It shows that, with an appropriate lower bound specified in Condition (A4), the

true model t will be the mode of the posterior. Posterior ratio consistency is a

useful property especially when we are interested in the point estimation with the

posterior mode. The Proofs are available in Appendix.

4 Computational Strategy

4.1 Computing posterior probability of models

The following Algorithm 1 illustrates the procedure employed to compute the pos-

terior probability of models.

[16] have employed a Birth-death scheme in Metropolis-Hastings to sample from

the posterior distribution on the model space to obtain a sequence of sampled mod-

els and estimate the MAP model.
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Algorithm 1 Computing posterior probability of models

[1] Let M is the model space. The following steps are repeated as k converges to
the solution: Choose k ∈ M as a given model. Then log likelihood function ℓ(βk),
the priors π(βk) and π(k) are available. Define the posterior probability for βk by

π(βk | yn) ∝ ℓ(βk)π(βk | k)π(k).

For model k, obtain the MLEs as initial values of parameters in optimizing the
posterior distribution. Estimate the posterior mode by β̃k = argmaxβ π(βk | yn)
with the optimization algorithm (L-BFGS). Obtain the numerical Hessian matrix
of the logarithm of the posterior of βk evaluated at β̃k. Compute the marginal
likelihood of model k observing yn by Laplace approximation

m̃k(yn) = (2π)
|k|
2

∣∣∣−Ĥk

∣∣∣− 1
2

exp[ℓ(β̃k)]π(β̃k | k).

Compute the approximate of posterior probability for model k by

π̃(k | yn) ∝
π(k)m̃k(yn)∑
j∈M π(j)m̃j(yn)

.

For any k ∈M , employ π̃(k | yn) as the criterion for Bayesian variable selection.

One way to avoid complicated computational schemes such as Metropolis-Hastings

algorithm, is the [7] method which approximates the posterior density π(βk | yn),
by normal distribution with the posterior mode (β̃k) as mean and inverse of Hessian

matrix (Ĥk)
−1 as covariance matrix denoted by π(βk | yn) ∼ N(β̃k , Ĥ

−1
k ). Since

we obtained the approximated posterior density of the coefficient vector (βk) in a

conjugate family, we can simply perform Gibbs sampler for its evaluation.

With the p ≫ n setting, full posterior sampling using the existing Markov chain

Monte Carlo (MCMC) algorithms is very inefficient and often impractical from a

point of view. To achieve dimension reduction, we use prior density with some

characteristic to shrink each coefficient. Therefor, we use another stochastic algo-

rithm to search the model space by rapidly identifying regions with high posterior

probability and finding the maximum a posteriori (MAP) model.

4.2 Simplified shotgun stochastic search algorithm with screen-
ing (S5) for GLMs

In ultrahigh-dimensional settings, to increase the efficiency of exploring the model

space, we use the S5 algorithm. S5 is proposed by [22] for variable selection in

linear regression problems. It is a stochastic search method that screens covariates

at each step. Screening is the essential part of the S5 algorithm. According to [4]

in linear regression, screening is based on the correlation between the excluded co-

variates and the residuals of the regression using the current model. The concept
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of screening covariates for GLMs response data is proposed in [5] and is defined

as a more general version of the independent learning with ranking the maximum

marginal likelihood estimator (MMLE) or the maximum marginal likelihood itself.

Let k be the current model and complement of k contains columns of the design

matrix that are not present in the current model. The S5 algorithm for GLM data

works as follows:

At each step the d = 2[log p] covariates with highest maximum likelihood (estima-

tor) are candidates to be added to the current model and called the addition set,

Γ+
scr. The deletion set, Γ−, contains the current model except that one variable is

removed. From the current model, we consider moves to each of its neighbors in

Γ+
scr and Γ− with a probability proportional to the marginal probabilities of these

neighboring models. To avoid local maxima, the model probabilities used in S5 are

raised to the power of 1/tl, where tl is the lth temperature in an annealing sched-

ule in which “temperatures”decrease. To increase the number of visited models, a

specified number of iterations are performed at each temperature. Therefore, the

model with the highest posterior probability in visited models is identified as the

HPPM.

The following Algorithm 2 illustrates the procedure which has been employed for

the Simplified Shotgun Stochastic Search with Screening (S5) for GLMs.

Algorithm 2 Simplified Shotgun Stochastic Search with Screening (S5) for GLMs

[1] Choose S as an initial value for screening size of variables. Set a temperature
schedule t1 > t2 > ... > tS > 0 to avoid local maxima. Choose ITER as a specified
number of iterations at each temperature to increase the number of visited models.
Choose an initial model k(1;1) and a set of variables after screening Sk(1;1) based on
k(1;1). Choose an initial number c0 for repetition of the S5 algorithm. For l = 1 in
l = s

For i in 1, ..., ITER− 1

Compute all π(k | yn) for all k ∈ nbdscr(k
(i,l)) = {Γ+

scr , Γ
−}

Sample k+ and k−, from Γ+
scr and Γ−, with probabilities proportional

to π(k | yn)
1
tl

Sample k(i+1,l) from {k+, k−}, with probability proportional to{
π(k+ | yn)

1
tl , π(k− | yn)

1
tl

}
Update the set of considered variables Sk(i+1,l) to be the union of vari-
ables in k(i+1,l) and top, d = 2[log p] variables according to highest
maximum likelihood estimator.

end for

end for.
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5 Simulation Studies

We applied our method to both simulated data and real data, to investigate the

performance of the proposed method. Iterative Sure Independence Screening (ISIS)

was introduced by [4] to reduce the computation in ultra-high dimensional variable

selection. It refers to ranking covariates according to marginal utility, namely, each

covariate is used independently as a predictor to decide its usefulness for predicting

the response.

In the ISIS-SCAD/LASSO method, first the Iterative Sure Independence Screen-

ing for different variants implements, and then fits the final regression model using

the SCAD/LASSO regularized log likelihood for the variables picked by ISIS. The

ISIS-SCAD/LASSO has proven to be among the most successful model selection

procedures used in practice. To run ISIS-SCAD/LASSO, we used the R package

‘SIS’( [3]) available from CRAN.

In simulation studies, Let n = 100, p = 120, X be the design matrix and for a

true model K, the response vector represents a sequence of Bernoulli samples with

probability of success πi =
eX

⊤
ik βk

1+eX
⊤
ik

βk
.

Elements of the design matrix X were sampled from a multivariate normal distri-

bution with mean 0 and covariance matrix Σ, under the following three different

cases of Σ:

• Case (1): Compound symmetry design, where Σij = 0.5 if i ̸= j and Σii = 1,

for all 1 ≤ i ≤ j ≤ p.

• Case (2): Autoregressive correlated design, where Σij = 0.5|i−j|, for all 1 ≤
i ≤ j ≤ p.

• Case (3): Isotropic design, where Σ = Ip i.e., no correlation imposed between

different covariates.

With the fixed true model t = (1, 2, 3, 4, 5) and coefficient β0
t = (0.5, 0.75, 1, 1.25, 1.5),

the signs were randomly determined with probability one-half.

From a practical perspective, in order to have efficient and feasible algorithms and

average computation time to first hit the MAP model, the variable selection pro-

cedure in all algorithms was run 50 times and each time with different random

seed numbers in order to generate different datasets. In each trial, true and false

positive values for UDGLM and ISIS-SCAD/LASSO were counted by comparing

the selected model with the true one. TP and FP rates were defined as the average

true and false positive values over 50 trials. A true positive, TP, was defined to be

the number of variables that were correctly selected, while false positives, FP, were

the number of variables that were mistakenly selected.

To evaluate the performance of variable selection, the precision, sensitivity, speci-

ficity, Matthew’s correlation coefficient (MCC), mean-squared prediction error (MSPE)

and mean squared error (MSE) of success probability were computed. The criteria
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are defined as

Precision =
TP

TP + FP
(31)

Sensitivity = Recall =
TP

TP + FN
(32)

Specificity =
TN

TN+ FP
(33)

MCC =
TP× TN − FP × FN√

(TP + FP )(TP + FN)(TN + FP )(TN + FN)
(34)

MSPE =
1

ntest

ntest∑
i=1

(ŷi − ytest,i)
2 (35)

In order to calculate the MSPE, If we consider β̂ as the estimated regression

coefficients based on the training samples for each method, ŷi = x⊤
i β̂ will be

estimated response based on that method. In Simulation Studies for Bayesian

methods, the usual GLM estimates based on the selected support are used as β̂.

We generated test samples y test with ntest = 50 to calculate the MSPE.

We compared the mean squared error in estimating the probability of success for

each binary observation. The point estimates of the regression coefficients were

estimated as the posterior mode under the highest posterior probability model.

Note that the prediction of the response vector involves both coefficient estimation

and variable selection. The MSE of success probability was defined as follows:

MSE(π̂) =
1

n

n∑
i=1

(π̂i − πi)
2 (36)

Following tables summarize the results of applying UDGLM, ISIS-SCAD and

ISIS-LASSO approaches to the simulated data.

Table 1: The summary statistics to evaluate the performance of variable selection
in three methods UDGLM ,ISIS-SCAD and ISIS-LASSO in Case (1) (Compound
symmetry covariance of the design matrix).

Precision Sensitivity Specificity MCC MSPE Selected variables

UDGLM 1 1 1 1 0.2338 X1

X5

ISIS-SCAD 0.7246377 0.8333333 0.525 0.3795661 1.0621 X5

ISIS-LASSO 0.7323944 0.8666667 0.525 0.4228575 1.673 X1

X5
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Table 2: The summary statistics to evaluate the performance of variable selection in
three methods UDGLM ,ISIS-SCAD and ISIS-LASSO in Case (2) (Autoregressive
covariance of the design matrix).

Precision Sensitivity Specificity MCC MSPE Selected variables

UDGLM 1 1 1 1 0.2286 X2

X5

ISIS-SCAD 0.7727273 0.85 0.625 0.4912333 1.9065 X1

X5

ISIS-LASSO 0.7833333 0.7833333 0.675 0.4583333 2.4506 X1

X5

X115

Table 3: The summary statistics to evaluate the performance of variable selection
in three methods UDGLM ,ISIS-SCAD and ISIS-LASSO in Case (3) (Isotropic
covariance of the design matrix).

Precision Sensitivity Specificity MCC MSPE Selected variables

UDGLM 1 1 1 1 0.2289 X1

X5

ISIS-SCAD 0.7246377 0.8333333 0.525 0.3795661 1.0796 X5

ISIS-LASSO 0.7323944 0.8666667 0.525 0.4228575 1.6909 X1

X5



78 Journal of Mathematics and Modeling in Finance

• Based on the simulation results, we could see that under the Compound sym-

metry covariance of the design matrix, the UDGLM method worked better

than the frequentist methods. They had higher precision, Sensitivity, Speci-

ficity, MCC, and lower MSPE than others. Generally ISIS-SCAD method

suffered from lower precision, sensitivity, and MCC but still had lower mean-

squared prediction error (MSPE) compared with the frequentist approach

ISIS-LASSO.

• When the covariance of the design matrix is autoregressive, ISIS-LASSO

method had higher precision and specificity and mean-squared prediction er-

ror (MSPE) but had lower Sensitivity and MCC than the ISIS-SCAD method.

Again the UDGLM strategy worked better than the frequentist procedures.

• In case of Isotropic covariance of the design matrix, the UDGLM strategy

worked superior than the others. ISIS-LASSO method had higher precision,

Sensitivity, specificity, MCC and mean-squared prediction error (MSPE) com-

pared with the ISIS-SCAD method.

6 Real data analysis

[6] described a generic approach to cancer classification based on gene expression

monitoring by DNA microarrays and applied it to human acute leukemia as a test

case. We applied our method in hpimUGLM to the Golub leukemia data. The

goal of our analysis for these data was to discriminate between two types of acute

leukemia, myeloid (AML) and lymphoblastic (ALL). The design matrix consisted of

gene expression levels produced by cDNA microarrays from bone marrow samples,

and was pre-processed by RMA ( [8]). There are 72 samples and 7129 genes in the

data set.

Following [6], we split the data into training and test sets. The testing data is

from 34 patients with acute leukemia (20 in class ALL and 14 in class AML) and

the training data is from 38 patients with acute leukemia (27 in class ALL and

11 in class AML). The hpimUGLM method restricts size of the largest model by

mn = ( 34
log(7129) )

1
2 = 2.97, then maximum number of variables which could be

selected in the model is two variables.

Table 4 summarizes the results of applying the UDGLM, ISIS-SCAD and ISIS-

LASSO approaches to the real data. Because of having higher precision, Sensitivity,

Specificity, MCC, and lower MSPE and MSE, the UDGLM method worked better

than the frequentist methods. In the first steps of variable selection, it behaved as

similar as the ISIS-SCAD method but following up, it changed one of the selected

variables. Among of the frequentist methods, ISIS-LASSO method had higher sen-

sitivity and MCC but ISIS-SCAD had lower mean-squared prediction error (MSPE)

and mean squared error of success probability (MSE).
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Table 4: The summary statistics to evaluate the performance of variable selection
on the testing set of Golub leukemia data based in three methods UDGLM ,ISIS-
SCAD and ISIS-LASSO.

Precision Sensitivity Specificity MCC MSPE Selected variables MSE(π̂)

UDGLM 1 1 1 1 0.3529 X461 0.06718414

X1744

ISIS-SCAD 1 0.6428571 1 0.7171372 134.5048 X1834 0.1733124

X2020

ISIS-LASSO 1 0.7142857 1 0.7715167 31139.71 X3320 0.1344605

X4847

The comparison between residuals of binary observations and predicted values

in methods is shown in figure 2. As in the comparisons of MSPE and MSE, this

figure shows UDGLM is preferred to ISIS-SCAD and ISIS-LASSO in estimating of

binary observations because of having lower residuals.

7 Conclusion

The purpose of the current study is Bayesian inference with the UDGLM prior spec-

ification over regression coefficients to find MAP estimator and perform variable

selection in ultrahigh-dimensional generalized linear models settings. The model

selection consistency of UDGLM prior is established under mild conditions. The

efficient model search strategy for the increasingly large model space, the Simpli-

fied shotgun stochastic search algorithm with screening (S5), can be used for the

implementation of this approach.

Because the explicit form of the marginal likelihood of the nonlocal priors is not

available, we have used the Laplace approximation throughout the paper. The

Bayesian procedures require numerical optimization to obtain the maximum a pos-

teriori estimate used in the evaluation of the Laplace approximation to the marginal

density of each model visited. However, the procedures used to search the model

space, given the value of a marginal density or objective function, are approximately

equally complex for procedure.

The main conclusion to be drawn from our simulation and real data studies indicate

that the proposed method, UDGLM, because of lower MSPE and MSE compared

to the frequentist methods, has better performance under different configurations

with different data generation mechanisms for variable selection.

A promising avenue for future research is the extension of our proposed method to

the UDGLM prior to perform variable selection in ultrahigh-dimensional general-

ized linear models settings. We used the uniform prior on the model space, It is
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Figure 2: Residual of binary observations and predicted values in three methods
UDGLM, ISIS-SCAD and ISIS-LASSO.

suggested additional directions for future research that the beta-binomial prior can

be used on the model space.
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8 Appendix
Suppose conditions (A1), (A2) hold, then

∑
k: k∈K1

π(k)mk(yn)

π(t)mt(yn)

P−→ 0 as n → ∞.

Proof. Using Taylor’s expansion on the log-likelihood ℓ(βk) around β̂k, which is the MLE of βk, and
the Fisher information matrix I(β0,k) is expectation of the negative Hessian under the model k, we have

ℓ(βk) = ℓ(β̂k) −
1

2
(βk−β̂k)

⊤
I(β0,k)(βk − β̂k) + O(n

−1
)

For β̃k, such that
∥∥∥β̃k−β̂k

∥∥∥
2
≤
∥∥∥βk−β̂k

∥∥∥
2

ℓ(βk) = ℓ(β̂k) −
1

2
(βk−β̂k)

⊤
I(β̃0,k)(βk−β̂k) + O(n

−1
)

, by Condition (A4), for any k ∈ K1 , C1, C2 > 0 and any βk such that

∥βk − β0,k∥2
< C1

√√√√√ |k| max
k : |k|≤mn

λmax

(
X⊤

k
Xk

n

)
log p

n
= C1an

, and ε = C2

√√√√ |mn| max
k : |k|≤mn

λmax

(
X⊤

k
Xk

n

)
log p

n = o(1) with probability 1,

ℓ(βk) − ℓ(β̂k) ≤ −
1 − ε

2
(βk − β̂k)

⊤
I(β0,k)(βk − β̂k) (A1)

For βk such that
∥∥∥βk − β̂k

∥∥∥
2
=

C1an
2 (because of concavity of the log-likelihood of GLMs also for βk

that
∥∥∥βk − β̂k

∥∥∥
2
>

C1an
2 ) and Condition (A3),

ℓ(βk) − ℓ(β̂k) ≤ −
1 − ε

2

∥∥∥βk − β̂k

∥∥∥2
2
λmin(I(β0,k))

≤ −
1 − ε

2

C2
1a

2
n

4
nλ

= −
1 − ε

8
C

2
1 λ |k| max

k : |k|≤mn
λmax

(
X⊤

k Xk

n

)
log p

n→∞

→ −∞

Define, I =
{
βk :

∥∥∥βk − β̂k

∥∥∥
2
<

C1an
2

}
and Ic =

{
βk :

∥∥∥βk − β̂k

∥∥∥
2

≥ C1an
2

}
.

Using the hyper product inverse moment nonlocal prior (hpimUGLM) over coefficients,

π(βk | k) =
(τ)

r|k|
2 |Ik0|−

r
2

(Γ( r
2 ))

|k| × exp
{
−(τ)(β

⊤
k Ik0βk)

−1
} |k|∏

i=1

|βki|−(r+1)

The marginal density of yn under model k, in K1 =

{
k : |k| ≤ mn, t⊂

̸=
k

}
is

mk(yn) =

∫
βk

exp {ℓ(βk)} π(βk | k) dβk

=

∫
βk

exp {ℓ(βk)}
(τ)

r|k|
2 |Ik0|−

r
2

(Γ( r
2 ))

|k| × exp
{
−(τ)(β

⊤
k Ik0βk)

−1
} |k|∏

i=1

|βki|−(r+1)
dβk
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≤(A1)

∫
βk

exp

{
ℓ(β̂k) −

1 − ε

2
(βk − β̂k)

⊤
I(β0,k)(βk − β̂k)

}
(τ)

r|k|
2 |Ik0|−

r
2

(Γ( r
2 ))

|k|

× exp
{
−(τ)(β

⊤
k Ik0βk)

−1
} |k|∏

i=1

|βki|−(r+1)
dβk

= exp
{
ℓ(β̂k)

}
×
{[∫

βk:βk∈I

exp

{
−

1 − ε

2
(βk − β̂k)

⊤
I(β0,k)(βk − β̂k)

}

×
(τ)

r|k|
2 |Ik0|−

r
2

(Γ( r
2 ))

|k| exp
{
−(τ)(β

⊤
k Ik0βk)

−1
} |k|∏

i=1

|βki|−(r+1)
dβk

]

+

[∫
βk:βk∈Ic

exp

{
−

1 − ε

2
(βk − β̂k)

⊤
I(β0,k)(βk − β̂k)

}

×
(τ)

r|k|
2 |Ik0|−

r
2

(Γ( r
2 ))

|k| exp
{
−(τ)(β

⊤
k Ik0βk)

−1
} |k|∏

i=1

|βki|−(r+1)
dβk

]}

= exp
{
ℓ(β̂k)

}
×
{[∫

βk:βk∈I

exp

{
−

1 − ε

2
(βk − β̂k)

⊤
I(β0,k)(βk − β̂k)

}

×
(τ)

r|k|
2 |Ik0|−

r
2

(Γ( r
2 ))

|k| exp
{
−(τ)(β

⊤
k Ik0βk)

−1
} |k|∏

i=1

|βki|−(r+1)
dβk

]

+

[
exp

{
−

1 − ε

8
C

2
1 λ |k| max

k : |k|≤mn
λmax

(
X⊤

k Xk

n

)
log p

}

×
∫
βk:βk∈Ic

(τ)
r|k|
2 |Ik0|−

r
2

(Γ( r
2 ))

|k| exp
{
−(τ)(β

⊤
k Ik0βk)

−1
} |k|∏

i=1

|βki|−(r+1)
dβk

]}

In other hand, from Proof of Corollary 2 in the supplementary material of [11], for any m, m > 4+
(r+1)

2 ,
from the inequality

(
β2

k

τ |Ik0|−1

)− (r+1)
2

exp

(
−

τ

(β⊤
k Ik0βk)

)
=

(
(β⊤

k Ik0βk)

τ

)− (r+1)
2 1∑∞

j=0
1
j!

(
τ

(β⊤
k

Ik0βk)

)j

< r!

(
(β⊤

k Ik0βk)

τ

)m−( r+1
2

)

m ∈ Z
+

Conversely, for some constant c and
∣∣βki

∣∣ > ε for any ε > 0,

(
β2

ki

τ |Ik0|−1

)− (r+1)
2

exp

(
−

τ

(β⊤
k Ik0βk)

)
> c

(
(β⊤

k Ik0βk)

τ

)m−( r+1
2

)

exp

(
−

(β⊤
k Ik0βk)

2τ

)
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Then we have,

mk(yn) < exp
{
ℓ(β̂k)

}
×
{[∫

βk:βk∈I

exp

{
−

1 − ε

2
(βk − β̂k)

⊤
I(β0,k)(βk − β̂k)

}

×
|k|∏
i=1

c

(
(β⊤

ki
Ik0βki

)

τ

)m−( r+1
2

)

exp

(
−

(β⊤
k Ik0βk)

2τ

)
dβk

]

+

[
exp

{
−

1 − ε

8
C

2
1 λ |k| max

k : |k|≤mn
λmax

(
X⊤

k Xk

n

)
log p

}

×
∫
βk:βk∈Ic

(τ)
r|k|
2 |Ik0|−

r
2

(Γ( r
2 ))

|k| exp
{
−(τ)(β

⊤
k Ik0βk)

−1
} |k|∏

i=1

|βki|−(r+1)
dβk

]}

mk(yn) < exp
{
ℓ(β̂k)

}
×
{[∫

βk:βk∈I

exp

{
−

1 − ε

2
(βk − β̂k)

⊤
I(β0,k)(βk − β̂k) −

(β⊤
k Ik0βk)

2τ

}

×
|k|∏
i=1

c

(
(β⊤

ki
Ik0βki

)

τ

)m−( r+1
2

)

dβk

]
(A2)

+

[
exp

{
−

1 − ε

8
C

2
1 λ |k| max

k : |k|≤mn
λmax

(
X⊤

k Xk

n

)
log p

}

×
∫
βk:βk∈Ic

(τ)
r|k|
2 |Ik0|−

r
2

(Γ( r
2 ))

|k| exp
{
−(τ)(β

⊤
k Ik0βk)

−1
} |k|∏

i=1

|βki|−(r+1)
dβk

]}
(A3)

Now, we separately calculate equations (A2) and (A3). Let Hk = (1 − ε)I(β0,k) and β∗
k = (Hk +

Ik0
τ )−1Hkβ̂k, then

(A2) ≤
∫
βk:βk∈I

exp

{
−

1

2
(βk − β

∗
k)

⊤
(Hk +

Ik0

τ
)(βk − β

∗
k)

} |k|∏
i=1

c

(
(β⊤

ki
Ik0βki

)

τ

)(m− (r+1)
2

)

dβ

× exp

{
−

1

2
β̂

⊤
k

(
Hk − Hk(Hk +

Ik0

τ
)
−1

Hk

)
β̂k

}
= (2π)

|k|
2 det(Hk +

Ik0

τ
)
− 1

2 exp

{
−

1

2
β̂

⊤
k

(
Hk − Hk(Hk +

Ik0

τ
)
−1

Hk

)
β̂k

}

× Ek

 |k|∏
i=1

c

(
(β⊤

ki
Ik0βki

)

τ

)(m− (r+1)
2

)


, where Ek denotes the expectation with respect to a multivariate normal distribution with mean β∗
k

and covariance matrix Vk = (Hk +
Ik0
τ )−1. It follows from Lemma 6 in the supplementary material

for [11] that, if t ̸⊂ k and conditions (A1)-(A4) apply, then

P

[
E

(
k∏

i=1

β
2r
ki

)
> q

]
< P

[
T > q

∗]

, then T follows a chi-squared distribution with non-centrality parameter λ = (β⊤
k Ik0βk) and t ∪ k
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Next, note that it follows from Lemma A.3 in the supplementary material of [15], that
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Suppose conditions (A1) - (A4) hold, for any k ∈ K2 = {k : |k| ≤ mn, t ̸= k}, and small c > 0
then, ∑

k: k∈K2

π(k)mk(yn)

π(t)mt(yn)

P−→ 0 as n → ∞.

Proof. Let k∗ = k ∪ t, then k∗ ∈ K1, and suppose βk∗ is the |k∗| − dim ensional vector of βk for k
and zero for t. Then by Taylor’s expansion and Lemmas A.1 and A.3 in [15], for any βk∗ , such that for
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, where Ek denotes the expectation with respect to a multivariate normal distribution with mean β∗
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and covariance matrix Vk = (Hk +
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Define the set H∗ = {βk :
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We separately calculate (A7) and (A8), first in (A7)

det
{
(1 + ε)n−1I(β0,t) + (n−1τ−1)Ik0

} 1
2

det {(1 − ε)λI(β0,k) + (n−1τ−1)Ik0}
1
2

≤

{
(1 + ε) |t| max

t : |t|≤mn
λmax

(
X⊤

t Xt
n

)
log p+ (n−1τ−1)

} |t|
2

{(1 − ε)λ+ (n−1τ−1)}
|k|
2

=


(1 + ε) |t| max

t : |t|≤mn
λmax

(
X⊤

t Xt
n

)
log p+ (n−1τ−1)

(1 − ε)λ+ (n−1τ−1)


|t|
2 {

1

(1 − ε)λ+ (n−1τ−1)

} (|k|−|t|)
2

≤ exp

{
C |t| log

(
|t| max

t : |t|≤mn
λmax

(
X⊤

t Xt

n

)
log p

)}{
1

(1 − ε)λ+ (n−1τ−1)

} (|k|−|t|)
2

Also, for γ∗ = (1 + δ)(1 + 2w) log p, we have

ℓ(β̂k∗ ) − ℓ(β̂t) ≤ γ∗(
∣∣k∗∣∣− |t|) log p = γ∗

(∣∣∣∣ tk
∣∣∣∣) log p+ γ∗(|k| − |t|) log p

Then, with Condition (A1), in part of (A7),

(
Cτ

r
2

)|k|−|t| det
{
(1 + ε)n−1I(β0,t) + (n−1τ−1)Ik0

} 1
2

det {(1 − ε)λI(β0,k) + (n−1τ−1)Ik0}
1
2

(
log p

|k|
)
r|k|

(log p)
r|t|

=
(
Cτ

r
2

)|k|−|t|
{

1

(1 − ε)λ+ (n−1τ−1)

} (|k|−|t|)
2

p
γ∗(|k|−|t|) × exp

{
r |k | log

(
log p

|k|

)
+ r |t | log (log p)

}
≤
(
C

(|k|−|t|)
(log p)

r
2
(|k|−|t|)

)
p
γ∗(|k|−|t|)

= o(1).



88 Journal of Mathematics and Modeling in Finance

In other hand, with Condition (A4), in other part of (A7)
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Then (A7) is bounded by,
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It is easy to see that the maximum (A8) is also of order o(1) with probability tending to 1 by the
similar arguments. Since we have (A2) in the proof of No super set theorem, it completes the proof.

Proof of “Strong selection consistency Theorem”. By putting two summations of “No super
set theorem”and “Posterior ratio consistency theorem”together in

π(t | yn) =
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, and the use of Slutsky’s theorem leads to
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P−→ 1 , as n → ∞

The claimed result follows because the Laplace method is valid with error rate O(n−1).
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