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Abstract:
Abstract:
The paper considers the problem of estimation of the parameters in finite mixture
models.In this article, a new method is proposed for of estimation of the parameters
in finite mixture models. Traditionally, the parameter estimation in finite mixture
models is performed from a likelihood point of view by exploiting the expectation
maximization (EM) method and the Least Square Principle. Ridge regression is an
alternative to the ordinary least squares method when multicollinearity presents
among the regressor variables in multiple linear regression analysis. Accordingly,
we propose a new shrinkage ridge estimation approach. Based on this principle, we
propose an iterative algorithm called Ridge-Iterative Weighted least Square (RI-
WLS) to estimate the parameters. Monte-Carlo simulation studies are conducted
to appraise the performance of our method. The results show that the Proposed
estimator perform better than the IWLS method.
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1 Introduction

Shrinkage estimation has become a important method for data modeling and has

been considered by many researchers in various fields. Shrinkage estimation strat-

egy attempts to incorporate prior uncertain information in the estimation procedure.

Prior information may be available on some of the parameters, which are usually

incorporated in the model as a constraint, resulted to have restricted models. Such

prior information may be useful in increasing the performance of estimators. These

are for example Saleh and Kibria (2011), Siray et al. (2015) and later Asar (2017).

Finite mixture models (FMM) provide a flexible tool for modelling data when they

are coming from more than one population. Applications of mixture distributions

can be found in various fields of statistical applications such as biology, genetics,
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engineering, marketing, and so on. In the field FMM, mixture of linear regressions

has been studied widely, especially when no information about membership of the

points assigned to each line was available. These models were introduced by Quandt

and Ramsey (1978) as a very general form of switching regression. They used a

technique based on moment generating functions to estimate the parameters. How-

ever, it has mainly been studied from a likelihood point of view. De Veaux (1989)

developed an expectation maximization (EM) approach to fit the two regression

situations. Jacobs, Jordan, Nolan, and Hinton (1991) and also Jiang and Tanner

(1999) in machine learning programs used finite mixture of regression models. Jones

and McLachlan (1992) applied mixtures of regressions to analyze real data and used

the EM algorithm to fit these models. McLaughlin and Peel (2000) conducted a

comprehensive review of finite mixture models in their book. Hawkins, Allen, and

Stromberg (2001) used the score equation to estimate the number of components in

a mixture of linear regression models. Zhou and Zhang (2004) developed asymptotic

theory for maximum likelihood estimators in mixture regression models. Dias and

Wedel (2004) have compared EM and Stochastic EM algorithms to estimate the pa-

rameters of Gaussian mixture model. Faria and Soromenho (2010, 2012) compared

EM, SEM, and Classication EM to compute the maximum likelihood estimates of

the parameters. Xu et al. (2012) proposed mix-GEE estimator based on a finite

mixture model for the working correlation to analyze longitudinal data. Schep-

ers (2015) and Eskandari and Ormoz (2016) improved random-starting method for

the EM algorithm in finite mixture regression models. In 2020, Rezazadeh et al.

developed an algorithm named Iterative Weighted least Square (IWLS) based on

Generalized Estimating Equations concept to estimate the parameters.

In this paper, we propose RIWLS estimator. We show that our estimators in

finite mixture regression models outperform the Iterative Weighted least Square

(IWLS) estimators. We conduct a detailed Monte Carlo simulation to study the

performance of the estimators in terms of their GMSE. The article is organized

as follows: In Section 2, We discuss the finite mixture regression models and the

IWLS method for estimating model parameters. In Section 3, we introduce shrink-

age ridge of the parameters. In Section 4, we conduct Monte Carlo simulations to

study the performance of the proposed estimators.

2 Finite Mixture of Linear Regressions

Let y1, . . . , yn be random samples of size n from a population with density f(yi).

The finite mixture of linear regression model for the i-th subject is given as follows:
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yi =


xx′iββ1 + ϵi1 ;with probability π1

xx′iββ2 + ϵi2 ;with probability π2
...

xx′iββK + ϵiK ;with probability πK

Where yi is the value of the response variable in the i-th observation (i = 1, . . . , n);

xx′i denotes the transpose of the (p+1)-dimensional vector of independent variables

for the i-th observation, ββj (j = 1, ...,K) denotes the (p+1)-dimensional vector of

parameters for the j-th component, πj ’s are the mixing probabilities (0 < πj < 1,

for all j = 1, . . . ,K and
∑K
j=1 πj = 1). Finally, ϵij are the random errors with the

following assumptions:

(i) E (ϵij) = 0 ; i = 1, . . . , n ; j = 1, . . . ,K

(ii) V ar (ϵij) = σ2
ij ; i = 1, . . . , n ; j = 1, . . . ,K

(iii) Cov (ϵij , ϵlr) = 0 ; i, l = 1, . . . , n ; j, r = 1, . . . ,K ; j ̸= r

Thus, the expectation on yi given xi can be expressed as:

E (yi|xx) =
K∑
j=1

πjE
(
xx′iββj + ϵij

)
(1)

By applying the above assumptions, we can rewrite (1) as follows:

E (yi|xxi) =
K∑
j=1

πj
(
xx′iββj

)
= xx∗

′

i Pββ = xx∗
′

i B ππ ; i = 1, . . . , n (2)

where

xx∗
′

i = (xx′i, xx
′
i, . . . , xx

′
i)1×(p+1)K

P =


π1Ip+1 0 . . . 0

0 π2Ip+1 . . . 0
...

...
. . .

...

0 0 . . . πKIp+1


(p+1)K×(p+1)K

ββ′ =
(
ββ′
1, . . . , ββ

′
K

)
1×(p+1)K

ππ′ = (π1, . . . , πk)1×K

and B define as below:

B =


ββ1 0 . . . 0

0 ββ2 . . . 0
...

...
. . .

...

0 0 . . . ββK


(p+1)K×K
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It is good to mention that estimation of these parameters will be explained in

section 2.2. Equivalently, (2) can be expressed in the matrix form as follows:

E (Y |X∗) = X∗Pββ = X∗Bππ (3)

where X∗′
= (xx∗1, . . . , xx

∗
n)(p+1)K×n is not a full column rank matrix. which is based

on the idea of H. Rezazadeh et al. (2020).

2.1 Identifiability of Finite Mixture Model

The term identifiability is used for the family of distributions in which distinct dis-

tributions are determined with different parameters. Thus, it is a major concern of

finite mixture models. We quote DasGupta (2008) where he mentioned ”Mixture

models are riddled with difficulties such as nonidentifiability”.

Teicher (1961, 1963) has begun research about the parameter identifiability for

mixture models that is continued by Yakowitz and Spragins (1968), Hall and Zhou

(2003), Hall et al. (2005), Elmore et al. (2005), Allman et al.(2009) and others. In

the location mixture model, study the behavior of mixing distributions is a natu-

ral approach to address parameter estimation rates (Carroll and Hall, 1988,Zhang,

1990, Fan, 1991). For a class of over-fitted finite mixtures, Chen (1995) proposed

a notion of strong identifiability and established the convergence of the mixing dis-

tribution. However, his work limited to models with a single scalar parameter and

Nguyen (2013) removed this limit for a number of finite and infinite mixture models

with multi-dimensional parameters by establishing rates of convergence of mixing

distributions. Over-fitted mixtures in a Bayesian estimation situation studied by

Rousseau and Mengersen (2011). In this paper we suppose identifiability for finite

mixture models and continue the approach for these type of models.

2.2 Estimation of Paramters by Iterative Weighted Least
Square Approach

Given a set of independent observations y1, y2, . . . , yn, corresponding to values

xx1, xx2, . . . , xxn of the predictor x, the complete parameter set of the finite mixture

regression model is θθ′ = (π1, . . . , πK , ββ1, . . . , ββK). The normal equations corre-

sponding to the model (3) can be derived by least square functions:

if ππ is fixed : Q (θθ) = (YY −X∗Pββ)
′
(YY −X∗Pββ) (4)

if ββ is fixed : Q (θθ) = (YY −X∗Bππ)
′
(YY −X∗Bππ) (5)

We can estimate vector of parameters θθ by solving equations (4) and (5) iteratively.

Since the variance of the errors is not fixed in this model, we should use IWLS

approach to obtain θ̂θ. Let us define ϵi =
∑K
j=1 πjϵij . If we apply the three ran-

dom error assumptions explained in section 2, by defining ϵϵ = (ϵ1, . . . , ϵn), we can
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conclude that :

E(ϵϵ) = 00

and

V ar(ϵϵ) = V

In this paper, we assume V is positive definite matrices. If we consider a transfor-

mation based on V −1, the model (3) has become to:

E(V − 1
2YY |X∗) = V − 1

2X∗Pββ = V − 1
2X∗Bππ

By defining YY w = V − 1
2YY , X∗

w = V − 1
2X

∗
, and ϵϵw = V − 1

2 ϵϵ, we can rewrite this

equation as follows:

E(YY w|X∗
w) = X∗

wPββ = X∗
wBππ

The Weighted Least Square Principle minimizes the following two objective func-

tions iteratively:

if ππ is fixed : Qw (θθ) = (YY w −X∗
wPββ)

′
(YY w −X∗

wPββ) (6)

if ββ is fixed : Qw (θθ) = (YY w −X∗
wBππ)

′
(YY w −X∗

wBππ) (7)

By taking derivative with respect to vectors ββ and ππ we have normal equations as

below:

β̂βIWLS = G1P
′X∗′

w YY w (8)

and

π̂π = G2B
′X∗′

w YY w (9)

Where G1 and G2 are generalized inverse of P ′X∗′

wX
∗
wP and B′X∗′

wX
∗
wB respec-

tively. In this paper, in the IWLS algorithm, instead of β̂βIWLS in equation (6), we

can use the ββ penalty estimate by minimizing the following objective function.

argmin
ββ

∥Y −X∗
wPββ∥

2
+

K∑
l=1

πl


p+1∑
j=1

pnl(βlj)


 (10)

Where pnl(βlj) s are non-negative and non-decreasing functions in |βlj |. Here we

used pnl(βlj) = γnl
p+1∑
j=1

β2
lj penalty function.
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3 Ridge Regression Estimators

The multicollinearity phenomenon is one of the most serious cases Which we may

encounter in a multiple regression model. The existence of multicollinearity may

lead to the variance estimators for the regression coefficients be sensitive to small

changes in the data and may often be enlarged. Because rank(X ′X) ≤ rank(X),

the X ′X matrix will be singular if there is an exact linear dependence in column

vectors of X. These results can be extended to the finite mixture regression models

in a straightforward way. Because rank(X∗
w
′X∗

w) ≤ rank(X∗
w), the collinearity in

X∗
w may cause problems in the IWLS estimation as defined by equation (8). A pop-

ular numerical method to combat near multicollinearity is that of ridge regression

estimator (RRE) due to Hoerl and Kennard (1970). Based on arguments similar

to those that led to the ridge estimators in linear regression, we proposed the RRE

in the finite mixture regression models as following:

β̂βRIWLS = argmin
ββ

((YY w −X∗
wPββ)

′(YY w −X∗
wPββ)+

K∑
l=1

πlγnl

p+1∑
j=1

β2
lj)

= (P
′
X∗′

wX
∗
wP + ΓP )

−1
P

′
X∗′

w YY w = G3P
′X∗′

w YY w (11)

where γnl > 0 is the ridge parameter, G3 = (P
′
X∗′

wX
∗
wP + ΓP )

−1
and

Γ =


γ1I(p+1) 0 · · · 0

...
...

. . .
...

0 0 · · · γKI(p+1)


(p+1)K×(p+1)K

3.1 Consequence of Estimations

In this subsection, we calculate the expected value, variance, estimate of expected

value of response and mean of squared error (MSE).

We obtain expected value of β̂β as follows:

E(β̂βRIWLS) = G3P
′X∗′

wX
∗
wPββ = H1ββ (12)

where H1 = G3P
′X∗′

wX
∗
wP . Hence β̂βRIWLS is an biased estimator of ββ.

Also variance matrix is:

V ar(β̂βRIWLS) = V ar(G3P
′X∗′

w YY w)

= G3P
′X∗′

w ΣX∗
wPG

′
3 (13)

where Σ is variance-covariance matrix of YY w.

By using the estimation of θ̂θ, vector of the estimated expected values Ê(YY w) corre-
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sponding to the vector of observations YY wis ,

Ê(YY w) ≡ ŶY w = X∗
wP̂ β̂β

= X∗
wP̂G3P̂ ′X∗′

w YY w (14)

The mean of square error of the Ridge estimator is as follow,

MSE(β̂βRIWLS) = E((β̂βRIWLS − β̂β)′Φ−1(β̂βRIWLS − β̂β))

= tr(H ′Φ−1H) + ββ′(P ′X∗′

wH
′Φ−1HX∗

wP

−P ′X∗′

wH
′Φ−1 − Φ−1HX∗

wP +Φ−1)ββ (15)

where Φ is var(β̂β) and H = (P ′X∗′

wX
∗
wP + ΓP )

−1
P ′X∗′

w .

3.2 Asymptotic Consistency of Ridge Estimates

For our purpose, we must have the following regular conditions.

A1) Cn = 1
n

n∑
i=1

xix
′
i → C , n → ∞

where C is a finite and positive definite matrix.

A2)
1
n max
1≤i≤n

x′ixi → 0 , n → ∞

We consider the asymptotic behavior of Ridge’s objective function by first defining

a random variable Zn(ϕ):

Zn(ϕ) =
1

n
(∥YY w −X∗

wPϕϕ∥+
K∑
l=1

πlγnl

p+1∑
j=1

ϕ2lj) (16)

Which, it is minimized at ϕ = β̂n. The following theorem tells us that ϕ = β̂n is a

consistent estimator of β provided that γnl = o(n).

Theorem : If C is nonsingular and γnl

n → γ0l ≥ 0 then argmin(Zn(ϕ))
p→ argmin(Z(ϕ))

where

Z(ϕ) =

k∑
i=1

π2
l σ

2
l + (P (ϕ− β))

′
C(P (ϕ− β))+

K∑
l=1

πlγ0l

p+1∑
j=1

ϕ2lj) (17)

Thus, if γnl = o(n) then γ0l = 0 and argmin(Z(ϕ)) = β so that β̂n is consistent.

Proof : We will show that Zn(ϕ) defined above, converges in probability to Z(ϕ).
The result will follow by applying established previous results from Pollard. To
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show convergence of Zn:

Zn(ϕ) =
1

n
(YY w −X∗

wPϕϕ)′(YY w −X∗
wPϕϕ)+

1

n

K∑
l=1

πlγnl

p+1∑
j=1

ϕ2
lj

=
1

n

n∑
i=1

[
K∑
l=1

πl(x
′
iβl + εil)−

K∑
l=1

πlx
′
iϕl

]2
+

1

n

K∑
l=1

πlγnl

p+1∑
j=1

ϕ2
lj

=
1

n


n∑

i=1

(
K∑
l=1

πlεil

)2

− 2

n∑
i=1

(
K∑
l=1

πlεil

)(
K∑
l=1

πlx
′
i(ϕl − βl)

)
+

n∑
i=1

(
K∑
l=1

πlx
′
i(ϕl − βl)

)2


+
1

n

K∑
l=1

πlγnl

p+1∑
j=1

ϕ2
lj (18)

Assuming that εi =
K∑
l=1

πlεil will have:

E (εi) = E

(
K∑
l=1

πlεil

)
= 0 (19)

var (εi) = var

(
K∑
l=1

πlεil

)
=

K∑
l=1

π2
l σ

2
l (20)

Now, we let n → ∞ and note the following facts:

1

n

n∑
i=1

ε2i
p→

K∑
l=1

π2
l σ

2
l (by the law of large numbers) (21)

Similarly since E (εix
′
i) = 0, it can be concluded

1

n

n∑
i=1

(
K∑
l=1

πlεil

)(
K∑
l=1

πlx
′
i(ϕl − βl)

)
=

1

n

n∑
i=1

(εi)

(
K∑
l=1

πlx
′
i(ϕl − βl)

)
p→ 0 (22)

Under the regularity conditions (A1) have:

n∑
i=1

(
K∑
l=1

πlx
′
i(ϕl − βl)

)2

= (P (ϕ− β))′
n∑

i=1

xix
′
i (P (ϕ− β)) → (P (ϕ− β))′C (P (ϕ− β))

(23)

On the other hand, according to the assumption γnl

n → γ0l = 0, therefore

1

n

K∑
l=1

πlγnl

p+1∑
j=1

ϕ2lj →
K∑
l=1

πlγ0l

p+1∑
j=1

ϕ2lj (24)

so that

Zn(ϕ) →
K∑
i=1

π2
l σ

2
l + (P (ϕ− β))

′
(P (ϕ− β))+

K∑
l=1

πlγ0l

p+1∑
j=1

ϕ2lj) = Z(ϕ) (25)
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The pointwise convergence of Zn(ϕ) to Z(ϕ) allows us to conclude that

sup
ϕ∈E

|Zn(ϕ)− Z(ϕ)| p→ 0

, for any compact set E by Pollard. It follows that argmin (Zn(ϕ))
p→ argmin (Z(ϕ)),

This tells us that the ridge estimates are consistent.

4 Simulation Studies

We perform Monte Carlo simulations to test the performance of the finite sample

of our proposed estimators. Computer code for generating the simulated data

and manipulating it is written in R language. As considered in McDonald and

Galarneau (1975), the explanatory variables are generated by

Xij =
√
1− ρ2zij + ρzip, i = 1, 2, ..., n, j = 1, 2, ..., p

where zij are independent standard normal pseudo random numbers and ρ is the

correlation between any two predictors. In this study, to investigate the effects of

different degrees of collinearity on the estimators, we consider ρ = 0.50, 0.75 and

0.99 and p = 2 and 5.

According to p+1 and K, the ββ vector size dimension will be as Table 1. To

simulate the response variable, we generate a random permutation of 5 normal

random variables with the following distributions: normal(−7, 1), normal(−3, 2),

normal(0, 1), normal(2, 1) and normal(5, 3). See the density of y in Figure 1.

Figure 1: The density of y.

The behavior of GMSE for first 500 iteration when K = 4 is shown in Figure

2. Table 2 shows the estimation of parameters for K = 2, 3, 4, n = 500, p = 8 and
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Figure 2: Mean value of the GMSE in 10000 iteration for K = 2, . . . , 10.

Figure 3: GMSE for 500 iteration in the case K = 4

ρ = 0.50.

In step 0 in the IWLS algorithm, suppose that (π
(0)
1 , . . . , π

(0)
K ) are generated

from the uniform (0,1) distribution and calculate P (0). Continue IWLS algorithm

by calculating β̂β
(0)

from equation (11) and go to step 1. Now recalculate π̂π by the

estimated β̂β
(0)

and repeat this step until the following condition is met:

∥ β̂βt+1 −
¯̂
ββ1:t ∥< 0.001

We estimate the parameters of k = 2,3,,10 using the IWLS and RIWLS methods.

To evaluate our method, we performed a comparative study between our proposed

method and IWLS method. In this comparison, we considered GMSE.
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Table 1: The parametric size dimension for p = 2 and 5 and K = 2, . . . , 10.

K 2 3 4 5 6 7 8 9 10

p
2 6 9 12 15 18 21 24 27 30

5 12 18 24 30 36 42 48 54 60

Table 2: Estimate of parameters for simulated data in the case K = 2, 3, 4.

K π̂π β̂βRIWLS SSE(β̂βRIWLS) GMSE var(GMSE)

2

(
0.302

0.698

)



0.101

−0.871

0.223

−0.012

0.462

1.055

0.191

−0.408

−0.137

0.233

−2.017

0.518

−0.027

1.071

2.443

0.442

−0.945

−0.316



6153.408 0.282 0.0248

3

0.538

0.021

0.440

 (
I
)

6153.408 0.227 0.0227

To assess the performance of our estimations β̂β, we used the following algorithm to

obtain generalized mean square error (GMSE).

step1. Determine ŶY w from equation (14) and generate a vector of observation

from the normal distribution with mean ŶY w and variance I.

step2. Estimate β̂βm by using the obtained vector of observations in step1 as the

response variable in equation (11).

step3. Define GMSE as follows:

GMSE(β̂βm) = (β̂βm − β̂β)′Φ−1(β̂βm − β̂β)
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We continue the algorithm for 10000 iterations and get a GMSE on each iteration.

As expected, the lower the mean of GMSE is, the more accurate our parameter

estimation would be. To obtain the best value for K, we applied the GMSE al-

gorithm with 10000 iterations for the range of K = 2, . . . , 10, n = 500, p = 8

and ρ = 0.50. The results are presented in Figure 2 where mean of GMSE after

removing outliers is illustrated versus K.

where

I = c(0.215,−1.859, 0.477,−0.025, 0.987, 2.252, 0.407,−0.871,−0.291, 0.009,−0.074, 0.019,−0.001,

0.039, 0.090, 0.016,−0.035,−0.012, 0.176,−1.519, 0.390,−0.020, 0.807, 1.841, 0.333,−0.712,−0.238).

To evaluate our method, we performed a comparative study between our proposed

method and IWLS method. In this comparison, we considered GMSE issue. The

comparison is performed for K = 4 and for different values of n, p and ρ. The re-

sults are presented in Table 3. As can be seen, our method outperforms the IWLS

method.

5 Discussion

In this paper, we have combined the idea of the Iterative Weighted least Square

(IWLS) and the ridge shrinkage estimators, for estimation parameters of finite

mixture model. We studied the asymptotic performance of the proposed estimator.

A Monte Carlo simulation study conducted to compare the estimators usingGMSE

for various configurations of parameter size (p), degree of multicollinearity (ρ) and

different sample size (n). Simulation results show that the RIWLS outperforms

IWLS.
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Table 2. Continued.

K π̂π β̂βRIWLS SSE(β̂βRIWLS) GMSE var(GMSE)

4


0.118

0.171

0.130

0.581





0.057

−0.496

0.127

−0.007

0.264

0.601

0.109

−0.233

−0.078

0.083

−0.717

0.184

−0.009

0.381

0.869

0.157

−0.336

−0.112

0.063

−0.544

0.140

−0.007

0.289

0.659

0.119

−0.255

−0.085

0.283

−2.441

0.627

−0.032

1.297

2.958

0.535

−1.144

−0.383



6153.408 0.279 0.0240



Table 3: Comparison of the proposed method and IWLS for K=4

ρ method

p=2 p=5

n n

100 200 500 100 200 500

0.50
RIWLS 0.063 0.025 0.013 0.271 0.202 0.069

IWLS 0.071 0.027 0.014 0.285 0.222 0.076

0.75
RIWLS 0.033 0.047 0.0117 0.216 0.184 0.092

IWLS 0.037 0.048 0.0129 0.245 0.187 0.100

0.99
RIWLS 0.103 0.068 0.034 0.117 0.147 0.066

IWLS 0.129 0.076 0.035 0.118 0.158 0.068


