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Abstract:
Cardinality constrained portfolio optimization problems are widely used
portfolio optimization models which incorporate restriction on the number
of assets in the portfolio. Being mixed-integer programming problems make
them NP-hard thus computationally challenging, specially for large number
of assets. In this paper, we consider cardinality constrained mean-variance
(CCMV) and cardinality constrained mean-CVaR (CCMCVaR) models and
propose a hybrid algorithm to solve them. At first, it solves the relaxed
model by replacing L0-norm, which bounds the number of assets, by L1-
norm. Then it removes those assets that do not significantly contribute on
the portfolio and apply the original CCMV or CCMCVaR model to the
remaining subset of assets. To deal with the large number of scenarios in
the CCMCVaR model, conditional scenario reduction technique is applied.
Computational experiments on 3 large data sets show that the proposed
approach is competitive with the original models from risk, return and
Sharpe ratio perspective while being significantly faster.
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1 Introduction

Portfolio selection is an important strategy in financial markets, which plans to

choose a the best set of assets from the portfolio. Harry Markowitz proposed the

well-known Mean-Variance (MV) model taking into account a trade-off between risk

and return [17]. However, it lacks of not considering various real-world limitations.

Later, his model was enhanced to include more realistic features like multi-period
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optimization [16], transaction costs [18], cardinality constraint which restricts the

number of assets in the portfolio and lower and upper bounds on the proportion of

each asset in the portfolio [3], and option [9,10].

Incorporating cardinality constraints in a portfolio optimization model, makes it

an NP-hard problem and thus challenging. To deal with this issue, several solution

methods are examined in the literature such as exact, approximate, and heuristic

methods. Exact methods such as interior-point methods, guarantee optimal solu-

tions in finite running time while may fail to compute them for large dimension [6].

Relaxation methods are approximate methods that provide solutions of compro-

mised quality in reasonable time. In the sequel we review some approaches that

are used to deal with the cardinality constraints in the MV and mean-CVaR models

that are the models dealt in this paper.

Shaw et al. [21] applied Lagrangian relaxation to find lower bounds for Cardinal-

ity Constrained MV (CCMV) model. Xie et al. [23] used a randomized algorithm

to obtain good feasible solutions for the CCMV model. Bertsimas and Shioda, [2]

considered subset selection problems in regression and portfolio selection in asset

management for CCMV portfolio optimization problem and proposed branch-and-

bound algorithms that take advantage of the special structure of this problem. In [4]

the authors constructed convex relaxations for the CCMV portfolio optimization

model via a new Lagrangian decomposition scheme and reduced its dual problem to

a second-order cone programming problem. It gives better bound than the contin-

uous relaxation of the standard mixed integer quadratically constrained quadratic

program reformulation. Ramshe et al. [19] proposed a firefly algorithm to solve

the CCMV portfolio optimization problem. They compared the performance of

this method with some other available techniques such as Genetic algorithm, Simu-

lated Annealing, Tabu Search, and Particle Swarm Optimization. Recently, Leung

and Wang [14] presented a collaborative neurodynamic optimization approach for

CCMV model. They scalarized the expected return and risk as a weighted Cheby-

shev function. Also, Leung et al. [15] applied a two-timescale duplex neurodynamic

approach for solving the CCMV portfolio optimization model and used particle

swarm optimization to avoid local solutions. Also, most recently Zheng et al. [24]

presented a new metaheuristic approach based on the Mayfly algorithm to solve the

CCMV portfolio optimization problem. Their proposed algorithm includes a new

approach to handle cardinality constraint, a new local search strategy and changes

to the crossover operator. They performed comparison using five commonly used

performance metrics.

In [25], the authors used continuous-relaxation-based heuristics to solve cardinal-

ity constraint mean-CVaR (CCMCVaR) model. The l1 based approximation of the

cardinality constraint are applied in [27]. Zhang et al. [28] proposed a new approach

for CCMCVaR optimization model, using a relaxation formulation. They found

feasible portfolios that are nearly as efficient as their non-cardinality constrained

counterparts. Kobayashi et al. [13] reformulated the CCMCVaR portfolio optimiza-
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tion problem as a bilevel optimization problem and then developed a cutting-plane

algorithm for solving the upper-level problem. Later, Zhao et al. [29] proposed an

improved hybrid heuristic method for CCMCVaR optimization model.

Most recently, Dhingra et al. [5] proposed using L1 or L2-norm constraints in-

stead of the cardinality constraints and reported promising numerical results by

applying cross-validation to find appropriate upper bounds for the new norm con-

straints. In this paper, first we propose to solve the l1-based relaxation of the l0
constraint in the CCMV and CCMCVaR models. Then we remove those assets

that do not significantly contribute in the portfolio. After that we solve the orig-

inal models with the remaining assets, namely CCMV and CCMCVaR with less

0-1 variables. To deal with large number of scenarios in the CCMCVaR, we take

advantage of the conditional scenario reduction (CSR) technique in [26] and [12].

Experiments on 3 large datasets show that the proposed approach gives comparable

risks, returns, and Sharpe ratios compared to the original CCMV and CCMCVaR

models that are solved directly by CVX-MOSEK.

The rest of the paper is organized as follows. In Section 2, we briefly review

the CCMV model and then present a hybrid approach to solve it. In Section 3, we

present the CCMVaR model, the CSR technique and the hybrid solution approach.

Computational experiments are reported in Section 4 to show the efficiency of the

hybrid approach to the direct one.

2 A Hybrid approach for the CCMV model

The CCMV model is as follows:

min
x

λ(xTΣx)− (1− λ)(rTx−
N∑
i=1

βi|xi − x0i |)

s.t. 1Tx = 1, (1)

||x||0 ≤ K,

ε ≤ x ≤ δ, i = 1, ..., N,

where Σ ∈ Rn×n is the covariance matrix, r is the vector of returns, 1 denotes the

vector of all ones in Rn, λ ∈ [0, 1], ε and δ denote the vectors of lower and upper

bounds of the assets, respectively and K stands for the desired number of assets

in the portfolio. When εi < 0 then short selling is allowed, which is a technique

used by investors to profit from the decline in value of an asset [11]. The term

βi|xi − x0i | in the objective function is the transaction costs for each asset i where

x0i is the proportion of the weight invested in asset i in the given portfolio [22].

Using 0-1 variables, the above problem can be rewritten as the following mixed-
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integer quadratic program form:

min
x,z

λ(xTΣx)− (1− λ)(rTx−
N∑
i=1

βi|xi − x0i |)

s.t. 1Tx = 1, (2)

1T z ≤ K,

εizi ≤ xi ≤ δizi, i = 1, ..., N,

zi ∈ {0, 1}, i = 1, ..., N.

As known, solving model (2) for large datasets is challenging. Thus to deal with

this issue, here we propose to solve the following problem instead of (2):

min
x,z

λ(xTΣx)− (1− λ)(rTx−
N∑
i=1

βi|xi − x0i |)

s.t. 1Tx = 1, (3)

||x||1 ≤ UB,

ε ≤ x ≤ δ,

Lemma 2.1. If UB = K × maxi=1,··· ,N (|εi|, δi), then model (3) is a relaxation of

(2).

Proof. For UB = K × maxi=1,··· ,N (|εi|, δi), any feasible solution of (2) is also

feasible for (3), thus (3) is a relaxation of (2).

The relaxed model (3) is a convex quadratic program that can be solved effi-

ciently even for large number of assets. After solving model (3), we solve CCMV

model (2) with those assets contributing significantly in the portfolio, namely

CCMV model with less 0-1 variables. This process is outlined in the algorithm

below.

Algorithm 1

Input. ϵ, a small positive constant, K the desired number of assets and I =

{1, 2, . . . N};
Step 1. Solve (3) and let x∗ be the optimal solution of it. Set J = {i ∈ I| |x∗i | ≥ ϵ}.
If card(J ) ≤ K, then stop; x∗ is also optimal for (2). Otherwise go to Step 2.

Step 2. Solve (2) with variables whose indices are in J and report its solution as

approximate optimal solution of (1).

Remark 2.2. It is worth noting that one may apply cross-validation as in [5] to

find appropriate bound UB. However, for large datasets it needs to solve several

large-scale quadratic program which is time consuming.

Remark 2.3. It is worth noting that when short selling is not allowed in model (1),

in the relaxed problem (3) when UB ≥ 1 the constraint ||x||1 ≤ UB is redundant.



Paper 7: An L1 then L0 approach to the cardinality constrained 101

3 A Hybrid approach for the CCMCVaR model

The CCMCVaR model is as follows:

min
x,t,γ

λ

(
γ +

1T t

(1− α)m

)
− (1− λ)rTx

s.t. tj ≥ −
N∑
i=1

xiy
j
i − γ, j = 1, . . . ,m,

1Tx = 1, (4)

||x||0 <= K,

ε ≤ x ≤ δ,

rixi ≥ 0, i = 1, ..., N,

tj ≥ 0, j = 1, . . . ,m,

where m is the total number of scenarios which is usually a large number. Similar

to the CCMV model, using 0-1 variables, the above problem can be rewritten as

the following mixed-integer linear programming form:

min
x,t,γ

λ

(
γ +

1T t

(1− α)m

)
− (1− λ)rTx

s.t. tj ≥ −
N∑
i=1

xiy
j
i − γ, j = 1, . . . ,m,

1Tx = 1, (5)

1T z ≤ K,

εizi ≤ xi ≤ δizi, i = 1, ..., N,

rixi ≥ 0, i = 1, ..., N,

zi ∈ {0, 1}, i = 1, ..., N,

tj ≥ 0, j = 1, . . . ,m.

Solving model (5) for large datasets is challenging. For example, the authors in [8]

proposed a penalty decomposition algorithm for Mean-Variance-CVaR model which

is similar to (5). Here similar to Section 2, we consider the following relaxed version
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of (5):

min
x,t,γ

λ

(
γ +

1T t

(1− α)m

)
− (1− λ)rTx

s.t. tj ≥ −
N∑
i=1

xiy
j
i − γ, j = 1, . . . ,m,

1Tx = 1, (6)

||x||1 ≤ UB,

εi ≤ xi ≤ δi, i = 1, ..., N,

rixi ≥ 0, i = 1, ..., N,

tj ≥ 0, j = 1, . . . ,m,

where UB = K ×maxi=1,··· ,N (|εi|, δi). Model (6) is a linear program, however, in

the case of large number of scenarios, the hybrid approach discussed in Section 2

might not be efficient. Thus we further apply the CSR technique to reduce the

number of scenarios that is briefly illustrated in the next subsection.

3.1 The CSR technique

Denote the original set of scenarios as ζs = (ζs1 , ..., ζ
s
N ) with their probability values

Ps =
1

m
, s = 1, ...,m. For each i ∈ N , define the interval Ii = [ai, bi], where

ai = min
s

{ζsi }, and bi = max
s

{ζsi }.

Then each Ii is partitioned into C subintervals Ie, e = 1, ..., C such that Ii =
⋃

e Ie.

After that all scenarios are classified into each subintervals Ie for e = 1, ..., C. Fur-

ther, let cie be the cardinality of each Sie (the set of scenarios into each subintervals

Ie ), then we determine the conditional scenario and its probability value as follows:

ζei =
1

cie

∑
i∈Sie

ζsi ,

pei =
sie
m
.

Also, in the case of the empty classes, we delete them. We apply the CSR technique

before and after relaxing the original model. The hybrid approach for solving

CCMCVaR model can be outlined in Algorithm 2.

Algorithm 2

Input. ϵ, a small positive constant, K the desired number of assets and I =

{1, 2, . . . N};
Step 2. Apply the CSR technique to CCMCVaR model, then solve (6) and let x∗
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be the optimal solution of it. Set J = {i ∈ I| |x∗i | ≥ ϵ}. If card(J ) ≤ K, then

stop; x∗ is also optimal for (5). Otherwise go to Step 2.

Step 2. Solve (5) with variables whose indices are in J and reduced number of

scenarios and report its solution as approximate optimal solution of (4).

4 Computational experiments

In this section, we compare Algorithms 1 and 2 with the original CCMV and

CCMCVaR models from different perspective on 3 datasets of the S&P index when

λ =
1

2
, δi = −εi = 0.2, βi = 0.1µi, i = 1, · · · , N for differentK values. Experiments

are performed in MATLAB R2018a on a 2.50 GHz laptop with 4 GB of RAM, and

CVX-MOSEK is used to solve all optimization models [7].

Computational results for the CCMV are reported in Tables 1-3, where we com-

pare risks, returns, Sharpe ratios. Also, we report number of assets that are chosen

both by the new approach and original model. In these tables, CCMV1, denotes

model (3) with UB = K ×maxi=1,··· ,N (|εi|, δi), and RCCMV1 denotes model (2)

with reduced number of 0-1 variables. Also, in these tables ’card(diff)’ denote the

number of assets for which |xi| > 0.001 (number of assets different from the CCMV

model).

As we see, Algorithm 1 is always faster than the case where we directly solve

CCMV model for all assets. Also, risks, returns and Sharpe ratios are competitive

with those of the CCMV model. From the row ’card(diff)’ in Tables 1-3 we realize

that the final assets chosen by the Algorithm 1 has around 10% difference with

those chosen by the CCMV model. Thus Algorithm 1 is a significantly cheaper

alternative to the CCMV model, specially for large number of assets. These results

are also depicted in Figures 1-3.

We also have compared the case where short selling is not allowed in the CCMV

model. As discussed before, in this case ||x|| ≤ UB for UB ≥ 1 becomes redundant

and relaxed problem reduces to a convex quadratic program with simple linear

and bounds constraints. The corresponding results for K = 20 are summarized in

Table 4. As we see, Algorithm 1 again is a good alternative for directly solving the

CCMV model. They have almost equal risks, returns and Sharpe ratios while the

Algorithm 1 is faster and time difference for the largest dataset is significant.

In the sequel, we evaluate the performance of Algorithm 2 compared to the

original CCMCVaR model with and without applying the CSR technique. We

applied Geometric Brownian Motion ( model in [1] to generate scenarios. The

returns, risks, CVaR values, Sharpe ratios and CPU times are reported in Tables

5-7, for m = 5000 and different K values. The reduced number of scenarios is
m

3
.

As we see, using CSR technique leads to improvement in CPU time but still directly

solving the original model is time consuming. However, by applying Algorithm 2,

we see significant reduction the CPU time while having competitive risks, returns
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and sharp ratios.

Table 1: Comparison of returns, risks and Sharpe ratios for different K values for
226 stocks of S&P index data when λ = 0.5.

β = 0 β ̸= 0

K = 20 K = 40 K = 60 K = 20 K = 40 K = 60

CCMV

Return 0.0356 0.0555 0.0714 0.0317 0.0502 0.0642

Risk 0.0039 0.0063 0.0086 0.0035 0.0066 0.0086

Sharpe ratio 0.5688 0.6983 0.7690 0.5316 0.6153 0.6922

CPU time 2.0007e+03 2.0007e+03 657.6238 2.0007e+03 2.0007e+03 846.2825

CCMV1

Return 0.0368 0.0567 0.0719 0.0329 0.0507 0.0646

Risk 0.0037 0.0063 0.0084 0.0036 0.0061 0.0083

Sharpe ratio 0.6024 0.7118 0.7842 0.5516 0.6498 0.7095

CPU time 1.8960 1.8885 2.0996 1.9153 2.0058 1.9899

Card(diff) 29(10) 51(13) 68(10) 28(9) 53(15) 68(10)

RCCMV1

Return 0.0359 0.0559 0.0714 0.0323 0.0503 0.0642

Risk 0.0041 0.0065 0.0086 0.0040 0.0065 0.0086

Sharpe ratio 0.5638 0.6924 0.7690 0.5085 0.6235 0.6922

CPU time 3.6643 49.0523 13.2116 4.9382 10.5458 14.7442

Card(diff) 20(2) 40(3) 60(0) 20(4) 40(4) 60(0)
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Table 2: Comparison of returns, risks and Sharpe ratios for different K values for
476 stocks of S&P index data when λ = 0.5.

β = 0 β ̸= 0

K = 20 K = 40 K = 60 K = 20 K = 40 K = 60

CCMV

Return 0.0338 0.0512 0.0651 0.0302 0.0458 0.0578

Risk 0.0038 0.0058 0.0078 0.0035 0.0057 0.0074

Sharpe ratio 0.5491 0.6697 0.7368 0.5084 0.6087 0.6722

CPU time 2.0010e+03 2.0010e+03 2.0009e+03 2.0009e+03 2.0010e+03 2.0004e+03

CCMV1

Return 0.0346 0.0519 0.0656 0.0310 0.0465 0.0584

Risk 0.0037 0.0059 0.0077 0.0035 0.0058 0.0074

Sharpe ratio 0.5724 0.6767 0.7476 0.5242 0.6133 0.6785

CPU time 4.0847 3.5166 2.3164 4.4711 5.0882 2.8021

Card(diff) 29(10) 47(9) 74(14) 25(6) 48(8) 75(16)

RCCMV1

Return 0.0338 0.0513 0.0649 0.0301 0.0458 0.0578

Risk 0.0037 0.0059 0.0076 0.0035 0.0057 0.0074

Sharpe ratio 0.5515 0.6657 0.7442 0.5103 0.6087 0.6723

CPU time 8.7368 63.2774 100.7592 12.8560 101.3053 170.7512

Card(diff) 20(2) 40(2) 60(10) 20(2) 40(0) 60(8)
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Table 3: Comparison of returns, risks and Sharpe ratios for different K values for
2196 stocks of S&P index data when λ = 0.5.

β = 0 β ̸= 0

K = 20 K = 40 K = 60 K = 20 K = 40 K = 60

CCMV

Return 0.0659 0.1115 0.1529 0.0592 0.1002 0.1285

Risk 0.0100 0.0140 0.0182 0.0099 0.0140 0.0166

Sharpe ratio 0.6596 0.9414 1.1339 0.5943 0.8486 0.9980

CPU time 1.9968e+03 1.6926e+03 1.9969e+03 1.1871e+03 1.0844e+03 1.0672e+03

CCMV1

Return 0.0669 0.1132 0.1539 0.0597 0.1008 0.1372

Risk 0.0073 0.0115 0.0147 0.0068 0.0104 0.0134

Sharpe ratio 0.7809 1.0562 1.2670 0.7223 0.9903 1.1860

CPU time 26.4050 22.2193 39.7471 24.0941 26.4175 27.6225

Card(diff) 26(7) 47(9) 74(16) 27(8) 48(8) 71(13)

RCCMV1

Return 0.0649 0.1126 0.1522 0.0581 0.0991 0.1368

Risk 0.0089 0.0147 0.0167 0.0086 0.0122 0.0166

Sharpe ratio 0.6879 0.9298 1.1782 0.6270 0.8968 1.0634

CPU time 227.9652 219.2356 221.1326 801.1458 103.8712 101.0022

Card(diff) 20(2) 40(4) 60(5) 20(2) 40(4) 60(5)
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Figure 1: Comparison of returns, risks and Sharpe ratios for different K values for 226 stocks of S&P index.
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Figure 2: Comparison of returns, risks and Sharpe ratios for different K values for 476 stocks of S&P index.
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Figure 3: Comparison of returns, risks and Sharpe ratios for different K values for 2196 stocks of S&P

index.
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Table 4: Comparison of returns, risks and Sharpe ratios when K = 20, λ = 0.5 and
UB = K ×maxi=1,··· ,N (|εi|, δi).

β = 0 β ̸= 0

CCMV RCCMV1 CCMV RCCMV1

N=226

Return 0.0130 0.0130 0.0117 0.0117

Risk 0.0010 0.0010 0.0010 0.0010

Sharpe ratio 0.4072 0.4072 0.3662 0.3668

CPU Time 2.1544 1.6902 2.7311 2.0670

Number of selected assets 6 6 5 6

N=476

Return 0.0160 0.0160 0.0144 0.0144

Risk 0.0018 0.0018 0.0018 0.0018

Sharpe ratio 0.3771 0.3772 0.3408 0.3408

CPU Time 3.1575 2.3756 9.4438 2.8532

Number of selected assets 6 6 6 6

N=2196

Return 0.0214 0.0214 0.0192 0.0192

Risk 0.0022 0.0022 0.0021 0.0021

Sharpe ratio 0.4553 0.4553 0.4192 0.4192

CPU Time 186.5438 12.6267 317.9685 15.4123

Number of selected assets 10 10 11 11
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Table 5: Comparison of returns, risks and Sharpe ratios for different K values for
226 stocks of S&P index data when λ = 0.5.

K = 20 K = 40 K = 60 K = 20 K = 40 K = 60

CVaR

Return 0.0174 0.0127 0.0201 0.0219 0.0217 0.0301

Risk 0.0107 0.0020 0.0043 0.0102 0.0089 0.0109

CVaR -0.0155 -0.0786 -0.1627 CVaR-reduction -0.0175 -0.0806 -0.1811

Sharpe ratio 0.1682 0.2873 0.3056 0.2168 0.2300 0.2884

CPU time 1.2829e+0 986.5185 612.2594 916.9856 439.9648 232.2425

CVaR1

Return 0.0140 0.0118 0.0172 0.0201 0.0206 0.0309

Risk 0.0056 0.0016 0.0029 0.0089 0.0076 0.0093

CVaR -0.0432 -0.1105 -0.1883 CVaR1-reduction -0.0950 -0.1632 -0.2430

Sharpe ratio 0.1871 0.2950 0.3205 0.2131 0.2352 0.3204

CPU time 106.7640 98.8680 92.9625 10.6319 9.7244 10.8735

Card(diff) 93(75) 90(52) 74(36) 45(27) 64(29) 71(17)

RCVaR1

Return 0.0143 0.0136 0.0215 0.0188 0.0113 0.0198

Risk 0.0078 0.0023 0.0049 0.0104 0.0024 0.0051

CVaR -0.0192 -0.0762 -0.1643 RCVaR1-reduction -0.0831 -0.1543 -0.2328

Sharpe ratio 0.1619 0.2836 0.3071 0.1940 0.2329 0.2633

CPU time 333.0634 254.7662 201.4589 121.0670 114.6721 114.2365

Card(diff) 20(7) 40(6) 60(7) 20(10) 40(9) 60(10)
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Table 6: Comparison of returns, risks and Sharpe ratios for different K values for
476 stocks of S&P index data when λ = 0.5.

K = 20 K = 40 K = 60 K = 20 K = 40 K = 60

CVaR

Return 0.0048 0.0078 0.0121 0.0177 0.0198 0.0188

Risk 8.5697e-04 0.0017 0.0039 0.0059 0.0071 0.0079

CVaR -0.0257 -0.0814 -0.1725 CVaR-reduction -0.0269 -0.0904 -0.1911

Sharpe ratio 0.1651 0.1919 0.1945 0.1816 0.2350 0.2115

CPU time 3.2884e+03 3.2901e+03 3.3003e+03 1.1354e+03 1.1652e+03 1.2043e+03

CVaR1

Return 0.0062 0.0088 0.0108 0.0070 0.0113 0.0116

Risk 5.4127e-04 0.0011 0.0024 9.6654e-04 0.0019 0.0030

CVaR -0.0537 -0.1073 -0.1956 CVaR1-reduction -0.0840 -0.1614 -0.2643

Sharpe ratio 0.2664 0.2642 0.2187 0.2263 0.2620 0.2118

CPU time 166.9591 163.5961 167.7118 16.5808 16.9371 16.6452

Card(diff) 88(69) 92(54) 87(29) 54(34) 66(29) 71(16)

RCVaR1

Return 0.0057 0.0084 0.0126 0.0059 0.0109 0.0125

Risk 0.0012 0.0019 0.0039 0.0012 0.0028 0.0038

CVaR -0.0212 -0.0795 -0.1729 RCVaR1-reduction -0.0762 -0.1508 -0.2555

Sharpe ratio 0.1643 0.1938 0.2018 0.1703 0.2061 0.2047

CPU time 996.4651 911.5938 816.3695 411.2156 403.3264 366.3213

Card(diff) 20(4) 40(7) 60(7) 20(6) 40(10) 60(11)
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Table 7: Comparison of returns, risks and Sharpe ratios for different K values for
2196 stocks of S&P index data when λ = 0.5.

K = 20 K = 40 K = 60 K = 20 K = 40 K = 60

CVaR

Return 0.0153 0.0160 0.0221 0.0216 0.0239 0.0274

Risk 0.0028 0.0017 0.0042 0.0065 0.0077 0.0096

CVaR -0.0666 -0.0134 -0.1005 CVaR-reduction -0.0813 -0.0246 -0.1985

Sharpe ratio 0.2888 0.3823 0.3415 0.2679 0.2724 0.2797

CPU time 3.1501e+03 3.1554e+03 3.1580e+03 1.4352e+03 1.210021e+03 1.0021e+03

CVaR1

Return 0.0161 0.0108 0.0219 0.0161 0.0129 0.0201

Risk 0.0019 6.7132e-04 0.0034 0.0027 0.0012 0.0037

CVaR -0.0794 -0.0391 -0.1156 CVaR1-reduction -0.1367 -0.0705 -0.1932

Sharpe ratio 0.3694 0.4153 0.3765 0.3117 0.3724 0.3304

CPU time 138.8997 140.2936 140.6240 12.3085 12.3938 12.4646

Card(diff) 86(67) 96(58) 99(41) 45(27) 69(30) 88(31)

RCVaR1

Return 0.0155 0.0157 0.0218 0.0143 0.0153 0.0213

Risk 0.0027 0.0017 0.0043 0.0030 0.0017 0.0046

CVaR -0.0657 -0.0151 -0.1011 RCVaR1-reduction -0.1331 -0.0600 -0.1849

Sharpe ratio 0.2983 0.3809 0.3324 0.2611 0.3685 0.3142

CPU time 1.0816e+03 1.0783e+03 1.0881e+03 270.1568 262.1459 255.1256

Card(diff) 20(2) 40(1) 60(8) 20(7) 40(5) 60(11)

5 Conclusions

In this paper we proposed a hybrid approach to solve two well-known problems in

portfolio optimization, namely CCMV and CCMCVaR models. Computational ex-

periments on three large datasets showed the hybrid approach is competitive with

the direct approach in terms of risks, Sharpe ratios and returns while being sig-

nificantly faster. Applying the proposed approach to other cardinality constrained

models in portfolio optimization may be considered as future work [20].
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