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Abstract:
The main purpose of this paper is to propose a high order numerical method
based on the finite difference methods for solving nonlinear Itô stochastic
Volterra integral equations (SVIEs) of the second kind. To develop the
method, a fourth-order implicit finite difference method and the explicit
Milstein method are implemented for the discretization of non-stochastic
and stochastic integral parts, respectively. To solve the original SVIEs, the
proposed method has the deterministic fourth-order and strong stochastic
first-order accuracy. The convergence analysis of the proposed method is
proved. The finite difference method under consideration requires solving a
2×2 system of equations at each step for one-dimensional SVIE. Therefore,
the proposed method is very simple to implement and does not require a lot
of computational cost. Some numerical examples are prepared to indicate
the verity and efficiency of the new method. Moreover, the comparative
numerical results show that this method is more accurate than those exist-
ing methods given in the literature.
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1 Introduction

Integral equations (IEs) of Volterra type appear in a variety of science and technol-

ogy fields such as plasma physics [6]. The Volterra IEs (VIEs) of the second kind

are a special type of integral equations and are often evolved in many engineering

domains such as petrol industry. Recently, there has been an increasing interest to

investigate the theory for Volterra equations [5], Fredholm equations [32], integro-

differential equations [26], fractional calculus [10, 19] and numerical methods to
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solve these types of equations [4, 5, 11]. Also, the stochastic integral equations

appear in many fields of problems such as the study of the growth of biological

populations [15], the stochastic formulation of problems in reactor dynamics [7,20],

and in many other problems arising in the general areas of biology, physics and en-

gineering. Moreover, in recent years, there is an increasing requirement to inquire

the behavior of even more sophisticated dynamical systems in physical, medical,

engineering and financial applications [9,14,18]. The main motivation of this paper

is to construct a high-order numerical method to solve the following Itô stochastic

VIEs (SVIEs):

y(t) = f(t) +

∫ t

0

k1(s, t)u1(y(s))ds+

∫ t

0

k2(s, t)u2(y(s))dB(s), t ∈ [0, T ], (1)

where f(t) and kernels k1(s, t), k2(s, t), u1, u2 are known L2 functions, while y(t)

is the unknown L2 function and B(t) is a Brownian motion process. Since the

exact solution of the SVIEs is often unavailable, we have to use approximate and

numerical methods for solving these type of problems, generally. To solve the SVIEs

given by Eq. (1), the researches have introduced various types of approximate

methods such as wavelets approximation technique [23,24], collocation method [22],

iterative technique [28, 29] and operational matrix method [13, 14, 18]. In order to

achieve a highly accurate solution for the SVIEs (1), the computational cost of

these methods is very expensive. For instance, to develop an operational matrices

based method with step size h = 1
m , it must be solved a m-dimensional system

of nonlinear algebraic equations. Thus the computational cost of this method will

be increased by selecting a tiny step size of h. The finite difference methods are

a class of efficient numerical procedures to solve the SVIEs [16]. These methods

can be implemented for solving the SVIEs in two forms implicit and explicit. The

implicit finite difference methods are effective for the numerical solution of the stiff

SVIEs and stiff SDEs. It must be noted that a straightforward formulation of a

fully implicit finite difference method for SVIEs often causes the problem of being

stochastically unstable [16]. In this paper to design a highly accurate method for the

numerical solution of the SVIE (1), a fourth-order implicit finite difference method

and the explicit Milstein method are implemented for the discretization of non-

stochastic and stochastic integral parts, respectively. The proposed finite difference

method is of order (4, 1), and specially it is very appropriate for SVIEs with small

noise. Unlike the operational matrix based methods, the proposed finite difference

method just needs to solve a 2× 2 system at each step for one-dimensional SVIEs.

Therefore, the computational cost of the new method is less than the operational

matrix based methods. The convergence analysis of the proposed method is proven.

The efficiency and high accuracy of the proposed method are verified throughout

some examples. Moreover, the comparative numerical results show that this method

is more accurate than the other existing methods.
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2 Some definitions and preliminary results

Here, we provide some basic mathematical preliminaries of the stochastic calculus

and numerical integration methods. At first, we consider the equidistant discretiza-

tion Ih = {0 = t0 < t1 < ... < tN = T} of the time interval [0, T ] with stepsize

h = T
N and tj = jh for j = 0, 1, ..., N and time discrete approximation Y (t), t ∈ Ih.

Also, in this paper for more simplicity, we use Yn instead of Y (tn).

Definition 2.1. A stochastic process B(t), t ∈ [0, T ] is called Brownian motion, if

the following properties are satisfied [25]

(i) For 0 ≤ t1 ≤ · · · ≤ tn = T , the increments of the process B(t) is independent.

(ii) ∀t ≥ 0, B(t + h) − B(t) =
√
hN (0, 1) where N (0, 1) is the standard normal

distribution.

(iii) ∀t ≥ 0, the paths of B(t) is continuous.

It should be pointed out that in this paper for numerical computational, the

assumption B(0) = 0 with probability one is considered.

Consider V = V(T, S) as the class of functions f(t, w) : [0,∞)× Ω → R such that

(i) The function f(t, w) is B × F− measurable, where F is the σ−algebra on Ω

and B signifies the Borel algebra on [0,∞).

(ii) f is adapted to Ft, where Ft denotes the σ−algebra generated by the random

variables B(s) for s ≤ t.

(iii) E
[∫ T

S
f2(t, w)dt

]
<∞.

Definition 2.2. If the function φ ∈ V has a representation in form φ(t, w) =∑
j ej(w)χ[tj , tj+1)(t), then it calls as a elementary function. The symbol χ signifies

the characteristic function, and each function ej is Ft−measurable.

Definition 2.3. [25] Let f ∈ V(T, S), then the Itô integral of f is defined by∫ T

S

f(t, w)dBt(w) = lim
n→∞

∫ T

S

φn(t, w)dBt(w)

where, φn is a sequence of elementary functions such that E
[∫ T

S
(f(t, w)− φn(t, w))2dt

]
→ 0 as n → ∞.

The stochastic linear multi-step method can be consider as follows

Yn = fn + h
n∑

j=0

αjk
1(tj , tn)u

1(Yj) +
n−1∑
j=0

Φ(tj , tj−1, ϑ
ν(h), Yj), n = 1, 2, · · · , N, ν ∈ M,

(2)
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in which h
∑n

j=0 αjk
1(tj , tn)u

1(Yj) is a numerical integration method that approxi-

mate the non-stochastic integral
∫ tn
t0

k1(s, tn)u
1(y(s))ds and

∑n−1
j=0 Φ(tj , tj−1, ϑ

ν(h), Yj)

is an stochastic numerical integration method that approximate the stochastic in-

tegral
∫ tn
t0
k2(s, tn)u

2(y(s))dB(s) where M is a finite set of multi-indices with car-

dinality p and ϑν(h) is a random vector that satisfies the moment condition [2,27]

E(ϑq1ν1
(h) · . . . · ϑqpνp

(h)) = O(h(q1+···+qp)/2) (3)

for all qi ∈ N0, νi ∈ M, where N0 is the set of nonnegative integers. For ex-

ample, if we use trapezoidal rule and Euler-Maruyama method for non-stochastic

and stochastic integral parts, respectively, then we obtain the following numerical

method [16],

Yn =fn +
h

2

(
k1(t0, tn)u

1
0 + k1(tn, tn)u

1
n

)
+ h

n−1∑
j=1

k1(tj , tn)u
1
j

+

n−1∑
j=0

k2(tj , tn)u
2
j∆Bj , n = 1, 2, · · · , N,

where ∆Bj = B(tj+1)−B(tj).

Definition 2.4. We say the stochastic linear multi-step (2) for the approximation

of the solution of the SVIE (1) mean-square converges if the following property for

global error y(tn)− Yn is established

max
n=1,··· ,N

y(tn)− Yn2 −→ 0 as h −→ 0,

and also the discrete time approximation Y (t) mean-square convergent with order

δ > 0, if there exist constants C < ∞, not depending on h, such that the global

error satisfies

max
n=1,··· ,N

y(tn)− Yn2 ≤ C × hδ.

In the following we denote the stochastic strong order of convergence of the

scheme by pS and in the deterministic case (u2 ≡ 0) by pD and for their pair by

(pD, pS).

3 Theory of finite difference method for nonlinear SVIEs

In this section, we try to construct some numerical integration techniques to achieve

a fourth-order finite difference method for the non-stochastic integral part of SVIEs

(1) and also apply the Milstein method for corresponding its stochastic integral part

in such a way that the numerical procedure not only does not face stochastically

unstable phenomena but also preserves the order of the convergence. It should be
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noted out that, if we directly employ Simpson’s rule of integral approximation, then

we must have N = 2m, i.e. the number of nodes must be odd, and so we obtain:

Y2n =f2n +

n∑
j=1

∫ t2j

t2(j−1)

k1(s, t2n)u
1(y(s))ds

+

n∑
j=1

∫ t2j

t2(j−1)

k2(s, t2n)u
2(y(s))dB(s), n = 1, 2, · · · ,m,

that results in

Y2n =f2n +
h

3

n∑
j=1

(
k12(j−1),2nu

1
2(j−1) + 4k12j−1,2nu

1
2j−1 + k12j,2nu

1
2j

)
+

n∑
j=1

∫ t2j

t2(j−1)

k2(s, t2n)u
2(y(s))dB(s), n = 1, 2, · · · ,m,

now, if we apply Milstein method [16] for stochastic integral parts then we obtain

Y2n = f2n +
h

3

n∑
j=1

(
k12(j−1),2nu

1
2(j−1) + 4k12j−1,2nu

1
2j−1 + k12j,2nu

1
2j

)
+

n∑
j=1

(
k22(j−1),2nu

2
2(j−1)

(
I02(j−1) + I12(j−1)Du

2
2(j−1)

)
+ k22j−1,2nu

2
2j−1

(
I02j−1 + I12j−1Du

2
2j−1

))
,

in which Du2 = du2

dy and I0 and I1 are distributed random variables with I0l =∫ tl+1

tl
dB(s) =

√
hN (0, 1) and I1l = 1

2

((
I0l
)2 − h

)
where N (0, 1) is the standard

normal distribution. It should be mentioned that with the above numerical proce-

dure, the corresponding system of nonlinear equations will be implicit with respect

to the stochastic terms that cause the finite difference to be stochastically unstable.

For more details about this phenomena see [1,16,21]. In the following, with the help

of some useful finite difference methods, we try to overcome this drawback. So, at

first, we add the auxiliary nodes Ih/2 = {tj+ 1
2
= tj +

h
2 , j = 0, 1, · · · , N − 1} to the

Ih and then we take Īh = Ih ∪ Ih/2. Therefore, if we take t = tj , j = 1, 2, · · · , N
in (1) then we have

Yj =fj +
h

6

j−1∑
i=0

(
k1i,ju

1
i + 4k1i+ 1

2 ,j
u1i+ 1

2
+ k1i+1,ju

1
i+1

)
+

j−1∑
i=0

(
k2i,ju

2
i

(
I0i + I1iDu

2
i

)
+ k2i+ 1

2 ,j
u2i+ 1

2

(
I0i+ 1

2
+ I1i+ 1

2
Du2i+ 1

2

))
. (4)
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On the other hand, taking t = tj+ 1
2
, j = 0, 1, 2, · · · , N − 1, concluding

yj+ 1
2
=fj+ 1

2
+Hj +

h

6

j−1∑
i=0

(
k1i+ 1

2 ,j+
1
2
u1i+ 1

2
+ 4k1i+1,j+ 1

2
u1i+1 + k1i+ 3

2 ,j+
1
2
u1i+ 3

2

)
+

j−1∑
i=0

(
k2i,j+ 1

2
u2i
(
I0i + I1iDu

2
i

)
+ k2i+ 1

2 ,j+
1
2
u2i+ 1

2

(
I0i+ 1

2
+ I1i+ 1

2
Du2i+ 1

2

))
+ k2j,j+ 1

2
u2j
(
I0j + I1jDu

2
j

)
, (5)

in which Hj refers to a suitable method of numerical integration for approximating∫ t 1
2

0

k1(s, tj+ 1
2
)u1(y(s))ds,

in half domain [0, t 1
2
]. Since the Simpson integral approximation method guaran-

tees fourth order for the corresponding non-stochastic integral part of SVIEs (1),

we must construct a method with the same order of convergence for Hj to preserve

fourth order convergence of the method. Hence, the following tree point approxi-

mating procedure is proposed for the above-mentioned integral term,∫ t 1
2

0

k1(s, tj+ 1
2
)u1(y(s))ds ≈ h

(
α1k

1
0,j+ 1

2
u10 + α2k

1
1
2 ,j+

1
2
u11

2
+ α3k

1
1,j+ 1

2
u11

)
. (6)

Expanding the right hand side of (6) in terms of k1
0,j+ 1

2

u10 yields that with param-

eters

α1 =
5

24
, α2 =

8

24
, α3 = − 1

24

the numerical integration method for corresponding integral will be as follow

Hj =
h

24

(
5k10,j+ 1

2
u10 + 8k11

2 ,j+
1
2
u11

2
− k11,j+ 1

2
u11

)
, (7)

and Also, we are able to conclude from the Taylor expansion that the numerical

integration technique (7) guarantees the fourth order of convergence. Therefore,

putting (7) in to the relation (5) we obtain

Yj+ 1
2
=fj+ 1

2
+

h

24

(
5k10,j+ 1

2
u10 + 8k11

2 ,j+
1
2
u11

2
− k11,j+ 1

2
u11

)
+
h

6

j−1∑
i=0

(
k1i+ 1

2 ,j+
1
2
u1i+ 1

2
+ 4k1i+1,j+ 1

2
u1i+1 + k1i+ 3

2 ,j+
1
2
u1i+ 3

2

)
+

j−1∑
i=0

(
k2i,j+ 1

2
u2i
(
I0i + I1iDu

2
i

)
+ k2i+ 1

2 ,j+
1
2
u2i+ 1

2

(
I0i+ 1

2
+ I1i+ 1

2
Du2i+ 1

2

))
+ k2j,j+ 1

2
u2j
(
I0j + I1jDu

2
j

)
. (8)

If we solve the overall system of the equations with respect to the unknowns Yj
and Yj+ 1

2
then the resulting nonlinear system will be implicit with respect to the
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stochastic terms which causes the method to be stochastically unstable that men-

tioned in the previous section. Therefore, at first, using relations (4) and (8) for

j = 1 and j = 0 respectively, we get

Y1 =f1 +
h

6

(
k10,1u

1
0 + 4k11

2
,1
u1

1
2

+ k11,1u
1
1

)
+
(
k20,1u

2
0

(
I00 + I10Du2

0

)
+ k21

2
,1
u2

1
2

(
I01
2

+ I11
2

Du2
1
2

))
,

(9)

Y 1
2
=f 1

2
+

h

24

(
5k1

0, 1
2

u1
0 + 8k11

2
, 1
2

u1
1
2

− k1
1, 1

2

u1
1

)
+ k2

0, 1
2

u2
0

(
I00 + I10Du2

0

)
. (10)

It should be pointed out that the above 2×2 system is implicit w.r.t the stochastic

terms, so, for the terms in relation (9) that include Y 1
2
replace Y 1

2
with y0 and then

solving resulting 2 × 2 system obtains Y 1
2
and Y1. Therefore the other equations

solving in the manner that we don’t face with any problem that causes the method

to be stochastically unstable.

4 Convergence analysis

In this section it is proved that the presented finite difference method to solve the

SVIEs (1) is of order pD = 4 and pS = 1 in the Itô sense. The following theorem

shows that the proposed method has the fourth-order of accuracy for the SVIEs (1)

with u2 ≡ 0.

Theorem 4.1. For integral equation (1), let u2 ≡ 0, functions k1(s, t) and u1(y(s))

are differentiable, and their fourth-order derivatives are piecewise continuous. Then

there exists positive constant C such that the inequality

LTEl(h) := y(tl)− Yl ≤ Ch4.

holds for all tl ∈ Īh, where y(tl) and Yl are the solutions of Eqs. (1) and (4)-(5),

respectively.

Proof. Using Eqs. (1) and (4), we have

y(tj)− Yj =f(tj)− fj +

∫ tj

0

k1(s, tj)u
1(y(s))ds−

h

6

j−1∑
i=0

(
k1i,ju

1
i + 4k1

i+ 1
2
,j
u1
i+ 1

2

+ k1i+1,ju
1
i+1

)

=

j−1∑
i=0

∫ ti+1

ti

k1(s, tj)u
1(y(s))ds−

h

6

j−1∑
i=0

(
k1i,ju

1
i + 4k1

i+ 1
2
,j
u1
i+ 1

2

+ k1i+1,ju
1
i+1

)

=

j−1∑
i=0

(∫ ti+1

ti

k1(s, tj)u
1(y(s))ds−

h

6

(
k1i,ju

1
i + 4k1

i+ 1
2
,j
u1
i+ 1

2

+ k1i+1,ju
1
i+1

))
. (11)

According to the bound of error of the Simpson rule of the integral approximation,

we can derive∫ ti+1

ti

k1(s, tj)u
1(y(s))ds− h

6

(
k1i,ju

1
i + 4k1i+ 1

2 ,j
u1i+ 1

2
+ k1i+1,ju

1
i+1

)
= C1h

5 ∂
4

∂s4
k1(s, tj)u

1(y(s))|s=ηi
, (12)
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where ηi ∈ [ti, ti+1] and C1 is a constant. Taking (12) in to (11) and using continuity

of fourth order derivatives of functions, we conclude that

y(tj)− Yj = C1h
5
j−1∑
i=0

(
∂4

∂s4
k1(s, tj)u

1(y(s))|s=ηi

)
= C1h

5j
∂4

∂s4
k1(s, tj)u

1(y(s))|s=ηj , (13)

in which ηj ∈ [0, tj ]. It should be noted that, from the continuity of fourth order

derivatives of functions and utilizing the intermediate value theorem, the last one

equality (13) is fulfilled. Therefore, we obtain

y(tj)− Yj ≤ C2h
4, where C2 = C1T

∂4

∂s4
k1(s, tj)u

1(y(s))|s=ηj .

On the other hand for nodes tj+ 1
2
we get

y(tj+ 1
2
)− Yj+ 1

2
= f(tj+ 1

2
)− fj+ 1

2
+

∫ t
j+1

2

0

k1(s, tj+ 1
2
)u1(y(s))ds

− h

24

(
5k10,j+ 1

2
u10 + 8k11

2 ,j+
1
2
u11

2
− k11,j+ 1

2
u11

)
− h

6

j−1∑
i=0

(
k1i+ 1

2 ,j+
1
2
u1i+ 1

2
+ 4k1i+1,j+ 1

2
u1i+1 + k1i+ 3

2 ,j+
1
2
u1i+ 3

2

)
=

∫ t 1
2

0

k1(s, tj+ 1
2
)u1(y(s))ds− h

24

(
5k10,j+ 1

2
u10 + 8k11

2 ,j+
1
2
u11

2
− k11,j+ 1

2
u11

)
+

j−1∑
i=0

(∫ t
i+3

2

t
i+1

2

k1(s, tj+ 1
2
)u1(y(s))ds

− h

6

(
k1i+ 1

2 ,j+
1
2
u1i+ 1

2
+ 4k1i+1,j+ 1

2
u1i+1 + k1i+ 3

2 ,j+
1
2
u1i+ 3

2

))

=C3h
4 ∂

3

∂s3
k1(s, tj+ 1

2
)u1(y(s))|s=η 1

2

+ C4h
4T

∂4

∂s4
k1(s, tj+ 1

2
)u1(y(s))|s=η

j+1
2

,

in which η 1
2
∈ [0, t 1

2
], ηj+ 1

2
∈ [0, tj+ 1

2
] and C1, C2 are some constants. Using

some calculations, the proof can be easily completed.

The following theorem demonstrates that the proposed method (4) is the mean-

square convergent to the SVIEs (1).

Theorem 4.2. For the SVIEs (1), let that functions k1(s, t) and u1(y(s)) are differ-

entiable, and their fourth-order derivatives are piecewise continuous. Furthermore

suppose that functions k2(s, t) and u2(y(s)) are differentiable, and their second-

order derivatives are piecewise continuous. Then there exists some constants C1, C2

such that the inequality

E[LTEl(h)
2] = E[y(tl)− Yl

2
] ≤ C1 × h8 + C2 × h2,

holds for all tl ∈ Īh.



Paper 12: A high order numerical method for Ito SVIEs 183

Proof. For l = 1, . . . , N and from (4), we have

y(tj)− Yj =

j−1∑
i=0

(∫ ti+1

ti

k1(s, tj)u
1(y(s))ds− h

6

(
k1
i,ju

1
i + 4k1

i+ 1
2
,ju

1
i+ 1

2
+ k1

i+1,ju
1
i+1

))

+

j−1∑
i=0

(∫ ti+1

ti

k2(s, tj)u
2(y(s))dBs− k2

i,ju
2
i

(
I0i + I1i Du2

i

)
− k2

i+ 1
2
,ju

2
i+ 1

2

(
I0i+ 1

2
+ I1i+ 1

2
Du2

i+ 1
2

))
,

and therefore because of the properties of stochastic integrals I0 and I1 we

conclude that

E[(y(tj)− Yj)
2] =

(
j−1∑
i=0

(∫ ti+1

ti

k1(s, tj)u
1(y(s))ds−

h

6

(
k1i,ju

1
i + 4k1

i+ 1
2
,j
u1
i+ 1

2

+ k1i+1,ju
1
i+1

)))2

+ E

[(
j−1∑
i=0

(∫ ti+1

ti

k2(s, tj)u
2(y(s))dBs− k2i,ju

2
i (I

0
i + I1i Du2

i )

− k2
i+ 1

2
,j
u2
i+ 1

2

(
I0
i+ 1

2

+ I1
i+ 1

2

Du2
i+ 1

2

)))2]
.

From Theorem 4.1, we can derive(
j−1∑
i=0

(∫ ti+1

ti

k1(s, tj)u
1(y(s))ds− h

6

(
k1
i,ju

1
i + 4k1

i+ 1
2
,ju

1
i+ 1

2
+ k1

i+1,ju
1
i+1

)))2

≤ C1h
8.

Cosequently, we get

E

[(
j−1∑
i=0

(∫ ti+1

ti

k
2
(s, tj)u

2
(y(s))dBs − k

2
i,ju

2
i (I

0
i + I

1
i Du

2
i ) − k

2

i+1
2
,j
u
2

i+1
2

(
I
0

i+1
2
+ I

1

i+1
2
Du

2

i+1
2

)))2]

=

j−1∑
i=0

E

[∫ ti+1

ti

k
2
(s, tj)u

2
(y(s))dBs − k

2
i,ju

2
i (I

0
i + I

1
i Du

2
i ) − k

2

i+1
2
,j
u
2

i+1
2

(
I
0

i+1
2
+ I

1

i+1
2
Du

2

i+1
2

)]2

.

From [16,21] and using the local error bound of the Milstein method, we have

E

[∫ ti+1

ti

k
2
(s, tj)u

2
(y(s))dBs − k

2
i,ju

2
i (I

0
i + I

1
i Du

2
i ) − k

2

i+1
2
,j
u
2

i+1
2

(
I
0

i+1
2
+ I

1

i+1
2
Du

2

i+1
2

)]2

≤ C2h
3
.

This leads to

E

[(
j−1∑
i=0

(∫ ti+1

ti

k
2
(s, tj)u

2
(y(s))dBs − k

2
i,ju

2
i (I

0
i + I

1
i Du

2
i ) − k

2

i+1
2
,j
u
2

i+1
2

(
I
0

i+1
2
+ I

1

i+1
2
Du

2

i+1
2

)))2]

≤ C2h
2
.

Finally, with the above calculations, we obtain

E[(y(tj)− Yj)
2] ≤ C1h

8 + C2h
2,

where C1 and C2 are constants. In the same way we can attain similar relation for

tl = tj+ 1
2
, and thus the proof of the theorem will be completed.
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So, according to the theorem 4.2 the presented finite difference method has pair

order (4, 1) when applied SVIEs (1).

Remark 4.3. In a special case, if we consider SVIEs (1) with a small noise term, it

may be observed that the impact of the noise is not dominant, leading to notable

enhancements in the characteristics of the proposed method within a deterministic

framework.

5 Application to a system of Itô SVIEs with two dimen-

sional noise

In this section we consider the following two-dimensional Itô SVIEs with two-

dimensional noise

y1(t) =f1(t) +

∫ t

0

k1(s, t)u1(y1(s), y2(s))ds+

∫ t

0

g1,1(s, t)q1,1(y1(s), y2(s))dB1(s)

+

∫ t

0

g1,2(s, t)q1,2(y1(s), y2(s))dB2(s), (14)

y2(t) =f2(t) +

∫ t

0

k2(s, t)u2(y1(s), y2(s))ds+

∫ t

0

g2,1(s, t)q2,1(y1(s), y2(s))dB1(s)

+

∫ t

0

g2,2(s, t)q2,2(y1(s), y2(s))dB2(s), (15)

in which f i(t) and kernels ki, ui, gi,j , qi,j , i, j = 1, 2, are known L2 functions, while

yi(t), i = 1, 2, is the unknown L2 functions and also B(t) = (B1(t), B2(t)) is a

two-dimensional Brownian motion process. The numerical procedure presented in

the previous section can be utilized to solve the two-dimensional problem Itô SVIEs

(14)-(15). Therefore, setting t = tj , tj+ 1
2
results in

Y ν
j =fνj +

h

6

j−1∑
i=0

(
kνi,ju

ν
i + 4kνi+ 1

2 ,j
uνi+ 1

2
+ kνi+1,ju

ν
i+1

)
+

2∑
ℓ=1

j−1∑
i=0

(
g

ν ,ℓ
i,j q

ν ,ℓ
i I

(ℓ)
i + g

ν ,ℓ

i+ 1
2 ,j
q
ν ,ℓ

i+ 1
2

I
(ℓ)

i+ 1
2

)

+

2∑
ℓ1,ℓ2=1

j−1∑
i=0

(
Lℓ1
i,j

(
g

ν ,ℓ2q
ν ,ℓ2
)
I
(ℓ1,ℓ2)
i + Lℓ1

i+ 1
2 ,j

(
g

ν ,ℓ2q
ν ,ℓ2
)
I
(ℓ1,ℓ2)

i+ 1
2

)
, ν = 1, 2,

(16)
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and also taking t = tj+ 1
2
, j = 0, 1, 2, · · · , N − 1, concluding

Y ν
j+ 1

2
=fνj+ 1

2
+

h

24

(
5kν0,j+ 1

2
uν0 + 8kν1

2 ,j+
1
2
uν1

2
− kν1,j+ 1

2
uν1
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+
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6
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kνi+ 1

2 ,j+
1
2
uνi+ 1

2
+ 4kνi+1,j+ 1

2
uνi+1 + kνi+ 3
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1
2
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2

)
+

2∑
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2

q
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i I

(ℓ)
i + g
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i+ 1
2 ,j+

1
2

q
ν ,ℓ

i+ 1
2

I
(ℓ)

i+ 1
2

)
+

2∑
ℓ=1

g
ν ,ℓ

j,j+ 1
2

q
ν ,ℓ
j I

(ℓ)
j

+

2∑
ℓ1,ℓ2=1

j−1∑
i=0

(
Lℓ1
i,j+ 1

2

(
g

ν ,ℓ2q
ν ,ℓ2
)
I
(ℓ1,ℓ2)
i + Lℓ1

i+ 1
2 ,j+

1
2

(
g

ν ,ℓ2q
ν ,ℓ2
)
I
(ℓ1,ℓ2)

i+ 1
2

)

+

2∑
ℓ1,ℓ2=1

Lℓ1
j,j+ 1

2

(
g

ν ,ℓ2q
ν ,ℓ2
)
I
(ℓ1,ℓ2)
j , (17)

where operator Lϑ is defined as [16,21]

Lϑ
ρ,σ

(
g

ν ,ℓq
ν ,ℓ
)
= GQϑ · ∇

(
g

ν ,ℓq
ν ,ℓ
)
|t=tρ,t=tσ , ν, ℓ, ϑ = 1, 2

such that GQϑ =
(
g1,ϑq1,ϑ, g2,ϑq2,ϑ

)
and ∇ = ( ∂

∂y1 ,
∂

∂y2 ) is operator of the gradient

vector and the multiple Itô stochastic integrals I
(ℓ)
λ , I

(ℓ1,ℓ2)
λ is defined by

I
(ℓ)
λ =

∫ t
λ+1

2

tλ

dBℓ(s), I
(ℓ1,ℓ2)
λ =

∫ t
λ+1

2

tλ

∫ s

tλ

dBℓ1(t)dBℓ2(s). (18)

In order to proceed, we need to establish numerical approximations Y ν
1
2

, Y ν
1 , ν =

1, 2, first. So, from (16)-(17) we can solve a system of 4× 4 nonlinear equations to

find numerical estimations of yν(t 1
2
), yν(t1), ν = 1, 2.

Remark 5.1. According to the definition 2.1 and (18), we can put for the Itô stochas-

tic integrals I
(ℓ)
λ that I

(ℓ)
λ =

∫ t
λ+1

2
tλ

dBℓ(s) = Bℓ(tλ+ 1
2
)−Bℓ(tλ) =

√
h
2N (0, 1),

Remark 5.2. Since, some multiple Itô stochastic integrals I
(ℓ1,ℓ2)
λ are not available,

we must simulate them by some appropriate random variables denoted by Î(ℓ1,ℓ2)
that satisfied moment condition (3) and defined by [3,27]

Î(ℓ1,ℓ2) =


1
2

(
Î(ℓ1)Î(ℓ2) −

√
h
2 Ĩ(ℓ1)

)
for ℓ1 < ℓ2

1
2

(
Î(ℓ1)Î(ℓ2) +

√
h
2 Ĩ(ℓ2)

)
for ℓ2 < ℓ1

1
2

(
Î2(ℓ1) −

h
2

)
for ℓ1 = ℓ2

(19)

in which Ĩ(ℓ1) is defined by a two point distribution with P

(
Ĩ(ℓ1) = ±

√
h
2

)
= 1

2

and we also choose Î(ℓ1) as three-point distributed random variables with P
(
Î(ℓ1) =

±
√

3h
2

)
= 1

6 and P (Î(ℓ1) = 0) = 4
6 .
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6 Numerical simulations

The performance of the proposed finite difference method to solve the SVIEs of the

second kind given by Eq. (1) is illustrated in this section. For various step sizes and

M = 103 simulated trajectories, the numerical results of the Newton method after

three iterations are depicted in Figures 1-3. For some test examples, the stochastic

integral
∫ t

0
g(s,B(s))ds is simulated by using the following MATLAB command

which is denoted by “Algorithm 1”.

Algorithm 2 Simulation of stochastic integral
∫ t

0
g(s,B(s))ds in Ih

clear all

randn(’state’,50);

format long

T=1; dt=0.1; N=T/dt; t=0:dt:T;

rnd1=randn(1,N);

dWinc =sqrt(dt)*rnd1;

W=cumsum(dWinc);W=[0,W];

pp2=interp1(t,W,’linear’,’pp’);

[breaks,coefs,L,order,dim] = unmkpp(pp2);

In=zeros(1,N);

syms s

for i=1:length(t)-1

P_{i}= coefs(i,1)*(s-breaks(i))+coefs(i,2);

In(i)=int(g(s,P_{i}),t(i),t(i+1));

end

StochasticInt=[0,cumsum(In)];

For comparison of the methods we measured the mean absolute error

MAEY = E[|y(T )− YN |] ≈ 1

M

M∑
ℓ=1

|yℓ,T − Yℓ,N |,

in which yℓ,T and Yℓ,N refer to y(T ) and YN in ℓth simulation, respectively.

Example 1. As first example we consider the following SVIE

y(t) = 1 +

∫ t

0

λy(s)ds+

∫ t

0

µy(s)dB(s), t ∈ [0, T ], (20)

with the exact solution y(t) = exp
(
(λ− 1

2µ
2)t+ µB(t)

)
.
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Figure 1: Numerical results of the methods for Example 1.

Our first test problem concerned the Itô SVIEs with small noise, i.e we consider

small values of µ (0 < µ ≪ 1). In order to investigate the influence of the deter-

ministic order pD on SVIEs with small noise, we consider µ = .005, λ = −2, h =

2−i, i = 2, · · · , 7, and then we have plotted the L2 error versus the step size in

logarithmic scale with base 2. Also, lines with slopes 1, 2 and 4 are provided in the

resulting figure to enable comparisons with convergence of these orders. It can be

observed that, the slope of the resulting lines corresponds to the obtained order of

the methods. Computational results of the presented method with several methods

which are plotted in Fig. 1 show that the proposed method has performed higher

order of convergence in compared with other methods [13, 14, 17, 18, 23, 30] when

applied to the Itô SVIEs (20).

Example 2. Consider the following SVIE [13,14,18,23,28,29,31]

y(t) =
1

12
+

∫ t

0

cos(s)y(s)ds+

∫ t

0

sin(s)y(s)dB(s), t ∈ [0, T ], (21)

with the exact solution y(t) = 1
12 exp

(
− t

4 + sin(t) + sin(2t)
8 +

∫ t

0
sin(s)dB(s)

)
.

For T = 1 and various step sizes, numerical results of the presented finite differ-

ence method to solve the problem given by Example 2 is provided in Table 1. The

approximate solution of this SVIE has also provided in [13,14,18,23,28,29,31]. The

maximal error of the methods given in [13, 14, 18, 23, 29, 31] is of order 10−3, while

the mean absolute error of the proposed method is 1.65871 × 10−4 for h = 0.01.
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By using 12221 computational knots and h = 0.01, the maximum bound of error

of the iterative technique given in [28] with N1 = 20, N2 = 100 is 7.755 × 10−4.

While the presented new method with h = 0.01 uses only 201 knots to achieve the

mean absolute error of order 10−4. Furthermore, Table 2 displays the absolute er-

rors obtained through both the proposed method and the method described in [31].

The results indicate that the current method yields good results when compared to

the method of [31]. Consequently, the proposed method is more accurate than the

methods proposed in [13,14,18,23,28,29,31].

Table 1: Mean absolute error (MAEY ) for Example 2.

Step sizes Mean absolute error MAEY

0.50 1.04571× 10−1

0.25 2.17340× 10−2

0.10 5.48051× 10−3

0.05 9.71956× 10−4

0.01 1.65871× 10−4

Table 2: Absolute errors obtained by the proposed method and method [31] for
Example 2.

Proposed method Method of [31]

t h = .05 n = 7, γ = 0.5, ν = −0.5

0 0 2.7150e-11

0.05 1.0040e-04 5.7904e-03

0.10 9.2254e-05 1.8741e-03

0.15 1.3108e-04 3.1878e-03

0.20 2.7842e-05 6.2100e-03

0.25 8.0943e-05 1.3593e-02

0.30 5.2180e-05 6.0900e-04

0.35 6.1810e-06 1.9003e-02

0.40 2.1675e-05 9.5997e-03

0.45 3.1338e-05 4.6005e-02

0.50 3.5758e-04 6.2649e-02
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Example 3. Consider the following nonlinear SVIE [28]

y(t) = 1+

∫ t

0

(− sin(2y(s))− 1

4
sin(4y(s)))ds+

∫ t

0

√
2 cos2(y(s))dB(s), t ∈ [0, T ],

(22)

in which its exact solution is y(t) = arctan(tan(1)e−t +
√
2
∫ t

0
es−tdB(s)).

For T = 1 and step sizes h = 1
30 ,

1
80 ,

1
100 ,

1
150 , the numerical results of the pro-

posed method and the method of [28] are presented in Table 3. As this Table shows

that the new finite difference method is more accurate than the iterative method

given in [28].

Table 3: Comparison of theMAEY of the present method and method given in [28]
to solve the Example 3.

h Iterative technique [28] with N1 = 20, N2 = 100, n = 8 Present method

1
30 1.024× 10−1 2.371× 10−2

1
80 7.727× 10−2 8.004× 10−3

1
100 5.772× 10−2 2.526× 10−3

1
150 4.435× 10−2 5.174× 10−4

Example 4. Consider the nonlinear Cox-Ingersoll-Ross SVIE as

y(t) = y0 +

∫ t

0

α(β − y(s))ds+

∫ t

0

σ
√
y(s)dB(s), t ∈ [0, T ], (23)

where y0 ≥ 0 and α, σ > 0, β ∈ R are the initial value and parameters of model,

respectively.

The Cox-Ingersoll-Ross SVIE often arises in mathematical finance and uses to

describe the time evolution of interest rates, furthermore this SVIEs has a unique

non-negative strong solution [8,12]. To show the efficiency of the proposed method

to solve the SVIE (23) with a small noise, the initial value and parameters of this

model are selected as y0 = .5, α = .2, β = .005 and σ = .002. The numerical results

of the presented method and the method [30] to solve the SVIE (23) with σ = .002

(stochastic case) and σ = 0 (deterministic case) are plotted in Figure 2. In this

figure we can see that the presented method is more accurate than the method

given in [30] for both stochastic and deterministic cases. In Figure 3, the numerical

results of the presented method to solve the Example 4 are depicted for large final

time T = 50 and the step size h = 0.1. It shows that the new method preserves

the positivity of the solution, experimentally.

Example 5. As last example, we consider two-dimensional Itô SVIEs with two-
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Figure 2: (a)-(b) The plots of approximate solution of the method given in [30] and
(c)-(d) the plots of approximate solution of the proposed method to solve Example
4.

dimensional noise

y1(t) =
1

2
+

∫ t

0

y2(s)ds+

∫ t

0

θdB1(s), (24)

y2(t) =
1

2
−
∫ t

0

y1(s)ds+

∫ t

0

ηdB2(s), (25)

where θ, η ∈ R. Such problem is a model for a vibrating string subject to a stochas-

tic force [25]. The exact solution of the above system of Itô SVIEs is

y1(t) =
1

2
(cos(t) + sin(t)) +

∫ t

0

θ cos(t− s)dB1(s) +

∫ t

0

η sin(t− s)dB2(s), (26)

y2(t) =
1

2
(cos(t)− sin(t))−

∫ t

0

θ sin(t− s)dB1(s) +

∫ t

0

η cos(t− s)dB2(s). (27)
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Figure 3: Numerical results of the proposed method for Example 4.

It should be mentioned that for the values of 0 < θ, η ≪ 1 we face to the Itô SVIEs

problem with small noise.

To solve this example, we consider θ = η = 0.01 and use the semi-implicit Euler-

Maruyama method and original Milstein method for comparing with the proposed

method. It should be mentioned that the influence of the small values of θ and

η is effective on the accuracy of the numerical method for this system. Also, the

reported numerical results of this example in Table 4, that confirms this, exhibit

that the proposed method is more accurate than the other. Furthermore, the

pair order of the corresponding numerical methods semi-implicit Euler-Maruyama,

Milstein and proposed method is (1, 12 ), (1, 1) and (4, 1), respectively.

Table 4: Comparison of the MAEY 1 of the present method with other to solve the
Example 5.

h semi-implicit Euler-Maruyama method Milstein method Present method

1
4 6.5661× 10−1 7.7278× 10−1 8.2028× 10−2

1
8 3.0428× 10−1 8.3014× 10−2 1.3946× 10−3

1
32 8.2374× 10−2 9.0779× 10−3 6.0638× 10−4

1
64 1.8978× 10−2 3.8225× 10−3 9.2874× 10−5
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7 Conclusions

In this study we have introduced a finite difference method for the strong approx-

imation of SVIEs in the Itô sense. The pair order of the new method is (4, 1)

,i.e. the order of the convergence of the method is 4 when apply to corresponding

Volterra integral equations (deterministic case) and also has first order of the strong

convergence when applied stochastic Volterra integral equations. Also, the compu-

tational cost of the presented method is less than the operational matrix based

methods, because we only need to solve a 2× 2 system of equations at each step of

numerical simulation for one-dimensional SVIEs. Finally, some numerical examples

are prepared to exhibit the verity of the presented finite difference method. The

numerical simulations demonstrates the proposed method is accurate than those

methods given in [13,14,18,23,28–30].
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