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Abstract:

Queueing theory has applications in various fields, including communication

and computer design. Recently, there has been a growing interest in statistical

inference related to stochastic processes, particularly in estimating queue param-

eters such as arrival rate, service rate, and traffic intensity. This paper focuses on

estimating the traffic intensity parameter in the M/M/1/K queuing model, where

inter-arrival and service times follow exponential distributions with parameters λ

and µ, respectively. We evaluate traffic intensity using Bayesian, E-Bayesian, and

hierarchical Bayesian methods, applying the entropy loss function and suitable

prior distributions for the independent parameters. Additionally, the shrinkage-

based maximum likelihood estimation method is utilized for parameter estima-

tion. A decision criterion based on a cost function and the Average Customer

Satisfaction Index (ACSI) is introduced to select the most appropriate estimation,

emphasizing those with higher ACSI values. To enhance understanding, we vali-

date our estimations through the Monte Carlo simulation method and present two

numerical examples based on the ACSI index.
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1. Introduction

In many practical situations, researchers often have prior information about an

unknown parameter in the form of an initial guess value. Based on this guess

value, a class of estimators known as shrinkage estimators is generated. These

estimators were first introduced by Thompson (1968) in the following form:

T = mθ̂ + (1−m)θ0, 0 < m < 1. (1.1)

Here, θ0 represents the initial guess value of θ, and θ̂ is any ordinary estimator

of θ. The coefficient m is also referred to as the shrinkage coefficient, which is

determined by the researcher based on their belief about the initial value of θ0.

Various methods for determining the value of m have been presented in Kiapour

(2018). In this article, m is determined in a way that minimizes the risk of the

given estimator in Eq.(2.3). Values of m close to one indicate that the estimator

tends towards the sample, while values close to zero indicate a tendency towards

the initial value. If the initial value of the parameter is close to its true value,

shrinkage estimators perform better than regular estimators, such as maximum

likelihood estimation (MLE) ( Kiapour (2018)). Shrinkage estimators have been

applied in various scientific fields, including estimating average survival time in epi-

demiological studies (Harris and Shakarki (1979)), estimation in mapping studies

(Wooff (1985)), predicting capital ( Tso (1990)), and estimating mortality rates

( Marshall (1991)).

Several authors have utilized shrinkage estimators in estimation theory. Prakash

and Singh (2006) derived inverse dispersion estimators for the inverse Gaussian

distribution using the Linex loss function. Singh et al. (2007) derived shrinkage

estimators for the shape parameter of the Pareto distribution under the Linex

loss function. Singh et al. (2008) derived Bayesian shrinkage estimators for the

failure rate and reliability function in the one-parameter exponential distribution.

Prakash (2009) derived Bayesian and Bayesian shrinkage estimators for the shape

parameter of the Pareto distribution under the entropy loss function. Alhemyari

and Al-Dabag (2012) derived a family of shrinkage estimators for the shape pa-

rameter of the Weibull distribution. Salman and Shareef (2014) conducted a

preliminary test of the Bayesian shrinkage estimator for the scale parameter of the

exponential distribution using the quadratic loss function. Kiapour (2018) derived

classical shrinkage and Bayesian shrinkage estimators for the Rayleigh distribution

under censored data.

The Bayesian method is one of several methods used to estimate the parameters

of statistical distributions. Choosing appropriate prior distributions for the param-

eter space is crucial for reducing the error of the Bayesian estimator. Therefore, it

is important to define an appropriate prior distribution and set specific conditions
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for the hyperparameters.

Examples of such estimators are E-Bayes and hierarchical Bayes estimates. The

hierarchical Bayes prior distribution was first introduced by Lindley and Smith

(1972) and further studied by Han (1997), who also introduced the E-Bayes

and hierarchical Bayes estimation methods. These methods have been utilized

in estimation theory by several authors. For instance, Han (2009) used them

to estimate the parameter of the exponential distribution and the ratio of the

binomial distribution. Jaheen and Okasha (2011) used them to estimate the

parameter and reliability function of the Burr Type XII distribution based on

Type II right-censored samples, and Wang et al. (2012) used them to estimate

the parameter of the Pascal distribution. Several authors have demonstrated the

application of the hierarchical Bayes method in data analysis, including Micheas

and Wikle (2009), Cressie and Tingley (2010), Ando and Zellner (2010), Osei et

al. (2011) and Morey (2011). Recently, Makhdoom et al. (2023) obtained the

E-Bayesian and hierarchical Bayesian estimation of reliability in multicomponent

stress-strength models based on the inverse Rayleigh distribution.

Fuzzy sets have been utilized in estimation theory by several authors. Coppi

et al. (2006) discussed various applications of Bayesian methods in statistical

analysis. Huang et al. (2006) proposed a novel approach for determining the

membership function of parameter estimates and the reliability function of multi-

parameter lifetime distributions. Akbari and Rezaei (2007) introduced a fresh

method for fuzzy point estimation for uniformly minimum variance. Pak et al.

(2013) conducted extensive studies on statistical inference methods for lifetime

distributions based on fuzzy numbers. Yaghoobzadeh Shahrastani (2019) derived

E-Bayes and hierarchical Bayes estimates of the scalar parameter of the Gompertz

distribution based on fuzzy data. Recently, Makhdoom and Pak (2024) applied

a Bayesian approach in the Burr-type XII model based on fuzzy data.

The field of queueing theory has received significant attention from researchers,

particularly with regard to maximum likelihood and Bayesian estimation methods.

For example, Clarke (1957) focused on using maximum likelihood estimation to de-

termine parameters in the steady state for the M/M/1 queueing model. Muddapur

(1972) explored Bayesian estimation of arrival and service rates in both M/M/1

and M/M/∞ queueing models. Thiruvaiyaru and Basawa (1992) investigated

empirical Bayesian estimation of parameters in M/M/1 and M/M/∞ queueing

models, along with their asymptotic properties. Chowdhury and Mukherjee (2011)

examined the estimation of waiting time in the right-skewed distribution of the

M/M/1 queueing model. Chowdhury and Mukherjee (2013) provided maximum

likelihood and Bayesian estimates of the traffic intensity parameter in the M/M/1

queueing model. Singh and Acharya (2019) compared the results of parameter
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estimation in the M/M/1 queueing model using Bayesian and maximum likelihood

methods. Also, Goldenshluger and Koops (2019) focused on nonparametric esti-

mation of service time in queueing models with infinite servers and Poisson input.

Schweer and Wichelhaus (2020) explored nonparametric estimation of service time

distribution in discrete-time queueing models in 2020. Lastly, Chandrasekhar et

al. (2021) presented maximum likelihood and Bayesian estimates of the traffic

intensity parameter in the M/D/1 queueing model.

Queueing systems with finite capacity are also highly significant and have nu-

merous practical applications. Balsamo et al. (2003) studied network queueing

systems to estimate the performance of software architectures. Takagi et al.

(2005) addressed capacity calculations in wireless systems. Bocharov and Viskova

(2005), Jain (2005), Gupta and Sikdar (2006), and Thomas (2006) conducted

applied research on queueing systems with finite capacity. Factors such as system

cost and customer satisfaction are considered evaluation criteria for a queuing sys-

tem. Efforts are made to minimize system cost and maximize customer satisfaction

in each queuing system.

The selection of the best estimate for the traffic intensity parameter of a queu-

ing model based on a combined criterion of fuzzy and non-fuzzy indices, incor-

porating a factor called the average customer satisfaction level in choosing the

appropriate estimate and the method for selecting the optimal estimate, is con-

sidered an innovation of this paper. No study has compared estimators using this

approach and these criteria; in this article, it has been applied for the first time,

and this is the main motivation of the study. This article focuses on obtaining

shrinkage-based maximum likelihood estimation, as well as Bayesian, E-Bayesian,

and hierarchical Bayesian estimations of the traffic intensity parameter under the

general entropy loss function. The goal is to select an estimation that minimizes

system cost and maximizes the average customer satisfaction level. The selection

of the best estimate of the traffic intensity parameter for a queuing model based

on a combined criterion of fuzzy and non-fuzzy indicators, incorporating a factor

called the average customer satisfaction level in selecting the appropriate estimate

and method of selecting the desired estimate in the article, is considered as an

innovation of the article. To achieve this goal, the article introduces a decision

criterion called ACSI. ACSI is a linear weighted combination of system cost and

average customer satisfaction used to determine the desired parameter estimator

for traffic intensity. The method of selecting this desired estimator based on ACSI

is explained in the fourth part of the article, using Monte Carlo simulation and a

numerical example.

The structure of the article is as follows: Section 2 defines E-Bayesian and

hierarchical Bayesian estimations and introduces the queuing model M/M/1/K
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along with its cost. In Section 3, we obtain the shrinkage-based maximum likeli-

hood estimation, Bayesian, E-Bayesian, and hierarchical Bayesian estimations of

the traffic intensity parameter for the introduced queuing model. Section 4 intro-

duces the shrinkage estimation of ρ. Section 5 introduces the decision criterion

ACSI and compares the obtained parameter estimations for traffic intensity us-

ing Monte Carlo simulation and two numerical examples, and finally, Section 6

presents the results of the article.

2. Preliminary definitions and concepts

In this section, we define the E-Bayes estimate, hierarchical Bayes estimate, fuzzy

set probability function, and customer satisfaction degree average. We then in-

troduce the M/M/1/K queuing model, its evaluation criteria, and cost function.

According to Han (1997), the definitions of E-Bayes and hierarchical Bayes esti-

mates are as follows:

Definition 2.1. Suppose b1 and b2 are hyperparameters in the prior distribution

of θ, and π(b1, b2) is the joint prior distribution of (b1, b2). Let θ̂B(b1, b2) be the

Bayesian estimator of θ. Then, the E-Bayesian estimate of θ, denoted by θ̂EB, is

given by:

θ̂EB = Eπ(b1, b2)(θ̂B(b1, b2))

=

∫
Λ1

∫
Λ2

θ̂B(b1, b2)π(b1, b2)db1db2, b1 ∈ Λ1, ; b2 ∈ Λ2

This is the mathematical expectation of the Bayesian estimator of θ.

Definition 2.2. If π(θ|λ) and π
′
(λ) are the prior distributions corresponding to

the parameter θ and hyperparameter λ, respectively, then the hierarchical prior

distribution of θ is obtained as:

π
′′
(θ) =

∫
Λ

π(θ|λ)π
′
(λ)dλ, λ ∈ Λ,

If (Ω, F, P ) is a probability space, where Ω is the sample space, F is a sigma

algebra on Ω, and P is a probability measure, then the fuzzy set Ã in Ω is called

a fuzzy event.

Definition 2.3. (Zadeh (1968)): If, for all ω ∈ Ω, µÃ(ω) is the membership

function of the fuzzy event A, then the probability function of A is defined as:

P (Ã) =
∑
ω∈Ω

µÃ(ω)Pω, µÃ(ω) : Ω→ [0, 1]
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2.1 Customer satisfaction degree average

This article aims to calculate the degree of customer satisfaction for theM/M/m/K

model by observing the queue length upon entry into the system, as per the method

presented by Pardo and De la Fuente (2008). Based on whether customers en-

counter short, medium, or long queues, their satisfaction level will be classified as

high (a1), medium (a2), or low (a3), respectively, where (a1 ≥ a2 ≥ a3).

The queues are represented as fuzzy sets: (Ã: short queue), (B̃: medium

queue), and (C̃: long queue). These can be defined as:

Ã = (0, µÃ(0)), (1, µÃ(1)), · · · , (K,µÃ(K))

B̃ = (0, µB̃(0)), (1, µB̃(1)), · · · , (K,µB̃(K))

C̃ = (0, µC̃(0)), (1, µC̃(1)), · · · , (K,µC̃(K)),

where µÃ, µB̃ , and µC̃ are the membership functions of the fuzzy sets Ã, B̃, and C̃,

respectively. According to Dubois (1980), the sum of the membership functions

at each point equals 1:

µÃ(i) + µB̃(i) + µC̃(i) = 1, i = 1, 2, · · · ,K.

Also, µÃ(i) represents the degree of membership of the fuzzy set Ã when there

are i customers in the queue. Therefore, according to definition 2.3, the probability

of a customer entering the system encountering queues of short, medium and long

lengths is

π(Ã) =

K∑
n=0

µÃ(n)Pn

π(B̃) =

K∑
n=0

µB̃(n)Pn

π(C̃) =

K∑
n=0

µC̃(n)Pn. (2.2)

As a result, the average degree of customer satisfaction is defined as:

ADCS = a1π(Ã) + a2π(B̃) + a3π(C̃) (2.3)

2.2 M/M/1/K queuing model

The M/M/1/K queuing system has one server with a service rate of µ, indepen-

dent of the number of customers in the system. The arrival rate is λ, independent

of the system’s status. In this model, the time between arrivals and services is



A new optimum statistical estimation of the traffic intensity 169

exponentially distributed with parameters λ and µ. When the system is full, the

exit rate is different from the service rate.

In any queuing system, when the number of customers in the system at a

specific moment is n, the time it takes for the system population to reach n+ 1 is

a random variable with an exponential distribution with parameter λn. Similarly,

when the system population is at n, the time to reach n−1 follows an exponential

distribution with parameter µn. In the M/M/1/K queuing model, we have:

λn =

{
λ n = 0, 1, · · · ,K − 1

0 n ≥ k

and

µn =

{
µ n = 0, 1, · · · ,K
0 n > k.

In this queuing model, ρ = λ
µ is called the traffic intensity parameter. Accord-

ing to Allen (1990), the distribution of the number of customers in the system

is:

Pn =

{
ρn(1−ρ)
1−ρK+1 n = 0, 1, · · · ,K, ρ 6= 1

1
K+1 n = 0, 1, · · · ,K, ρ = 1

(2.4)

The average number of customers in the system is

Ls =

{
ρ[1−(K+1)ρK+KρK+1]

(1−ρ)(1−ρK+1)
ρ 6= 1

K
2 ρ = 1

(2.5)

and the average number of customers in the queue, denoted Lq =
∑K
n=1(n−1)Pn,

is derived from Lq = Ls − (1− P0), where:

P0 =

{
1−ρ

1−ρK+1 ρ 6= 1
1

K+1 ρ = 1
(2.6)

The average waiting times for each customer in the queue (Wq) and in the

system (Ws) are:

Wq =
Lq

λ(1− PK)
, Ws =

Ls
λ(1− PK)

(2.7)

The entry rate into the system is λ̄ = λ(1 − PK). If a customer cannot enter

the system due to full capacity, we consider that customer as ”lost” in this study.
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2.3 The cost function for M/M/1/K queuing model

In any queuing system, the goal is to reduce queue length and customer waiting

time while increasing satisfaction, often by increasing the number of servers. How-

ever, this increase incurs additional costs. In general, the expected total cost per

unit time serves as a key evaluation criterion and depends on the specific type and

nature of the system. In this study, the cost function is proposed as:

C(ρ) = C1(λ− λ̄) + C2Lq + C3(Ls − Lq) = C1λPK + (C2 − C3)Lq + C3Ls (2.8)

where:

• C1(λ − λ̄) is the cost of lost customers, incurred when the system prevents

entry due to full capacity or when customers choose not to enter due to

congestion. Since λ is the arrival rate and λ̄ is the actual entry rate, λ − λ̄
represents the average number of customers rejected by the system. There-

fore, if each lost customer has a cost C1, the average loss due to lost customers

per unit time is C1(λ− λ̄).

• C2Lq represents the cost of customers’ time wasted in the queue, with a

total cost equal to the time cost per customer (C2) multiplied by the average

number of customers in the queue (Lq).

• C3(Ls − Lq) is the cost of customers’ time while receiving service, with the

total average cost equal to the time cost per customer (C3) times the average

number of customers receiving service, (Ls − Lq).

An essential consideration in this article is that the M/M/1/K queuing model is

evaluated for cases where ρ 6= 1.

3. Estimation of the Traffic Intensity Parameter

(ρ)

In this section, we derive shrinkage-based estimates for the traffic intensity param-

eter (ρ) using maximum likelihood estimation, Bayesian estimation, E-Bayesian,

and hierarchical Bayesian methods under the general entropy loss function:

L(θ̂, θ) ∝

(
θ̂

θ

)p
− p ln

(
θ̂

θ

)
− 1, p 6= 0.

Generally, a Bayesian estimate of a parameter θ under the general entropy loss

function (see Dey et al. (1986)) is given by
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θ̂B = [E(θ−p|X)]−
1
p . (3.9)

Assume V1, · · · , Vn1
are independent random variables representing times be-

tween consecutive entries, following an exponential distribution with parameter λ,

with probability density function f(ν, λ) given by

f(v, λ) = λe−λv, v > 0, λ > 0.

Similarly, let U1, · · · , Un2 represent service times, which are independent ran-

dom variables following an exponential distribution with parameter µ and proba-

bility density function g(u, µ):

g(u, µ) = µe−µu, u > 0, µ > 0.

Here, λ and µ are independent parameters, with λ following a Γ(a, b) distribu-

tion with probability density function

π(λ|a, b) =
ba

Γ(a)
λa−1e−bλ, λ > 0, a > 0, b > 0, (3.10)

and µ following a Γ(r, c) distribution with probability density function

π(µ|r, c) =
cr

Γ(r)
µr−1e−cµ, µ > 0, r > 0, c > 0. (3.11)

4. Shrinkage Estimation

Let T1 =
∑n1

i=1 Vi and T2 =
∑n2

i=1 Ui. The MLE of ρ is given by

ρ̂M =
λ̂

µ̂
=
n1

n2

T2

T1
.

Using Eq.(1.1) and letting F = T2

T1
, the shrinkage estimate of ρ becomes

ρ̂T = mρ̂M + (1−m)ρ0 =
mn1

n2
F + (1−m)ρ0. (4.12)

Given that T1 and T2 follow Gamma(n1,
1
λ ) and Gamma(n2,

1
µ ) distributions,

respectively, the density function of F = T2

T1
is
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gF (f) =
Γ(n1 + n2)

Γ(n1)Γ(n2)

fn2−1ρn1

(f + ρ)n1+n2
, f > 0.

The risk function of the shrinkage estimate of ρ is

R(ρ) =
1

ρp

∫ ∞
0

(
mn1

n2
f + (1−m)ρ0

)p
g(f)df

− p
∫ ∞

0

ln

(
mn1

n2
f + (1−m)ρ0

)
g(f)df + p ln ρ− 1.

To minimize R(ρ), the optimal m is obtained by setting dR(ρ)
dm = 0:

∫ ∞
0

(
n1

n2
f − ρ0

)(
Ap−1

ρp
− 1

A

)
g(f)df = 0,

where A = mn1

n2
f + (1 −m)ρ0. Under the condition n1

n2
f 6= ρ0 and assuming

δ = ρ− ρ0, the optimal m is obtained as

mOpt =
δ

n1

n2
f − ρ0

.

Under the condition ρ0 < ρ < n1

n2
f , we obtain 0 < mOpt < 1. Thus, Eq.(4.12)

is rewritten as

ρ̂T =
mOptn1

n2
F + (1−mOpt)ρ0. (4.13)

4.1 Bayesian estimation method

Assuming X = U1, · · · , Un2
, V1, · · · , Vn1

and following Eqs. (3.10) and (3.11), we

obtain:

π(λ, µ|X) =
Γ(n1 + a)Γ(n2 + r)

(T1 + b)T1+a(T2 + c)T2+r
λn1+a−1µn2+r−1e−λ(T1+b)−µ(T2+c). (4.14)

Assuming φ = Γ(a+n1−p)Γ(r+n2+p)
Γ(a+n1)Γ(r+n2) , the Bayesian estimate of ρ under the general

entropy loss function, using Eqs. (3.9) and (4.14), is:

ρ̂B(b, c) = E(ρ−p|X)
− 1

p = (φ(T ))−
1
p .
c+ T2

b+ T1
. (4.15)
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4.2 E-Bayesian estimation method

According to Han (1997), in Eq. (3.10), a and b are chosen so that π(λ|a, b) is

decreasing with respect to λ. Consequently, to satisfy:

dπ(λ|a, b)
dλ

=
baλa−2ebλ

Γ(a)
((a− 1)− bλ) ,

it must be that b > 0 and 0 < a ≤ 1. Berger (2013) showed that as b increases,

the Bayesian estimate of λ becomes less robust; thus, the hyperparameter b is

bounded by 0 < b < c1, where c1 is a constant. Following Han (2011), b is best

modeled with a uniform distribution over (0, c1). Assuming a = 1, Eq. (3.10)

simplifies to:

π(λ|b) = be−bλ, λ > 0, b > 0. (4.16)

Similarly, for r and c in Eq. (3.11), c is uniformly distributed over (0, c2), where

c2 is a constant. Assuming r = 1, Eq. (3.11) simplifies to:

π(µ|c) = ce−cµ, , µ > 0, c > 0. (4.17)

Using Definition 1 and Eqs. (4.15) to (4.17), the E-Bayesian estimate of ρ is:

ρ̂EB =
1

c1c2

∫ c2

0

∫ c1

0

ρ̂B(b, c)π(b, c)dbdc

=
(φ(T ))−

1
p

[
(c2 + T1)

2 − T 2
1

]
2c1c2

log

(
c1 + T2

T2

)
(4.18)

4.3 Hierarchical Bayesian estimate

According to Eqs. (4.16) and (4.17) and using Definition 2, the hierarchical prior

distributions of the parameters λ and µ are respectively obtained as

π(λ) =

∫ c1

0

π(λ|b)π(b)db =
1− (1 + c1λ)e−c1λ

c1λ2
(4.19)

and

π(µ) =

∫ c2

0

π(µ|c)π(c)dc =
1− (1 + c2µ)e−c2µ

c2µ2
. (4.20)

Therefore, according to Eqs. (4.19) and (4.20), the hierarchical posterior distribu-

tion of λ and µ is

π∗∗(λ, µ|X) =
λa+n1−3µr+n2−3e−λ(b+T1)−µ(c+T2)S(λ, µ)∫∞

0

∫∞
0
λa+n1−3µr+n2−3e−λ(b+T1)−µ(c+T2)S(λ, µ)dλdµ

(4.21)
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in which

S(λ, µ) =
(
1− c1λe−c1λ − e−c1λ

) (
1− c2µe−c2µ − e−c2µ

)
.

Using Eq. (4.21), the hierarchical Bayesian estimate of ρ under the general entropy

loss function is as

ρ̂HB =

{∫∞
0

∫∞
0
λn1−(p+2)µn2+p−2e−λT1−µT2S(λ, µ)dλdµ∫∞

0

∫∞
0
λn1−2µn2−2e−λT1−µT2S(λ, µ)dλdµ

}− 1
p

(4.22)

and is obtained using the Lindley approximation method. To calculate ρ̂HB in

Eq. (4.22), we can also use the Lindley approximation (Lindley (1980)) as follows:

In general, the result of the integral ratio of the form

E(u(Λ)|X) =

∫
u(Λ)eQ(Λ)dΛ∫
eQ(Λ)dΛ

(4.23)

in which Q(Λ) = l(Λ) + ρ(Λ), in a way that l(Λ) is the logarithm of the likelihood

function of observations and ρ(Λ) is the logarithm of the prior distribution of Λ,

the Lindley approximation method is used to obtain the result as follows:

E(u(Λ)|X) = {u+
1

2

∑
i

∑
j

(uij + 2uiρj)σij +
1

2

∑
i

∑
j

∑
k

∑
l

Lijkσijσklul}Λ̂(4.24)

in which Λ = (λ1, · · · , λm), i, j, k, l = 1, · · · ,m and Λ̂ is the MLE of Λ. We also

have:

u = u(Λ), ui =
∂u

∂λi
, uij =

∂2u

∂λi∂λj
, Lijk =

∂3l(Λ)

∂λi∂λj∂λk
, ρj =

∂ρ(Λ)

∂λj

where σij is the element (i, j) of the inverse of the matrix {−Lij}. For the case of

Λ = (λ1, λ2), Eq. (3.11) is obtained as follows:

E(u(Λ)|X) = (u+Au1 +Bu2 + C)λ̂, Λ̂ = (λ̂1, λ̂2)

in which

A = ρ1σ11 + ρ2σ12 +
1

2

2∑
i=1

2∑
j=1

Lijσij , B = ρ1σ21 + ρ2σ22 +
1

2

2∑
i=1

2∑
j=1

Lijσij

C =
1

2

2∑
i=1

2∑
j=1

uijσij .

Therefore, assuming Λ = (λ, µ), u(λ, µ) = (λµ)−p and,

l(Λ) = n1 lnλ− λT1 + n2 lnµ− µT2, ρ(Λ) ∝ lnS(λ, µ)− 2 lnλ− 2 lnµ
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we have:

ρ1 =
(c1λ

2 + 2c1λ− 2)e−c1λ − 2

λ[1− (1 + c1λ)e−c1λ]
, ρ2 =

(c2µ
2 + 2c2µ− 2)e−c2µ − 2

µ[1− (1 + c2µ)e−c2µ]

L11 = −n1

λ2
, L12 = L21 = 0, L22 = −n2

µ2

u1 = − p

λ(λµ)p
, u2 = − p

µ(λµ)p
, u12 = u21 =

p2

(λµ)p+1

u11 =
p(p+ 1)

λp+2µ2p
, u22 =

p(p+ 1)

µp+2λ2p

σ11 =
λ2

n1
, σ12 = σ21 = 0, σ22 =

µ2

n2

A =
λρ1 − n2

1

n2
1

, B =
µρ2 − n2

2

n2
2

C = p(p+ 1)

[
1

n1(λµ2)p
+

1

n2(λ2µ)p

]
.

Therefore, ρ̂HB is obtained using the Lindley approximation method as follows:

ρ̂HB = λ̂µ̂

[
1− p(λ̂ρ̂1 − n2

1)

λ̂n2
1

− p(µ̂ρ̂2 − n2
2)

µ̂n2
2

+ p(p+ 1)µ̂−p + p(p+ 1)λ̂−p

]− 1
p

(4.25)

where λ̂ and µ̂ are the MLEs of λ and µ, respectively, and they are given by:

λ̂ =
n1

T1
, µ̂ =

n2

T2

5. Simulation and data analysis

In this section, we consider the M/M/1/8 queuing model and obtain the shrinkage,

Bayesian, E-Bayesian, and hierarchical Bayesian estimates of ρ. We then calculate

the cost function values for these estimates via the Monte Carlo sample mean sim-

ulation method and determine the average degree of customer satisfaction based

on the estimates of ρ. The simulation process includes the following steps:

• Step 1: Generate a sample of size n1 = 35 (V1, · · · , Vn1
) from an exponential

distribution with parameter λ = 4, and a random sample of size n2 = 30

(U1, · · · , Un2) from an exponential distribution with parameter µ = 6.

• Step 2: Assuming ρ0 = 0.5 and δ = 0.4, calculate the shrinkage estimate

of ρ from Eq. (4.13) with b = 4, a = 3, r = 3, c = 5, and p = −2.5.

Calculate the Bayesian estimate of ρ from Eq. (4.15), and, assuming c1 = 6

and c2 = 7, obtain the E-Bayesian and hierarchical Bayesian estimates of ρ

from Eqs. (4.18) and (4.22). Repeat steps 1 to 3 for 5000 iterations and use

the average of these estimates as the final values.
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• Step 3: For C1 = 250, C2 = 200, and C3 = 150, calculate the cost function

for each estimate of ρ from Eq. (2.8). The simulation results are summarized

in Table 1.

Next, assuming a2 = 0.6, a1 = 1, and a3 = 0.35 and defining fuzzy sets Ã, B̃, and

C̃ as:

Ã = {(0, 0.6), (1, 0.5), (2, 0.7), (3, 0.8), (4, 0.9), (5, 0.2), (6, 0), (7, 0.4), (8, 0.8)}

B̃ = {(0, 0.3), (1, 0.3), (2, 0.2), (3, 0.1), (4, 0), (5, 0.7), (6, 1), (7, 0.5), (8, 0.1)}

C̃ = {(0, 0.1), (1, 0.2), (2, 0.1), (3, 0.1), (4, 0.1), (5, 0.1), (6, 0), (7, 0.1), (8, 0.1)}.

We calculate the average degree of customer satisfaction for the M/M/1/8 model

for different estimates of ρ described in this article. Prior to this, we obtain the

distribution of the number of customers present in the system for each estimate

of ρ, with results shown in Table 2.

Using Eq. (2.2) and Table 2, we calculate the probability of each fuzzy set Ã, B̃,

and C̃, and then, via Eq. (2.3), compute the average degree of customer satisfac-

tion under shrinkage, Bayesian, E-Bayesian, and hierarchical Bayesian estimates

of ρ. Results are recorded in Table 3.

Table 1: Estimates of ρ, Ls, Lq and C(ρ)

ρ̂T ρ̂B ρ̂EB ρ̂HB

Estimates 0.59874 1.0226 0.96972 1.0749

Ls 1.4312 4.6842 4.2467 5.0907

Lq 0.83509 3.7745 3.3611 4.1614

λ̄ 3.9841 3.5586 3.6530 3.4581

C(ρ̂) 260.41 1001.7 991.81 1107.2

Subsequently, the average customer satisfaction values calculated through shrink-

age estimation methods—Bayesian, Empirical Bayesian, and hierarchical Bayesian

are normalized. This normalization process involves dividing each value by the

highest value among them so that the estimator with the highest average cus-

tomer satisfaction attains a normalized score of 1. Similarly, for the cost function

values calculated under these estimation methods, the normalization is performed

by dividing the smallest cost value by each of the values, assigning the highest

normalized score of 1 to the estimate with the lowest cost.

Both criteria are thus normalized to ensure that lower system costs and higher

customer satisfaction yield higher normalized values. To determine a suitable

estimator, an index based on the normalized system cost (CN ) and normalized
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Table 2: The distribution of the number of customers in the system in the

M/M/1/8 model for different estimates of ρ.

ρ̂T ρ̂B ρ̂EB ρ̂HB

P0 0.40527 0.10114 0.12526 0.08180

P1 0.24265 0.10373 0.12146 0.08793

P2 0.14528 0.10608 0.11779 0.09451

P3 0.08699 0.10847 0.11422 0.10159

P4 0.05208 0.11093 0.11076 0.10920

P5 0.03118 0.11343 0.10741 0.11738

P6 0.01867 0.11599 0.10416 0.12617

P7 0.01118 0.11862 0.10100 0.13562

P8 0.00669 0.12129 0.09794 0.14578

Table 3: The probability of fuzzy sets and the value of ADCS under the methods

of estimating ρ

ρ̂T ρ̂B ρ̂EB ρ̂HB

π(Ã) 0.59847 0.54058 0.54801 0.53310

π(B̃) 0.27886 0.36035 0.34783 0.37070

π(C̃) 0.12237 0.09874 0.10146 0.09617

ADCS 0.80862 0.79135 0.79222 0.78918
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average customer satisfaction (AN ) is introduced, defined as:

ACSI = w1AN + w2CN , (5.26)

where w1 + w2 = 1. This ACSI index is directly related to both normalized

criteria, implying that higher customer satisfaction and lower system costs result

in a higher ACSI index value. Therefore, an estimator with a larger ACSI index

is considered more suitable.

Assuming w1 = 0.6 and w2 = 0.4,the ACSI index is calculated for the normal-

ized values of average customer satisfaction and cost function. The normalized

results and the calculated ACSI index values for the shrinkage, Bayesian, Empir-

ical Bayesian, and hierarchical Bayesian estimators are summarized in Table 4.

According to the ACSI index values in Table 4, the shrinkage estimate of ρ is

preferable over the other estimates. Among the Bayesian estimates, the Empir-

ical Bayesian estimate performs better than both the Bayesian and hierarchical

Bayesian estimates.

Table 4: The results of normalizing the average customer satisfaction values and

cost function
ρ̂T ρ̂B ρ̂EB ρ̂HB

CN 1 0.25997 0.26256 0.23519

AN 1 0.97864 0.97972 0.97596

ACSI 1 0.54744 0.54942 0.53149

5.1 Numerical Example 2

Consider an insurance company with a single employee dedicated to processing car

accident claim payments in a designated room on a specific day. The room has a

limited capacity, accommodating up to 10 individuals at any given time. The time

intervals (in minutes) between successive customer arrivals and the service times

are recorded in Table 5. Based on the data and hypothetical values previously

Table 5: Corresponding data for the insurance company
3.98 2.35 2.91 2.67 2.27 4.32 3.15 5.40

4.71 3.46 4.84 6.52 2.12 3.08 4.34 4.11

Time intervals between inputs 4.17 2.68 3.82 3.50 3.32 3.97 4.95 5.00

3.68 4.38 2.52 1.77 2.37 3.25

3.44 0.73 1.50 0.63 0.11 0.64 3.86 2.62

0.17 1.51 2.80 1.97 5.17 0.56 1.90 2.15

Time intervals between services 0.49 10.00 3.15 4.47 2.93 0.34 0.94 0.18

1.86 4.25 0.10 2.94 3.15 2.19
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assumed for parameters ρ0, δ, a, b, c, r, p, c1, c2, C1, C2, and C3, various estimates

for ρ and other relevant evaluation criteria have been calculated and recorded in

Table 6. Additionally, the distribution of customers currently in the system for

the insurance company model has been obtained and is recorded in Table 7.

Table 6: Estimates ρ, Ls, Lq and C(ρ)

ρ̂T ρ̂B ρ̂EB ρ̂HB

Estimates 1.5783 2.2936 2.4821 2.3505

Ls 8.3439 9.2282 9.3258 9.2604

Lq 7.3478 8.2283 8.3258 8.2606

λ̄ 3.5976 2.4848 2.2963 2.4247

C(ρ̂) 2144.6 2599.4 2666.1 2620.9

Table 7: Distribution of the number of customers in the system for different

estimates ρ

ρ̂T ρ̂B ρ̂EB ρ̂HB

P0 0.00609 0.00032 0.00017 0.00026

P1 0.00962 0.00074 0.00041 0.00062

P2 0.01518 0.00169 0.00103 0.00145

P3 0.02395 0.00388 0.00255 0.00341

P4 0.03781 0.00889 0.00634 0.00801

P5 0.05967 0.02039 0.01573 0.01883

P6 0.09418 0.04676 0.03905 0.04426

P7 0.14864 0.10724 0.09693 0.10402

P8 0.23459 0.24596 0.24059 0.24449

P9 0.37027 0.56414 0.59718 0.57467

P10 0.58439 0.79239 0.84823 0.85067

Now assuming a1 = 1, a2 = 0.7 and a3 = 0.4 and considering the fuzzy sets Ã,

B̃ and C̃

Ã = {(0, 0.6), (1, 0.5), (2, 0.7), (3, 0.8), (4, 0.9), (5, 0.2), (6, 0), (7, 0.4),

(8, 0.8), (9, 0.4), (10, 0)}

B̃ = {(0, 0.3), (1, 0.3), (2, 0.2), (3, 0.1), (4, 0), (5, 0.7), (6, 1), (7, 0.5),

(8, 0.1), (9, 0.5), (10, 0.2)}

C̃ = {(0, 0.1), (1, 0.2), (2, 0.1), (3, 0.1), (4, 0.1), (5, 0.1), (6, 0), (7, 0.1),

(8, 0.1), (9, 0.1), (10, 0.8)}
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The probabilities of the fuzzy sets Ã, B̃, and C̃ are calculated using Eq.(2.2)

and Table 7. Subsequently, the average customer satisfaction degree is obtained

using Eq.(2.3) under shrinkage, Bayesian, E-Bayesian, and hierarchical Bayesian

ρ estimates, with the results recorded in Table 8. Following the normalization

method from the previous section, the cost function values and average customer

satisfaction degrees for the insurance company example are normalized and pre-

sented in Table 9. Based on the ACSI index values in Table 9, it is concluded that

in this example, the shrinkage estimator ρ is a more suitable estimator than the

alternatives.

Table 8: Probability of fuzzy sets and values of ADCS under the estimation

methods of ρ

ρ̂T ρ̂B ρ̂EB ρ̂HB

π(Ã) 0.47945 0.48225 0.48203 0.48232

π(B̃) 0.54589 0.58084 0.59145 0.59235

π(C̃) 0.55906 0.72931 0.77471 0.77619

ADCS 1.0852 1.1806 1.2059 1.2074

Table 9: Results of normalizing the average customer satisfaction degree values,

cost function values, and the ACSI index for the insurance company example

ρ̂T ρ̂B ρ̂EB ρ̂HB

CN 1 0.82504 0.80439 0.81827

AN 0.89789 0.97780 0.99876 1

ACSI .93873 0.91669 0.92101 0.89096

6. Conclusion

In this article, the M/M/1/K queueing model is considered, where the times

between successive arrivals and service times follow exponential distributions with

parameters λ and µ, respectively. The traffic intensity parameter of the model

is estimated using shrinkage methods based on maximum likelihood estimation

(MLE), Bayesian, E-Bayesian, and hierarchical Bayesian approaches under the

general entropy loss function. This selection aims to minimize system cost while

maximizing a criterion termed average customer satisfaction, as defined in the

article.

An index called ACSI is introduced, which incorporates both system cost and

average customer satisfaction, ensuring that an estimate with a larger ACSI index
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is regarded as more suitable for ρ. Finally, in the numerical analysis section, Monte

Carlo simulation methods are employed for the M/M/1/8 model, alongside two

numerical examples for the M/M/1/10 model. The findings indicate that the

shrinkage estimate of ρ outperforms the other estimates. Additionally, among the

Bayesian estimation methods discussed, the E-Bayesian estimate of ρ is determined

to be the most appropriate.
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