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1. Introduction

Introducing new distributions has attracted the interest and attention of many

statisticians in recent years. The key goal is to find new, more flexible distribu-

tions that can model real data in many fields, such as engineering, management,

economics, health sciences, and reliability, more accurately. There are many meth-

ods to generalize a distribution and arrive at a potentially flexible model to fit

specific data sets related to a real phenomenon; see, for example, Lee et al.

(2013). One of the popular methods for extending a distribution is the exponen-

tiation technique, which involves adding an extra parameter by exponentiating

the cumulative distribution function (CDF) of the base distribution. Many au-

thors have used the exponentiation procedure to develop new models; for example,

Mudholkar and Srivastava (1993) introduced the exponentiated Weibull distribu-

tion, Nadarajah et al. (2011) introduced the exponentiated Lindley distribution,

Warahena-Liyanage and Pararai (2014) and Ashour and Eltehiwy (2015) intro-

duced the exponentiated power Lindley distribution, Pourdarvish et al. (2015)

introduced the exponentiated Topp-Leone distribution, Abdollahi Nanvapisheh et

al. (2019) and Jayakumar and Elangovan (2019) introduced the exponentiated

Shanker distribution, and Alomair et al. (2024) introduced the exponentiated

XLindley distribution.

Recently, Khodja et al. (2023) introduced a new one-parameter lifetime distri-

bution, called the new XLindley distribution, whose probability density function

(PDF) is given as follows:

fNX(x) =
θ

2
(1 + θx) exp(−θx), x, , θ > 0. (1.1)

The new XLindley distribution with PDF (1.1) is a mixture of the exponential

distribution with parameter θ and the gamma distribution with parameters 2 and

θ; in other words, we have

fNX(x) =
1

2
f1(x) +

1

2
f2(x),

where f1(x) and f2(x) are the PDFs of the exponential distribution with parameter

θ and the gamma distribution with parameters 2 and θ.

The CDF of the new XLindley distribution is given by

FNX(x) = 1−
(
1 +

θx

2

)
exp(−θx), x, , θ > 0. (1.2)

Khodja et al. (2023) proved that the new XLindley distribution possesses a de-

creasing PDF and an increasing hazard rate function (HRF). They also presented

various properties of the new XLindley distribution. The goal of this paper is to
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introduce a new two-parameter distribution, called the Exponentiated New XLind-

ley (ENXL) distribution, that can be established by the exponentiation method

based on (1.2). The new model has an increasing and bathtub-shaped HRF, which

makes it very suitable for fitting a wide variety of lifetime data sets. In fact, the

ENXL distribution can work better than many other lifetime distributions for

modeling lifetime phenomena.

The rest of the paper is organized as follows: In Section 2, the new model

is proposed, and some of its properties, such as moments, incomplete moments,

mean deviations from the mean and the median, Bonferroni and Lorenz curves, the

mean residual life function, Rényi entropy, order statistics, and k-record values,

are discussed. The problem of estimating the parameters using the maximum

likelihood (ML) and bootstrap methods is investigated in Section 3. A simulation

study is presented in Section 4 to examine the performance of the point and interval

estimators. Section 5 is devoted to two real data applications. The results of

Section 5 confirm that the new model is well-suited for modeling real phenomena.

Several remarks conclude the paper.

2. The New Model and Some of Its Properties

Let the random variable X have an ENXL distribution with parameter θ. Then,

the CDF of X is given by

F (x) =

[
1−

(
1 +

θx

2

)
exp(−θx)

]α
, x > 0, α, θ > 0. (2.3)

Upon differentiating (2.3), we arrive at the PDF of X, given by

f(x) =
α θ

2
(1 + θx) exp(−θx)

[
1−

(
1 +

θx

2

)
exp(−θx)

]α−1
, x > 0. (2.4)

We X ∼ ENXL(α, θ) if the PDF of X can be written as (2.4). The HRF of the

new model is also given by

h(x) =
α θ(1 + θx) exp(−θx)

[
1−

(
1 + θx

2

)
exp(−θx)

]α−1
2
(

1−
[
1−

(
1 + θx

2

)
exp(−θx)

]α) , x > 0. (2.5)

In Figure 1, we plotted the PDFs of the ENXL distribution for selected values of

the parameters. It is noticeable that the shape of the PDF can be either decreasing

or unimodal contingent on the values of the parameters. The plots of the HRFs

of the ENXL distribution for selected values of the parameters are also given in

Figure 2. Figure 2 reveals that the HRF is increasing or bathtub-shaped.
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Figure 1: PDFs of the ENXL distribution for selected values of α and θ.

Figure 2: HRFs of the ENXL distribution for selected values of α and θ.

2.1 The Moments and Incomplete Moments

Moments are statistical measures that help describe the shape, central tendency,

and variability of a distribution. In this subsection, the complete and incomplete

moments of the ENXL distribution are studied. First, we obtain an expansion for

f(x). Consider the following equation, which is the generalized binomial expansion

(1− u)a =

∞∑
j=0

(
a

j

)
(−1)j uj , |u| < 1.



The Exponentiated New XLindley Distribution 189

Thus, the PDF of the ENXL can be expanded as follows

f(x) =
α θ

2
(1 + θx) exp(−θx)

[
1−

(
1 +

θx

2

)
exp(−θx)

]α−1
=

α θ

2
(1 + θx) exp(−θx)

∞∑
j=0

(
α− 1

j

)
(−1)j

(
1 +

θx

2

)j
e−jθx

= α

∞∑
j=0

j∑
s=0

(
α− 1

j

)(
j

s

)
(−1)jθs+1 xs

2s+1
(1 + θx)e−(j+1)θx. (2.6)

Similarly, the expansion of the CDF of the new distribution is

F (x) =

[
1−

(
1 +

θx

2

)
exp(−θx)

]α
=

∞∑
j=0

(
α

j

)
(−1)j

(
1 +

θx

2

)j
e−jθx

=

∞∑
j=0

j∑
s=0

(
α

j

)(
j

s

)
(−1)jθs xs

2s
e−jθx. (2.7)

Now, using (2.6), the moment generating function of the ENXL distribution is

obtained to be

MX(t) = α

∞∑
j=0

j∑
s=0

(
α−1
j

)(
j
s

)
(−1)jθs+1s!

2s+1[(j + 1)θ − t]s+1

(
1 +

(s+ 1) θ

(j + 1)θ − t

)
, t < θ.

Moreover, the r-th moment of X from (2.6) is given by

µr = α

∞∑
j=0

j∑
s=0

(
α− 1

j

)(
j

s

)
(−1)jΓ(s+ r + 1)

2s+1(j + 1)r+s+1θr

(
1 +

s+ r + 1

j + 1

)
. (2.8)

Therefore, the mean of the ENXL distribution is given by

µ = µ1 = α

∞∑
j=0

j∑
s=0

(
α− 1

j

)(
j

s

)
(−1)jΓ(s+ 2)

2s+1(j + 1)s+2θ

(
1 +

s+ 2

j + 1

)
.

So, the skewness and kurtosis of the ENXL distribution are given by

S =
E
[
(X − E(X))

3
]

(
E
[
(X − E(X))

2
])3/2 =

µ3 − 3µ1µ2 + 2µ3
1

[µ2 − µ2
1]

3/2
,

and

K =
E
[
(X − E(X))

4
]

(
E
[
(X − E(X))

2
])2 =

µ4 − 4µ1µ3 + 6µ2
1µ2 − 3µ4

1

[µ2 − µ2
1]

2 ,

respectively, where µr is given in (2.8).
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Now, suppose that X is a random variable with a PDF given in (2.4). Let us

obtain the r-th incomplete moment of X, which is given as follows

∫ t

0

xr f(x) dx=

∫ t

0

xr
α θ

2
(1 + θx) exp(−θx)

[
1−

(
1 +

θx

2

)
exp(−θx)

]α−1
dx

=α

∞∑
j=0

j∑
s=0

(
α− 1

j

)(
j

s

)
(−1)jθs+1

2s+1

×
[∫ t

0

xr+se−(j+1)θxdx+

∫ t

0

θxr+s+1e−(j+1)θxdx

]
=α

∞∑
j=0

j∑
s=0

∞∑
p=0

(
α− 1

j

)(
j

s

)
(−1)j+p θs+1+p (j + 1)p tr+s+p+1

2s+1 p!

×
[

1

r + s+ p+ 1
+

θ t

r + s+ p+ 2

]
. (2.9)

2.2 Mean Deviations from the Mean and Median

Let X be an ENXL-distributed random variable with PDF (2.4). Then, using

(2.7) and (2.9), the mean deviation from the mean is given by

δ1(X) =

∫ ∞
0

|x− µ| f(x) dx = 2µF (µ)− 2I(µ)

= 2

∞∑
j=0

j∑
s=0

(
α

j

)(
j

s

)
(−1)jθs µs+1

2s
e−jθµ

−2α

∞∑
j=0

j∑
s=0

∞∑
p=0

(
α− 1

j

)(
j

s

)
(−1)j+p θs+1+p (j + 1)p µs+p+2

2s+1 p!

×
[

1

s+ p+ 2
+

θ µ

s+ p+ 3

]
,

where I(b) =
∫ b
0
x f(x) dx and µ = E(X).

Let M denote the median. Then, the mean deviation from the median is

similarly obtained as follows:

δ2(X) =

∫ ∞
0

|x−M | f(x) dx = µ− 2I(M)

=µ− 2α

∞∑
j=0

j∑
s=0

∞∑
p=0

(
α− 1

j

)(
j

s

)
(−1)j+p θs+1+p (j + 1)pMs+p+2

2s+1 p!

×
[

1

s+ p+ 2
+

θM

s+ p+ 3

]
.
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2.3 Bonferroni and Lorenz Curves

Here, we focus on the formulas of Bonferroni and Lorenz curves. These curves

are used in various fields, such as economics, reliability, medicine, and insurance.

Note that for |z| < 1 and ρ > 0, we have

(1− z)−ρ =

∞∑
q=0

Γ(ρ+ q) zq

Γ(ρ) q!
. (2.10)

Using (2.9) and (2.10), the Bonferroni curve can be derived as follows:

BF [F (x)] =
1

µF (x)

∫ x

0

u f(u) du =
α

µ
[
1−

(
1 + θx

2

)
exp(−θx)

]α
×
∞∑
j=0

j∑
s=0

∞∑
p=0

(
α− 1

j

)(
j

s

)
(−1)j+p θs+1+p (j + 1)p xs+p+2

2s+1 p!

×
[

1

s+ p+ 2
+

θ x

s+ p+ 3

]
=
α

µ

∞∑
q=0

q∑
v=0

∞∑
j=0

j∑
s=0

∞∑
p=0

(
α− 1

j

)(
j

s

)(
q

v

)
Γ(α+ q)(−1)j+p θv+s+1+p

Γ(α) 2v+s+1 p! q!

×(j + 1)pxv+s+p+2e−q θ x
[

1

s+ p+ 2
+

θ x

s+ p+ 3

]
.

The Lorenz curve is also given by

LF [F (x)] =
1

µ

∫ x

0

u f(u) du

=
α

µ

∞∑
j=0

j∑
s=0

∞∑
p=0

(
α− 1

j

)(
j

s

)
(−1)j+p θs+1+p (j + 1)p xs+p+2

2s+1 p!

×
[

1

s+ p+ 2
+

θ x

s+ p+ 3

]
.

The Lorenz and Bonferroni curves of the ENXL distribution for selected values of

α and θ are displayed in Figure 3.

In economics, if F (q) represents the proportion of units with incomes at or

below q, then LF [F (q)] represents the proportion of total income accumulated by

the set of units with an income at or below q. Similarly, the Bonferroni curve

BF [F (q)] measures the mean income of this group relative to the mean income of

the population (see Al-Shomrani and Al-Arfaj (2024)).

2.4 Mean Residual Life Function

The mean residual life (MRL) is a concept in survival analysis and reliability

theory that quantifies the expected remaining lifetime of an object given that it



192 S.M.T.K. MirMostafaee

Figure 3: Lorenz (left panel) and Bonferroni (right panel) curves of the ENXL

distribution for selected values of α and θ.

has survived up to a certain point in time, t. The MRL quantifies the expected

remaining lifetime X − t, given that the lifetime X exceeds t. Thus, for X ∼
ENXL(α, θ), using (2.7) and (2.9), the MRL function is given by

µ(t) =E(X − t|X > t) =
1

1− F (t)

(
µ−

∫ t

0

xf(x)dx

)
− t

=

(
µ−

∫ t

0

xf(x)dx

) ∞∑
q=0

[F (t)]q − t

=

(
µ− α

∞∑
j=0

j∑
s=0

∞∑
p=0

(
α− 1

j

)(
j

s

)
(−1)j+p θs+1+p (j + 1)p ts+p+2

2s+1 p!

×
[

1

s+ p+ 2
+

θ t

s+ p+ 3

]) ∞∑
q=0

∞∑
v=0

v∑
w=0

(
αq

v

)(
v

w

)
(−1)vθw xw

2w
e−vθx − t.

2.5 Rényi Entropy

Entropy and information are commonly used to quantify uncertainty in a probabil-

ity distribution. Additionally, numerous relationships have been derived based on

the properties of entropy. The entropy associated with a random variable X mea-

sures the degree of uncertainty in its distribution. The Rényi entropy is defined

as

IR(γ) =
1

1− γ
log

[∫ ∞
0

[f(x)]γdx

]
,

where γ > 0 and γ 6= 1.
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Now, we have∫ ∞
0

[f(x)]γdx=

∫ ∞
0

αγ θγ

2γ
(1 + θx)γ exp(−θγx)

[
1−

(
1 +

θx

2

)
exp(−θx)

]γ(α−1)
dx

= (αθ)γ
∞∑
j=0

j∑
s=0

(
γ(α− 1)

j

)
(−1)j

(
j
s

)
2s+γ

∫ ∞
0

(θx)s(1 + θx)γe−(j+γ)θxdx

=αγθγ−1
∞∑
j=0

j∑
s=0

(
γ(α− 1)

j

)
(−1)j

(
j
s

)
2s+γ

∫ ∞
1

(u− 1)suγe−(j+γ)(u−1)du

=αγθγ−1
∞∑
j=0

j∑
s=0

s∑
i=0

(
γ(α−1)

j

)(
j
s

)(
s
i

)
(−1)j+s−i

2s+γe−(j+γ)

∫ ∞
1

ui+γe−(j+γ)udu

=αγθγ−1
∞∑
j=0

j∑
s=0

s∑
i=0

(
γ(α−1)

j

)(
j
s

)(
s
i

)
(−1)j+s−i

2s+γe−(j+γ)

×

(
Γ(i+ γ + 1)

(j + γ)i+γ+1
−
∞∑
p=0

(−1)p(j + γ)p

p! (i+ γ + p+ 1)

)
.

Thus, we can express

IR(γ) =
1

1− γ

(
log

[ ∞∑
j=0

j∑
s=0

s∑
i=0

(
γ(α−1)

j

)(
j
s

)(
s
i

)
(−1)j+s−i

2s+γe−(j+γ)

×
{ Γ(i+ γ + 1)

(j + γ)i+γ+1
−
∞∑
p=0

(−1)p(j + γ)p

p! (i+ γ + p+ 1)

}]
+ γ logα+ (γ − 1) log θ

)
.

2.6 Order Statistics

Order statistics play a crucial role in reliability analysis. Consider a random

sample consisting of X1, X2, · · · , Xn drawn from an ENXL distribution. Let Xi:n

represent the i-th order statistic from this sample, and let fi:n(x) denote its PDF.

Our goal is to derive a linear expansion for fi:n(x). Note that (see, for example,

Arnold et al. (2008))

fi:n(x) =
n!

(i− 1)! (n− i)!
f(x)F i−1(x) {1− F (x)}n−i

=
n!

(i− 1)! (n− i)!

n−i∑
q=0

(−1)q
(
n− i
q

)
f(x)F (x)q+i−1

=

n−i∑
q=0

ai,n,q
(q + i)α θ

2
(1 + θx)e−θx

[
1−

(
1 +

θx

2

)
exp(−θx)

](q+i)α−1
, (2.11)

where ai,n,q =
(−1)q n!

(i− 1)! (n− i− q)! q! (q + i)
.
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From (2.11), we can see that the PDF of Xi:n can be written as a finite combi-

nation of the ENXL densities. Therefore, many properties of these order statistics

can be derived using this result. For example, from (2.8) and (2.11), the r-th

moment of Xi:n can be expressed as

E(Xr
i:n) =α

n−i∑
q=0

∞∑
j=0

j∑
s=0

(
(i+ q)α− 1

j

)(
j

s

)
ai,n,q(i+ q)(−1)jΓ(s+ r + 1)

2s+1(j + 1)r+s+1θr

×
(

1 +
s+ r + 1

j + 1

)
.

2.7 k-Record Values

Record data are also important in real-life phenomena. An upper (lower) k-record

process can be defined as the k-th largest (smallest) observation yet seen, see

Arnold et al. (1998) and Ahmadi et al. (2012). Suppose that there exists a

sequence of independent and identically distributed random variables that come

from an ENXL distribution. Let Um(k) represent the m-th upper k-record value

extracted from the mentioned sequence, and let fm(k)(x) denote its PDF. We have

(see, for example, Arnold et al. (1998))

fm(k)(x) =
km

(m− 1)!
f(x) [− ln(1− F (x))]m−1 {1− F (x)}k−1

=
km

(m− 1)!
[− ln(1− F (x))]m−1

k−1∑
q=0

(−1)q
(
k − 1

q

)
f(x)F (x)q. (2.12)

Now, based on the MacLaurin expansion, we have

[− ln(1− F (x))]m−1 =
(
F (x)

∞∑
w=0

F (x)w

w + 1

)m−1
=F (x)m−1

( ∞∑
w=0

F (x)w

w + 1

)m−1
.(2.13)

Set aw = 1
w+1 , then (see Gradshteyn and Ryzhik (2007), Equation 0.314)

( ∞∑
w=0

awF (x)w
)m−1

=

∞∑
w=0

cwF (x)w, (2.14)

where the coefficients cw for w ≥ 1 are obtained from the following recurrence

equation (with c0 = am−10 = 1)

cw =
1

w

w∑
z=1

(mz − w)cw−z
z + 1

, w ≥ 1.



The Exponentiated New XLindley Distribution 195

Now, from (2.12), (2.13), and (2.14), we may write

fm(k)(x) =
km

(m− 1)!

k−1∑
q=0

∞∑
w=0

cw (−1)q
(
k − 1

q

)
f(x)F (x)m−1+w+q

=

k−1∑
q=0

∞∑
w=0

bw,m,q,k
(q +m+ w)α θ

2
(1 + θx)e−θx

×
[
1−

(
1 +

θx

2

)
exp(−θx)

](q+m+w)α−1

, (2.15)

where bw,m,q,k =
km cw (−1)q

(
k−1
q

)
(m− 1)! (q +m+ w)

.

From (2.15), we can see that the PDF of Um(k) can be expressed as an infinite

combination of the ENXL densities. Similarly, we can show that the PDF of m-

th lower k-record value can be written as an infinite combination of the ENXL

densities, as well. Therefore, many properties of k-record values can be obtained

based on this outcome. For instance, from (2.8) and (2.15), the r-th moment of

Um(k) can be written as

E(Urm(k)) =α

k−1∑
q=0

∞∑
w=0

∞∑
j=0

j∑
s=0

(
(q +m+ w)α− 1

j

)(
j

s

)
bw,m,q,k(q +m+ w)(−1)j

2s+1(j + 1)r+s+1θr

×Γ(s+ r + 1)

(
1 +

s+ r + 1

j + 1

)
.

3. Parameter Estimation

Let X = (X1, · · · , Xn) denote a random sample of n from X ∼ ENXL(α, θ) and

x = (x1, · · · , xn) be the observed set of X. In what follows, we study maximum

likelihood and bootstrap methods to find point and interval estimators for the

parameters of the ENXL distribution.

3.1 Maximum Likelihood Estimation

The likelihood function of the parameters given the random sample x is given by

L(α, θ|x) =
(α θ

2

)n
exp

(
− θ

n∑
i=1

xi
) n∏
i=1

(1 + θxi)

[
1−

(
1 +

θxi
2

)
e−θxi

]α−1
.(3.16)

Thus, the log-likelihood function becomes

`(α, θ|x) = n log
(α θ

2

)
− θ

n∑
i=1

xi +

n∑
i=1

ln(1 + θxi)

+(α− 1)

n∑
i=1

ln

[
1−

(
1 +

θxi
2

)
e−θxi

]
. (3.17)
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Upon taking the derivatives of (3.17), we arrive at the following equations, which

may help us find the ML estimates of the parameters:

∂`(α, θ|x)

∂α
=

n

α
+

n∑
i=1

log

[
1−

(
1 +

θxi
2

)
e−θxi

]
= 0,

∂`(α, θ|x)

∂θ
=

n

θ
−

n∑
i=1

xi +

n∑
i=1

xi
1 + θxi

+ (α− 1)

n∑
i=1

xi e−θxi(1 + θxi)

2[1−
(
1 + θxi

2

)
e−θxi ]

= 0.

Numerical methods can be utilized to solve the equations mentioned above.

Now, let α̂M and θ̂M denote the ML estimators of α and θ, respectively. Note

that under certain conditions stated in Newey and McFadden (1994), the ML

estimators are consistent. Moreover, under certain regularity conditions outlined

in Lehmann and Casella (1998), as n approaches infinity, it follows that:
√
n
(

(α̂M − α, θ̂M − θ)T
)

D−→ N
(
(0, 0)T , I−1X1

(α, θ)
)
, where

D−→ denotes the

convergence in distribution and I−1X1
(θ, α) is the inverse matrix of IX1

(θ, α) in

which IX1
(θ, α) is the Fisher information matrix of the parameters based on X1,

that is defined as

IX1(α, θ) = −

E
(∂2 ln f(X1;α, θ)

∂α2

)
E
(∂2 ln f(X1;α, θ)

∂α∂θ

)
E
(∂2 ln f(X1;α, θ)

∂θ∂α

)
E
(∂2 ln f(X1;α, θ)

∂θ2

)
 =

Iαα Iαθ

Iθα Iθθ

 ,
where f(x;α, θ) ≡ f(x) is given in (2.4).

Now, IX1
(θ, α) may be estimated using the following relations

Îαα=− 1

n

∂2`(α, θ|X)

∂α2

∣∣∣∣
(α,θ)=(α̂M ,θ̂M )

=
1

α̂2
M

,

Îαθ = Îθα = − 1

n

∂2`(α, θ|X)

∂α ∂θ

∣∣∣∣
(α,θ)=(α̂M ,θ̂M )

= − 1

n

n∑
i=1

Xi e−θ̂MXi(1 + θ̂MXi)

2[1−
(
1 + θ̂MXi

2

)
e−θ̂MXi ]

,

Îθθ =− 1

n

∂2`(α, θ|X)

∂θ2

∣∣∣∣
(α,θ)=(α̂M ,θ̂M )

=
1

θ̂
2

M

+
1

n

n∑
i=1

(
Xi

1 + θ̂MXi

)2

+
α̂M − 1

n

n∑
i=1

X2
i e−θ̂MXi(2θ̂MXi + e−θ̂MXi)

4[1−
(
1 + θ̂MXi

2

)
e−θ̂MXi ]2

,

Now, we may find 100(1 − τ)% two-sided asymptotic confidence intervals for the

α and θ using the above-explained property of asymptotic normality of the ML

estimators as follows

α̂M ± z τ2
σ̂1√
n
, and θ̂M ± z τ2

σ̂2√
n
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respectively, where zγ is the upper γ-th quantile of the standard normal distribu-

tion,

σ̂1 =

√√√√ Îθθ

ÎααÎθθ − Î
2

αθ

, and σ̂2 =

√√√√ Îαα

ÎααÎθθ − Î
2

αθ

. (3.18)

However, since the lower bounds can potentially take on negative values, we suggest

using the delta method (see for example, Shao (2003)), which guarantees that the

lower bounds will not get negative. Let ϕ(α) = logα. Using the delta method, we

have
√
n(ϕ(α̂M )−ϕ(α))

D−→ N
(

0, V ar(α̂M )
α2

)
. Therefore, a 100(1−τ)% asymptotic

confidence interval (ACI) for ϕ(α) is given by

ϕ(α̂M )± z τ
2

σ̂1
α̂M
≡ (Lα, Uα).

So, the 100(1− τ)% ACI for α is given by

(
eLα , eUα

)
≡
(
α̂M exp

{
−z τ

2

σ̂1
α̂M

}
, α̂M exp

{
z τ

2

σ̂1
α̂M

})
,

where σ̂1 is given in (3.18).

Similarly, the 100(1− τ)% ACI for θ is given by(
θ̂M exp

{
−z τ

2

σ̂2

θ̂M

}
, θ̂M exp

{
z τ

2

σ̂2

θ̂M

})
,

where σ̂2 is given in (3.18).

3.2 Parametric Bootstrap Estimation

In this subsection, we consider the parametric bootstrap method to find point and

interval estimators for the parameters. For details regarding bootstrap methods,

one can refer to Efron (1982) and Davison and Hinkley (1997). The following

algorithm is employed to generate parametric bootstrap samples.

Algorithm 3.1.

Step 1: Calculate the ML estimates of α and θ, denoted by α̂M and θ̂M , respec-

tively, based on x.

Step 2: Generate the bootstrap sample X∗1 , . . . , X
∗
n, from ENXL(α̂M , θ̂M ).

Step 3: Calculate the ML estimates of α and θ based on the generated bootstrap

sample in Step 2, denoted by α̂∗ and θ̂∗, respectively.

Step 4: Perform Steps 2 and 3, B times, and record (α̂∗i , θ̂
∗
i ) for i = 1, . . . , B,

which can be represented as the set {(α̂∗1, θ̂∗1), · · · , (α̂∗B , θ̂∗B)}.
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Now, sensible point estimates for α and θ can be given by

α̂B =
1

B

B∑
i=1

α̂∗i , and θ̂B =
1

B

B∑
i=1

θ̂∗i ,

respectively.

Next, we propose two bootstrap-type confidence intervals, percentile bootstrap

confidence interval (PBCI) and basic bootstrap confidence interval (BBCI). Sort

the values of α̂∗i ’s in increasing order and denote the i-th value in the ordered set

as θ̂(i) for i = 1, · · · , B. Then, the 100(1− τ)% PBCI and the 100(1− τ)% BBCI

for α are given by(
α̂∗((B+1) τ2 )

, α̂∗((B+1)(1− τ2 ))

)
, and

(
2α̂M − α̂∗((B+1)(1− τ2 ))

, 2α̂M − α̂∗((B+1) τ2 )

)
,

respectively, where α̂M is the ML estimate of α.

We may find the 100(1− τ)% PBCI and 100(1− τ)% BBCI for θ similarly.

4. A Simulation Study

In this section, we conduct a Monte Carlo simulation study to evaluate the per-

formance of the proposed estimators. We select the parameter values as (α, θ) =

(2, 1), , (3, 1.5) and (2, 2). The sample sizes are chosen to be n = 25, 40 and 60,

with the simulation being replicated M = 2000 times. We calculate the ML and

bootstrap point estimates, as well as the 95% ACIs, PBCIs, and BBCIs. Let α̂

be an estimator of α and α̂i be the corresponding estimate derived in the i-th

replication. Then, the estimated bias (EB) and the estimated mean squared error

(EMSE) of α̂ are given by

EB(α̂) =
1

M

M∑
i=1

(α̂i − α), and EMSE(α̂) =
1

M

M∑
i=1

(α̂i − α)2,

respectively.

We may define the above criteria for the point estimators of θ analogously. To

assess and compare the estimators, we calculate the ABs and EMSEs of the point

estimators, along with the average widths (AWs) and coverage probabilities (CPs)

of the 95% interval estimators, and the results are presented in Tables 1 and 2.

From Tables 1 and 2, we observe the superiority of ML estimators over the

bootstrap ones. Besides, the 95% ACIs based on the delta method exhibit AWs

that are less than the ones related to the 95% bootstrap confidence intervals. We

may state that most of the CPs are close to the nominal value of 0.95. Moreover,

the EMSEs, EBs, and AWs decrease as the sample size increases, as expected.
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Table 1: The EMSEs (and the EBs in the parentheses) of the point estimators.

(α, θ) = (2, 1)

α θ

n ML Bootstrap ML Bootstrap

25 0.8801 (0.3077) 1.8587 (0.7266) 0.0498 (0.0630) 0.0682 (0.1327)

40 0.3523 (0.1897) 0.5822 (0.4047) 0.0273 (0.0384) 0.0339 (0.0798)

60 0.1962 (0.1132) 0.2763 (0.2426) 0.0179 (0.0278) 0.0208 (0.0548)

(α, θ) = (3, 1.5)

α θ

n ML Bootstrap ML Bootstrap

25 2.8370 (0.5590) 6.8757 (1.3631) 0.0971 (0.0811) 0.1311 (0.1776)

40 1.1323 (0.3481) 1.9751 (0.7497) 0.0572 (0.0599) 0.0708 (0.1183)

60 0.5449 (0.1827) 0.7979 (0.4154) 0.0327 (0.0314) 0.0377 (0.0690)

(α, θ) = (2, 2)

α θ

n ML Bootstrap ML Bootstrap

25 0.9288 (0.3589) 1.9856 (0.7901) 0.1992 (0.1419) 0.2772 (0.2821)

40 0.3777 (0.1896) 0.6149 (0.4046) 0.1131 (0.0807) 0.1400 (0.1634)

60 0.2047 (0.1204) 0.2897 (0.2511) 0.0684 (0.0521) 0.0799 (0.1064)

5. Real Data Application

In this section, we consider two real data applications in order to illustrate the

adaptability of the ENXL distribution. We will analyze the fit of the ENXL

distribution alongside several other lifetime distributions, which are:

1. The new XLindley (NXL) distribution, which is a special case of the ENXL

distribution when α equals 1, (Khodja et al. , 2023).

2. The XLindley distribution with the following PDF (Chouia and Zeghdoudi

, 2021)

f(x; θ) =
θ2

(θ + 1)2
(2 + θ + x) e−θx, x > 0, θ > 0.

3. The Lindley distribution with the following PDF (Lindley , 1958; Ghitany

et al. , 2008)

f(x; θ) =
θ2

θ + 1
(1 + x) e−θx, x > 0, θ > 0.

4. The exponential (Exp) distribution with PDF f(x) = θ exp(−θx) where

x > 0, and θ > 0.
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Table 2: The AWs and CPs of the 95% interval estimators.

(α, θ) = (2, 1)

α θ

n ACI BBCI PBCI ACI BBCI PBCI

25 AW 2.9865 4.0786 4.0786 0.8006 0.8710 0.8710

CP 0.9355 0.9000 0.8920 0.9255 0.9385 0.9030

40 AW 2.1344 2.5407 2.5407 0.6165 0.6481 0.6481

CP 0.9520 0.9250 0.9230 0.9345 0.9410 0.9260

60 AW 1.6377 1.8343 1.8343 0.4977 0.5162 0.5162

CP 0.9470 0.9175 0.9270 0.9365 0.9455 0.9290

(α, θ) = (3, 1.5)

α θ

n ACI BBCI PBCI ACI BBCI PBCI

25 AW 5.2291 7.4783 7.4783 1.1127 1.2093 1.2093

CP 0.9475 0.8985 0.8955 0.9320 0.9295 0.9115

40 AW 3.6487 4.4816 4.4816 0.8635 0.9102 0.9102

CP 0.9390 0.9115 0.9080 0.9285 0.9375 0.9120

60 AW 2.7359 3.1176 3.1176 0.6926 0.7183 0.7183

CP 0.9495 0.9115 0.9335 0.9450 0.9445 0.9340

(α, θ) = (2, 2)

α θ

n ACI BBCI PBCI ACI BBCI PBCI

25 AW 3.0716 4.1684 4.1684 1.6080 1.7477 1.7477

CP 0.9385 0.9130 0.8845 0.9250 0.9455 0.9010

40 AW 2.1336 2.5423 2.5423 1.2346 1.3020 1.3020

CP 0.9450 0.9140 0.9140 0.9290 0.9400 0.9140

60 AW 1.6457 1.8424 1.8424 0.9934 1.0296 1.0296

CP 0.9475 0.9200 0.9235 0.9420 0.9430 0.9275

5. The gamma distribution with the following PDF

f(x;α, θ) =
θα

Γ(α)
xα−1 e−θx, x > 0, α, θ > 0.

6. The Weibull distribution with the following PDF

f(x;α, θ) = αθ xα−1 e−θx
α

, x > 0, α, θ > 0.

7. The power Lindley (PL) distribution with the following PDF (Ghitany et al.

, 2013)

f(x;α, θ) =
αθ2

θ + 1
xα−1(1 + xα) e−θx

α

, x > 0, α, θ > 0.
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8. The exponentiated Rayleigh (E-R) distribution with the following PDF

f(x;α, θ) = 2αθ x exp(−θx2)
[
1− e−θx

2
]α−1

, x > 0, α, θ > 0.

9. The modified weighted exponential (MWE) distribution with the following

PDF (Chesneau et al. , 2022)

f(x;α, θ) = θ

(
1 +

1

α+ 1
− exp(−αθ x)

)
exp(−θx), x > 0, α, θ > 0.

10. The exponentiated XLindley (EXL) distribution with the following PDF

(Alomair et al. , 2024)

f(x;α, θ) =
α θ2 (2 + θ + x)

(θ + 1)2
e−θx

[
1−

(
1 +

θ

(1 + θ)2
)
e−θx

]α−1
, x > 0,

where α > 0 and θ > 0.

”First, we analyze the annual rainfall data (measured in inches) documented

at the Los Angeles Civic Center from 1999 to 2020, denoted as Data I (see

www.laalmanac.com/weather/we08aa.php). The data are”

11.57 17.94 4.42 16.49 9.24 37.25 13.19 3.21 13.53 9.08 16.36

20.20 8.69 5.85 6.08 8.52 9.65 19.00 4.79 18.82 14.86

Similar data sets were also analyzed by Asgharzadeh et al. (2015), Fallah et

al. (2018), Khoshkhoo Amiri and MirMostafaee (2023) and Zanjiran and Mir-

Mostafaee (2024).

Next, we consider a COVID-19 data set, that presents the daily number of

deaths divided by daily new cases in the United States of America for 102 days,

from 28 March to 7 July 2020, denoted by Data II, see Alsuhabi et al. (2022)

0.0149 0.0235 0.0230 0.0159 0.0200 0.0413 0.0360 0.0378

0.0363 0.0399 0.0453 0.0436 0.0598 0.0624 0.0546 0.0607

0.0609 0.0521 0.0615 0.0928 0.2232 0.0620 0.0812 0.0629

0.0651 0.0840 0.1072 0.0821 0.0567 0.0559 0.0606 0.0380

0.0586 0.0980 0.0925 0.0631 0.1869 0.0049 0.0176 0.0495

0.1112 0.0890 0.0940 0.0600 0.0652 0.0413 0.0588 0.0665

0.0816 0.0753 0.0579 0.0436 0.0527 0.0382 0.0568 0.0613

0.0531 0.0767 0.0400 0.0406 0.0237 0.0471 0.0722 0.0595

0.0597 0.0389 0.0265 0.0518 0.0419 0.0566 0.0516 0.0390

0.0245 0.0266 0.0314 0.0701 0.0410 0.0436 0.0320 0.0255

0.0171 0.0268 0.0259 0.0333 0.0318 0.0188 0.0172 0.0112

0.0155 0.0229 0.0184 0.0621 0.0146 0.0114 0.0216 0.0103

0.0129 0.0134 0.0117 0.0143 0.0032 0.0054
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We calculated the ML estimates (MLEs) of the parameters for the specified mod-

els. To assess the goodness of fit, we employed various measures, including the

minus log-likelihood function evaluated at the ML estimates, denoted by − log L̂,

the Akaike information criterion (AIC), the Bayesian information criterion (BIC),

and the Kolmogorov-Smirnov (K-S) test statistic along with its corresponding p-

value. These criteria allow us to compare the fit of the ENXL model with those

of the Exp, NXL, XLindley, Lindley, Gamma, Weibull, PL, E-R, MWE, and EXL

distributions.

We note that ties should not be present in a K-S test when analyzing continuous

data. However, ties may occur as a result of rounding numbers or other reasons.

To avoid this issue, we adjusted one of the equal numbers by adding (and also

subtracting, in cases with three identical numbers) a very small number, z = 10−14,

when calculating the K-S test statistics. Thus, Data 2 has been changed to the

following data to address this problem.

0.0149 0.0235 0.0230 0.0159 0.0200 0.0413 0.0360 0.0378

0.0363 0.0399 0.0453 0.0436 0.0598 0.0624 0.0546 0.0607

0.0609 0.0521 0.0615 0.0928 0.2232 0.0620 0.0812 0.0629

0.0651 0.0840 0.1072 0.0821 0.0567 0.0559 0.0606 0.0380

0.0586 0.0980 0.0925 0.0631 0.1869 0.0049 0.0176 0.0495

0.1112 0.0890 0.0940 0.0600 0.0652 0.0413+z 0.0588 0.0665

0.0816 0.0753 0.0579 0.0436+z 0.0527 0.0382 0.0568 0.0613

0.0531 0.0767 0.0400 0.0406 0.0237 0.0471 0.0722 0.0595

0.0597 0.0389 0.0265 0.0518 0.0419 0.0566 0.0516 0.0390

0.0245 0.0266 0.0314 0.0701 0.0410 0.0436-z 0.0320 0.0255

0.0171 0.0268 0.0259 0.0333 0.0318 0.0188 0.0172 0.0112

0.0155 0.0229 0.0184 0.0621 0.0146 0.0114 0.0216 0.0103

0.0129 0.0134 0.0117 0.0143 0.0032 0.0054

The results are summarized in Tables 3 and 4 for Data I and Data II, respec-

tively. From Tables 3 and 4, it is evident that the ENXL distribution outperforms

the other considered models in terms of the measures considered, as this model

shows the smallest AIC and BIC values and the largest p-value. The next best

models are the Gamma and EXL distributions according to the same criteria.

Figures 4 and 5 display the empirical histograms of the data sets alongside

the fitted PDFs of the considered models for Data I and Data II, respectively.

Moreover, Figures 6 and 7 exhibit the probability-probability (P-P) plots for Data

I and Data II, respectively.

From Figures 4–7, we may also conclude visually that the ENXL, Gamma, and

EXL distributions offer the best fits for Data I and Data II among the distribu-

tions considered here. Nonetheless, upon reviewing Tables 3 and 4, we affirm the
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superiority of the ENXL distribution.

Table 3: The MLEs and goodness-of-fit criteria for Data I.

MLE

Distribution α θ − log L̂ AIC BIC K-S p-value

Exp 0.0781 74.5337 151.0673 152.1118 0.24804 0.1266

NXL 0.1224 72.9360 147.8719 148.9164 0.22570 0.2017

XLindley 0.1382 71.3069 144.6139 145.6584 0.17391 0.4951

Lindley 0.1463 70.6584 143.3168 144.3613 0.16178 0.5860

gamma 3.2250 0.2520 68.6944 141.3889 143.4779 0.09550 0.9809

Weibull 1.8212 0.0077 69.4212 142.8425 144.9315 0.11138 0.9314

PL 1.3199 0.0629 69.0449 142.0897 144.1788 0.10096 0.9683

E-R 0.9767 0.0045 69.5773 143.1547 145.2437 0.12588 0.8528

MWE 2.5758 0.0919 71.8310 147.6619 149.7510 0.19407 0.3605

EXL 2.4828 0.2078 68.6921 141.3843 143.4733 0.09203 0.9869

ENXL 2.9387 0.2039 68.6676 141.3352 143.4243 0.09157 0.9875

Table 4: The MLEs and goodness-of-fit criteria for Data 2.

MLE

Distribution α θ − log L̂ AIC BIC K-S p-value

Exp 20.4856 −206.0118 −410.0236 −407.3987 0.17855 0.0030

NXL 31.7806 −212.2505 −422.5011 −419.8761 0.15615 0.01383

XLindley 20.5298 −206.0119 −410.0239 −407.3989 0.17854 0.0030

Lindley 21.4002 −206.0674 −410.1349 −407.5099 0.17812 0.00309

gamma 2.3457 48.0524 −222.8574 −441.7147 −436.4648 0.08030 0.5263

Weibull 1.5788 98.6991 −221.2130 −438.4260 −433.1761 0.08929 0.3903

PL 1.5789 99.7155 −221.2107 −438.4214 −433.1714 0.08929 0.3902

E-R 0.7259 229.7007 −218.3239 −432.6479 −427.3979 0.11434 0.1389

MWE 2.4404 24.3338 −216.1339 −428.2679 −423.0179 0.13508 0.04835

EXL 2.5753 34.8563 −222.8236 −441.6471 −436.3972 0.08783 0.4109

ENXL 2.0270 45.0936 −223.0781 −442.1561 −436.9062 0.07908 0.5462

Concluding Remarks

In this paper, a new model, as an extension of the XLindley distribution, has been

introduced, and some of its properties, such as moments, incomplete moments,

mean deviations from the mean and the median, Bonferroni and Lorenz curves,

mean residual life function, Rényi entropy, order statistics, and k-record values,

have been discussed. The estimation of its parameters has been explored. The

simulation study revealed that the ML method may perform better than the boot-

strap method in point estimation. Additionally, if we use the delta method, the
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Figure 4: Empirical histogram of Data I and the fitted PDFs of the considered

models.

Figure 5: Empirical histogram of Data II and the fitted PDFs of the considered

models.

ACIs also outperform the BBCIs and PBCIs in terms of AW. Two real data appli-

cations have verified the usefulness and superiority of the new model in comparison

with some of the previously introduced models in real-world situations.

We suggest exploring Bayesian inference for the new distribution as a poten-

tial subject for future research, as this topic has not been addressed in the current

paper. Furthermore, the application of linear inference to the exponentiated new

XLindley distribution may present an interesting problem. Additionally, the task

of introducing new extensions of the new XLindley distribution with more than

two parameters, such as the exponentiated power new XLindley distribution with

three parameters and the extended Marshall-Olkin generalized new XLindley dis-

tribution with four parameters (see Alizadeh et al. (2021)), might encourage us

to explore this topic in the future.

All computations in this paper were performed using the statistical software
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Figure 6: P-P plots for Data I.

R (R Core Team , 2024), along with the packages nleqslv (Hasselman , 2018) and

AdequacyModel (Marinho et al. , 2016). The R codes related to the simulation

study are provided as supplementary material. The R codes for plotting figures

and analyzing the real data examples may be provided by the author upon request.
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