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Abstract: Performance measures are essential for evaluating portfolio perfor-

mance in the risk management and fund industries, with the Sharpe ratio being

a widely adopted risk-adjusted metric. This ratio compares the excess expected

return to its standard deviation, enabling investors to assess the returns of risk-

taking activities against risk-free options. Its popularity stems from its ease of

calculation and straightforward interpretation. However, the actual Sharpe ra-

tio value is often unavailable and must be estimated empirically based on the

assumption of normality in asset returns. In practice, financial assets typically ex-

hibit non-normal distributions and nonlinear dependencies, which can compromise

the accuracy of Sharpe ratio estimates when normality is assumed. This paper

challenges the normality assumption, aiming to enhance the accuracy of Sharpe

ratio estimates. We investigate the impact of dependency on the Sharpe ratio

of a two-asset portfolio using copulas. Theoretical findings, along with extensive

simulations, demonstrate the effectiveness of the proposed copula-based approach

compared to the classic Sharpe ratio.
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1. Introduction

The Sharpe ratio is one of the most popular tools for comparing the performance of

financial assets. Sharpe introduced this measure in 1966 Sharpe (1966) and later

revised his definition in 1994 Sharpe (1994). The Sharpe ratio is defined as the

ratio of the excess expected return to its standard deviation, allowing an investor to

compare the profits associated with risk-taking activities to risk-free activities. It is

recognized as a reliable measure of risk management. One reason for the popularity

of the Sharpe ratio is that it can be easily obtained, and its interpretation is

relatively simple. The ratio and its properties have been extensively studied in

the literature. For a complete discussion about the Sharpe ratio, we refer to the

recent book by Pav Pav (2021) and the many references therein.

In a good investment, both the choice of assets and the selection of a diverse

portfolio of assets are important. A key factor in portfolio diversity is the structure

of the dependency between the returns of assets in the portfolio. When the returns

of assets follow a normal distribution, the dependency is fully described by the

linear correlation. That is, the variance of portfolios depends only on the variance

of each asset’s return portfolio and the linear correlation between them. But in

real-world problems, there is considerable evidence of deviations from the normal

distribution assumption in asset returns Das and Uppal (2004); Hartmann et al.

(2004); Harvey and Siddique (1999). Such deviations may result in an incorrect

performance evaluation when applying the Sharpe ratio. To solve this problem,

various solutions have been proposed in the literature.

A common approach to model the dependency structure of asset returns is the

use of time series models; see, e.g., Brooks et al. (2005); Capitani (2012); Harvey

and Siddique (1999). In financial literature, an alternative approach to addressing

the non-normal dependence structure is based on copula theory Cherubini et al.

(2004); Embrechts et al. (2002); Fantazzini (2008); He and Gong (2009). Copulas

are effective tools for capturing different types of dependence structures Nelsen

(2006). In Mousavi et al. (2024), copulas were used for the first time to enhance

the accuracy of the maximum Sharpe ratio estimation.

In this paper, we consider a more general case and examine the effect of depen-

dency on various properties of the Sharpe ratio in a two-asset portfolio by using

copulas. This study focuses on the static case and emphasizes the copula represen-

tation of dependence among random variables. The paper is organized as follows:

In Section 2, we define the copula-based Sharpe ratio. Section 2 also provides

several examples of the value of the proposed Sharpe ratio under different copula

structures. Section 3 is devoted to analyzing the properties of the copula-based

Sharpe ratio. In order to compare the value of the empirical Sharpe ratio with

that of the copula-based one, a simulation study was carried out in Section 4. In
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Section 5, an application to real data is presented. Section 6 concludes.

2. Copula-based Sharpe ratio of a two-asset port-

folio

Let RA and RB denote the returns of two assets A and B, respectively. Further, let

Rf be the return of a benchmark investment strategy. Define continuous random

variables X and Y as X = RA − Rf and Y = RB − Rf . Consider univariate

marginal distribution functions of X and Y as F (x) = P (X ≤ x) and G(y) =

P (Y ≤ y) for x, y ∈ R with the joint distribution function H(x, y) = P (X ≤
x, Y ≤ y). Let T = wX + (1−w)Y , be a portfolio with dependent components X

and Y , where 0 < w < 1 is the weight of X and (1 − w) is the weight of Y . The

Sharpe ratio of T is given by

SRT =
wµX + (1− w)µY√

w2σ2
X + (1− w)2σ2

Y + 2w(1− w)σX,Y
, (2.1)

where µX = E(X), µY = E(Y ), σ2
X = var(X), σ2

Y = var(Y ) and σX,Y =

cov(X,Y ). Let SRX = µX/σX and SRY = µY /σY be the Sharpe ratios of X

and Y . In formula (2.1), µX , µY , σ2
X and σ2

Y are calculated from the marginal

distributions and σX,Y is associated to the joint distribution function of X and

Y . Following the Sklar’s Theorem Nelsen (2006), there exists a unique copula C

such that

H(x, y) = C(F (x), G(y)), x, y ∈ R, (2.2)

wherer C(u, v) = P (U ≤ u, V ≤ v) is the joint distribution of the pair (U, V ) =

(F (X), G(Y )) whose margins are uniform on [0,1]. The copula C characterizes the

dependence between the pair (X,Y ) Nelsen (2006). By using Hoeffding’s identity

Hoeffding (1994) and transformations u = F (x) and v = G(y), we have

σX,Y =

∫ ∞
−∞

∫ ∞
−∞

[H(x, y)− F (x)G(y)]dxdy

=

∫ 1

0

∫ 1

0

[C(u, v)− uv]dF−1(u)dG−1(v). (2.3)

Alternatively, σX,Y can be calculated by

σX,Y =

∫ ∞
−∞

∫ ∞
−∞

xydH(x, y)− µXµY

=

∫ 1

0

∫ 1

0

F−1(u)G−1(v)dC(u, v)− µXµY . (2.4)

When the joint distribution function of (X,Y ) is non-normal, we can model it

by selecting suitable parametric forms for F , G, and C in (2.2). For example, F
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might be normal with the parameters µ and σ2 and Y might be a gamma random

variable with parameters α and β and C might be taken from a parametric family

of copulas. Popular choices of copulas are described in Joe (2014); Nelsen (2006).

The main advantage of this approach is that distributions F , G, and C in (2.2)

can be chosen independently of one another. Copulas are a powerful tool because

they can capture various features of financial data, such as asymmetry, non-linear

dependence, or tail dependence.

3. Examples

In the following examples, the Sharpe ratio is calculated for some bivariate distri-

butions. Let Π denote the copula of independent random variables, i.e., Π(u, v) =

uv for all (u, v) ∈ [0, 1]2, and let M and W denote the Fréchet-Hoeffding up-

per and lower bound copulas, respectively, which, for any copula C, satisfy:

max(u + v − 1, 0) = W (u, v) ≤ C(u, v) ≤ M(u, v) = min(u, v) for every (u, v) ∈
[0, 1]2. We recall that M (W ) is the copula of perfect positive (negative) depen-

dence random variables Nelsen (2006). In the following examples, we compute

the Sharpe ratio of a portfolio with two perfect dependence assets, having expo-

nentially distributed returns.

Example 3.1. Let X and Y be two exponential random variables with the means
1

λ1
and

1

λ2
, wherer λ1 > λ2. If the copula of X and Y is M , then

σX,Y =
1

λ1λ2

∫ 1

0

∫ 1

0

ln(1− u) ln(1− v)dM(u, v)− 1

λ1λ2

=
1

λ1λ2

∫ 1

0

(ln(1− u))2du− 1

λ1λ2

=
1

λ1λ2
. (3.5)

The Sharpe ratio of the portfolio T = wX + (1− w)Y is then

SRT =
λ1 + (λ2 − λ1)w

|λ1 + (λ2 − λ1)w|
=


+1 if w > λ1

λ1−λ2

0 if w = λ1

λ1−λ2

−1 if w < λ1

λ1−λ2
.
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If the copula of X and Y is W , then

σX,Y =
1

λ1λ2

∫ 1

0

∫ 1

0

ln(1− u) ln(1− v)dW (u, v)− 1

λ1λ2

=
1

λ1λ2

∫ 1

0

ln(1− u) ln(u)du− 1

λ1λ2

= (1− π2

6
)

1

λ1λ2
. (3.6)

The Sharpe ratio of the portfolio T is given by

SRT =
λ1 + (λ2 − λ1)w√

(1− w)2λ2
2 + w2λ2

1 + (π
2

3 − 2)w(1− w)
.

The maximum value of SRT is 6√
36−3π2

= 2.3734, which happens at w∗ = λ1

λ1+λ2
.

Example 3.2. Let X and Y be two exponential random variables with the means
1

λ1
and

1

λ2
, respectively. Suppose also that we choose to model the dependence by

the Farlie-Gumbel-Morgenstern or FGM copula

Cθ(u, v) = uv[1 + θ(1− u)(1− v)], u, v ∈ [0, 1],

where −1 ≤ θ ≤ 1. Then by using (2.3) we have σX,Y =
θ

4λ1λ2
and the Sharpe

ratio of the portfolio T with the exponential returns and FGM copula structure is

given by

SRT =
λ1 + (λ2 − λ1)w√

λ2
2w

2 + λ2
1(1− w)2 + w(1−w)θλ1λ2

2

. (3.7)

As a function of the weight w, the maximum value of SRT is given by SR∗ =

2
√

2
4+θ , which happens at w∗ = λ1

λ1+λ2
. We note that SR∗ is decreasing in θ and

for θ ∈ [−1, 1], SR∗ ∈ [1.264, 1.633]. Since θ is the dependency parameter, the

value of the Sharpe ratio decreases as the dependence between components of the

portfolio increases. For the case of independence, i.e., θ = 0, we have SR∗T =
√

2.

We note that in a copula-based Sharpe ratio, E(T ) = E(wX + (1 − w)Y )

does not depend on the parameter θ of the copula. However, returns may have

distributions whose variance is a function of their mean, as the following example

shows.

Example 3.3. Consider (X1, X2) distributed as Marshall–Olkin bivariate expo-

nential distribution with the survival function Marshall and Olkin (1967)

H(x, y) = e−(λ1x+λ2y+λ12 max(x,y), x, y > 0,
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where λ1, λ2, λ12 are positive parameters. The survival copula associated with H

is given by Ĉ(u, v) = min(u1−α, v1−β), where α = λ12

λ1+λ12
and β = λ12

λ2+λ12
; see,

Nelsen (2006). The marginal distribution functions are exponential with E(Xi) =
1

λi+λ12
, var(Xi) = 1

(λi+λ12)2 , i = 1, 2 and

σX1,X2 =
λ12

(λ1 + λ12)(λ2 + λ12)(λ1 + λ2 + λ12)
.

The Sharpe ratio of the two assets portfolio T = wX1 + (1− w)X2 is given by

SRT =
λ1 + λ12 + (λ2 − λ1)w√

(λ2 + λ12)2w2 + (λ1 + λ12)2(1− w)2 + 2w(1−w)λ12(λ1+λ12)(λ2+λ12)
λ1+λ2+λ12

.

The maximum value of SRT is given by

SR∗T =

√
2(λ1 + λ2 + λ12)

λ1 + λ2 + 2λ12
,

which happens at the point w∗ = λ1+λ12

λ1+λ2+2λ12
. Note that SR∗ is decreasing in the

dependence parameter λ12. For the independent case, i.e., λ12 = 0, SR∗ =
√

2,

which is the maximum value of SR∗, and SR∗ → 1, as λ12 →∞.

From the ranges of possible values of its numerator and denominator, the

Sharpe ratio can theoretically reach any value. Sharpe ratio can theoretically be

infinitely large. The following example provides the Sharpe ratio of a two-asset

portfolio with the Pareto distributed returns.

Example 3.4. Let (X,Y ) be distributed as a Pareto distribution with the joint

survival function H(x, y) = (x+ y+ 1)−θ, x, y > 0 and θ > 0. The survival copula

associated with H is given by Ĉ(u, v) = (u−
1
θ + v−

1
θ − 1)−θ, which is a member

of Clayton’s family of copulas Nelsen (2006). Simple calculation gives E(X) =

E(Y ) = 1
θ−1 and var(X) = var(Y ) = θ

(θ−1)2(θ−2) and cov(X,Y ) = 1
(θ−1)2(θ−2) .

The Sharpe ratio of the portfolio T = wX + (1− w)Y is then

SRT =
θ
√
θ − 2√

θ − 2w(1− w)(θ − 1)
.

The maximum value of SRT is given by SR∗T = θ
√

2θ−4
θ+1 , which happens at w = 1

2 .

We note that SR∗ →∞, as θ →∞.

4. Dependency properties of copula-based Sharpe

ratio

Let TCθ = wX+ (1−w)Y be a two-asset portfolio whose components (X,Y ) have

the one-parameter copula structure Cθ. In this section, we discuss some properties
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of the copula-based Sharpe ratio SR(TCθ ) =
µ(TCθ )

σ(TCθ ) , where µ(TCθ ) = E(TCθ ) and

σ(TCθ ) =
√
var(TCθ ). First note that if the variance of returns does not depend

on their expected values, then SR(TCθ ) is decreasing (increasing) in θ, as σ(TCθ )

is increasing (decreasing) in θ. The following result compares two portfolios with

the common marginal distributions and different dependence structures.

Proposition 4.1. For i = 1, 2, let (Xi, Yi) have the copula Cθi , i = 1, 2, and

E(X1) = E(X2), var(X1) = var(X2). Then SR(TCθ1 ) ≥ SR(TCθ2 ), whenever

Cθ is a positively ordered family of copulas; that is Cθ1(u, v) ≤ Cθ2(u, v), for all

u, v ∈ [0, 1] and θ1 ≤ θ2.

Proof. If Cθ1(u, v) ≤ Cθ2(u, v), for all u, v ∈ [0, 1], then by (2.1)∫ 1

0

∫ 1

0

[Cθ1(u, v)− Cθ2(u, v)]dF−1(u)dG−1(v) ≤ 0.

Therefore, var(TCθ1 ) ≤ var(TCθ2 ) and SR(TCθ1 ) ≥ SR(TCθ2 ).

The following result provides a lower and upper bound for Sharpe ratio of a

two-asset portfolio with dependent returns.

Proposition 4.2. Let TC = wX + (1− w)Y be a two-asset portfolio whose com-

ponents (X,Y ) have the copula structure C. Then

SR(TM ) ≤ SR(TC) ≤ SR(TW ),

where, M and W are the Fréchet-Hoeffding upper and lower bound copulas,

Proof. The three ratios SRW , SRC , and SRM have a common numerator E(wX+

(1 − w)Y ). The result follows by using Proposition 1 and the fact that for every

copula C, we have W (u, v) ≤ C(u, v) ≤ M(u, v), for all u, v ∈ [0, 1]; see, e.g,

Nelsen (2006). Therefore;

var(TW ) ≤ var(TC) ≤ var(TM ).

Example 4.3. Let TC = wX + (1 − w)Y be a portfolio with exponentially dis-

tributed returns and the associated copula C. Then, from Example 3.1 and using

Proposition 4.2, we have

λ1 + (λ2 − λ1)w

|λ1 + (λ2 − λ1)w|
≤ SR(TC) ≤ λ1 + (λ2 − λ1)w√

(1− w)2λ2
2 + w2λ2

1 + (π
2

3 − 2)w(1− w)
.
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A copula C is said to be positive quadrant dependence (PQD) if for all (u, v) ∈
[0, 1]2, C(u, v) ≥ uv and negative quadrant dependence (NQD) if C(u, v) ≤ uv

Nelsen (2006). The following result compares the Sharpe ratio of a portfolio with

dependent returns with the Sharpe ratio of a portfolio consisting of independent

returns.

Proposition 4.4. Let TC = wX + (1− w)Y be a two-asset portfolio whose com-

ponents (X,Y ) have a copula structure C. If C is PQD, then SR(TC) ≤ SR(TΠ).

If C is NQD then SR(TΠ) ≤ SR(TC).

Proof. If C is PQD, then C(u, v) ≥ uv and σX,Y ≥ 0 so, SR(TC) ≤ SR(TΠ).

Similarly, if C is NQD, then σX,Y ≤ 0 so, SR(TΠ) ≤ SR(TC).

Remark 4.5. The above result shows that, when the returns of a two-asset port-

folio are positively or negatively dependent, but considered independent, the Sharpe

ratio is more or less estimated.

Example 4.6. Let TC = wX + (1 − w)Y be a portfolio with exponentially dis-

tributed returns and the associated PQD copula C. Then, from Example 3.2 and

using Proposition 4.4, we have

SR(TC) ≤ λ1 + (λ2 − λ1)w

λ1

√
2w2 − 2w + 1

.

5. Simulation study

To compare the value of the empirical Sharpe ratio with the value of the copula-

based one, a simulation study was carried out according to a factorial design

involving four factors that affect the estimation process:

(1) sample size: n ∈ {50, 200, 500};
(2) degree of dependence in terms of Kendall’s tau τ(θ) = 4

∫ 1

0

∫ 1

0
Cθ(u, v)dCθ(u, v)−

1 at τ ∈ {−0.3, 0.3, 0.8};
(3) dependence structure, represented by the copula C:

• Clayton (an asymmetric copula with the lower tail dependence)

Cθ(u, v) = {max(u−θ + v−θ − 1, 0)}− 1
θ , θ ∈ [−1,∞)− {0};

• Frank (a symmetric copula)

Cθ(u, v) = −1

θ
ln

(
1 +

(e−θu − 1)(e−θv − 1)

e−θ − 1

)
, θ ∈ (−∞,∞)− {0};

• Gumbel (an asymmetric copula with the upper tail dependence)

Cθ(u, v) = exp{−[(− ln(u))θ + (− ln(v))θ]
1
θ }, θ ∈ [1,∞);
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(4) type of marginal distributions:

• symmetric (normal distribution)

• heavy-tail symmetric (logistic distribution)

• skew (lognormal distribution).

For each combination of factors, 1000 random samples were generated and the

Sharpe ratio values were computed. The results are shown in Tables 1–8. Tables

are separated based on three types of marginal distributions. The tables give the

copula structure (Model), dependency level (Kendall’s τ), the true value of the

Sharpe ratio (Exact SR), considered sample sizes (n), the simulated bias (Bias)

and the mean square error (MSE) for the empirical Sharpe ratio and copula-based

Sharpe ratio and the relative efficiency (RE) of two estimators. The results show

that the MSE and bias in all cases decrease with the sample size, as expected. In

all cases, the relative efficiency of the copula-based Sharpe ratio compared to the

empirical method has increased significantly when the sample size increases. The

only exception is the case that the marginal distributions are normal, as we see in

Table 1. It can be seen that when the marginal distributions go towards skewness,

the copula-based method will have a much better performance than the empirical

method.

By comparing tables 1, 4, and 6, it can be observed that when the marginal

distributions are symmetric and heavy-tailed, the efficiency is greater than when

they are normal. When one of the marginal distributions deviates from symmetry

and becomes skewed, the accuracy of the copula-based estimation of the Sharpe

ratio increases compared to the empirical method (tables 7, 8). In this case, the

larger weight of the asset with a skewed distribution assigned the higher accuracy

of the copula-based estimation compared to the empirical method (tables 3, 5).

Finally, the highest efficiency is achieved when both assets have a skewed distribu-

tion. In this case, the empirical method for estimating the Sharpe ratio performs

very poorly compared to the Copula-based method (table 2).

In all cases, we see a smaller relative efficiency for the strong positive depen-

dency (in terms of Kendall’s tau) and a larger relative efficiency for the strong

negative dependency. The highest efficiency was achieved in n = 500 at τ = 0.3

with an upper-tailed dependent copula structure when both marginal distributions

are skewed. The lowest efficiency was also obtained in n = 50 at τ = 0.8 with the

symmetric copula structure when both marginal distributions are normal.

In sum, when the assets are normally distributed, using the copula-based

method or empirical method to estimate the Sharpe ratio does not make much

difference. Financial data typically don’t follow a normal distribution. So, using

empirical methods for estimation isn’t accurate and reduces the precision of the
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Table 1: Simulation results when marginal distributions are X ∼ normal(1, 2) and

Y ∼ normal(1, 2)
Model Kendall’s τ Exact SR n Empirical SR Copula-based SR RE

Bias MSE Bias MSE

Clayton

0.8 0.7199 50 0.0174 0.0311 0.0252 0.0320 0.9709

200 0.0007 0.0065 0.0026 0.0066 0.9953

500 0.0004 0.0029 0.0012 0.0029 1.0007

0.3 0.8051 50 0.0149 0.0342 0.0242 0.0349 0.9795

200 0.0048 0.0086 0.0073 0.0086 0.9991

500 0.0005 0.0030 0.0014 0.0030 1.0022

-0.3 1.1222 50 0.0132 0.0261 0.0229 0.0261 0.9988

200 0.0013 0.0067 0.0036 0.0066 1.0115

500 -0.0011 0.0024 0.0003 0.0024 1.0152

Frank

0.8 0.7200 50 0.0113 0.0241 0.0194 0.0250 0.9636

200 0.0047 0.0062 0.0066 0.0063 0.9892

500 0.0001 0.0024 0.0009 0.0024 0.9926

0.3 0.8136 50 0.0108 0.0265 0.0198 0.0275 0.9640

200 0.0030 0.0068 0.0052 0.0068 0.9899

500 0.0002 0.0027 0.0010 0.0027 0.9994

-0.3 1.1116 50 0.0154 0.0395 0.0227 0.0390 1.0130

200 0.0071 0.0089 0.0087 0.0088 1.0148

500 -0.0018 0.0035 -0.0008 0.0034 1.0312

Gumbel

0.8 0.7153 50 0.0086 0.0257 0.0160 0.0264 0.9730

200 0.0031 0.0064 0.0049 0.0064 0.9934

500 -0.0005 0.0026 0.0002 0.0026 0.9988

0.3 0.8050 50 0.0192 0.0263 0.0277 0.0271 0.9739

200 0.0043 0.0060 0.0061 0.0060 0.9940

500 0.0018 0.0023 0.0026 0.0023 1.0037

estimates. It is recommended to use copula-based methods for this type of data,

as they provide more reliable results and involve less error.

Three box plots are used to provide an overall picture of the performance of the

two estimation methods of the Sharpe ratio - copula-based and empirical. The box

plot of Figures 1, 2, and 3 is drawn for the Clayton copula with the marginal dis-

tributions (normal, normal), (log-normal, log-normal), and (logistic, log-normal).

The true value of the Sharpe ratio is indicated by a horizontal dashed line in each

figure. Figure 1 shows that for (normal, normal) marginal distributions, the per-

formance of the two measures is very close to each other. According to figures 2

and 3, which are plotted for the marginal distributions of (logistic, log-normal)

and (log-normal, log-normal), respectively, it is observed that the copula-based

method performs significantly better than the empirical method. On the other

hand, in all the box plots, it can be observed that as the sample size increases, the

estimated values get closer to the true value, thereby reducing the bias.
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Table 2: Simulation results when marginal distributions are X ∼
log normal(−0.35, 0.84) and Y ∼ log normal(−0.35, 0.84).

Model Kendall’s τ Exact SR n Empirical SR Copula-based SR RE

Bias MSE Bias MSE

Clayton

0.8 0.7954 50 0.0965 0.0367 0.0197 0.0150 2.4487

200 0.0469 0.0129 0.0097 0.0036 3.6140

500 0.0250 0.0063 0.0025 0.0013 4.8006

0.3 0.8840 50 0.1268 0.0614 0.0182 0.0208 2.9558

200 0.0564 0.0199 0.0055 0.0050 3.9676

500 0.0255 0.0111 -0.0001 0.0019 5.9852

-0.3 0.9722 50 0.2014 0.1147 0.0313 0.0281 4.0822

200 0.0769 0.0367 0.0085 0.0069 5.3198

500 0.0416 0.0196 0.0041 0.0029 6.8139

Frank

0.8 0.7720 50 0.1029 0.0410 0.0270 0.0134 3.0495

200 0.0338 0.0118 0.0017 0.0030 3.9654

500 0.0179 0.0065 0.0012 0.0012 5.2574

0.3 0.8641 50 0.1272 0.0517 0.0153 0.0152 3.3941

200 0.0467 0.0179 0.0038 0.0038 4.6683

500 0.0194 0.0101 0.0015 0.0016 6.3267

-0.3 0.9925 50 0.2152 0.1284 0.0265 0.0306 4.2039

200 0.0948 0.0425 0.0047 0.0079 5.3781

500 0.0416 0.0211 -0.0018 0.0030 7.0598

Gumbel

0.8 0.7110 50 0.1471 0.0619 0.0299 0.0171 3.6094

200 0.0652 0.0190 0.0072 0.0035 5.4550

500 0.0354 0.0106 0.0036 0.0014 7.4488

0.3 0.7789 50 0.1609 0.0746 0.0230 0.0161 4.6288

200 0.0811 0.0269 0.0102 0.0039 6.8833

500 0.0365 0.0134 0.0021 0.0016 8.5702
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Table 3: Simulation results when marginal distributions are X ∼ normal(1, 2) and

Y ∼ log norm(−0.35, 0.84).
Model Kendall’s τ Exact SR n Empirical SR Copula-based SR RE

Bias MSE Bias MSE

Clayton

0.8 0.7785 50 0.0609 0.0267 0.0080 0.0150 1.7775

200 0.0313 0.0099 0.0043 0.0034 2.9124

500 0.0146 0.0055 0.0023 0.0015 3.6740

0.3 0.8576 50 0.0980 0.0450 0.0240 0.0222 2.0300

200 0.0471 0.0161 0.0061 0.0052 3.0727

500 0.0233 0.0091 0.0018 0.0020 4.5372

-0.3 1.0286 50 0.2320 0.1449 0.0472 0.0417 3.4752

200 0.0872 0.0457 0.0064 0.0087 5.2593

500 0.0510 0.0262 0.0051 0.0044 5.9984

Frank

0.8 0.7682 50 0.0710 0.0262 0.0161 0.0142 1.8490

200 0.0288 0.0099 0.0022 0.0032 3.0653

500 0.0109 0.0049 0.0008 0.0012 3.9560

0.3 0.8458 50 0.1070 0.0416 0.0246 0.0172 2.4210

200 0.0400 0.0160 0.0067 0.0043 3.7219

500 0.0239 0.0081 0.0017 0.0017 4.7353

-0.3 1.0413 50 0.2192 0.1591 0.0370 0.0499 3.1892

200 0.0980 0.0484 0.0135 0.0113 4.2756

500 0.0575 0.0244 0.0073 0.0047 5.1388

Gumbel

0.8 0.7531 50 0.0748 0.0293 0.0160 0.0143 2.0476

200 0.0319 0.0095 0.0030 0.0031 3.0810

500 0.0161 0.0050 0.0021 0.0012 4.2290

0.3 0.8145 50 0.1182 0.0421 0.0268 0.0173 2.4284

200 0.0414 0.0164 0.0064 0.0038 4.3246

500 0.0228 0.0077 -0.0016 0.0016 4.7473



A Copula-based estimator for the Sharpe Ratio of a two-asset portfolio 231

Table 4: Simulation results when marginal distributions are X ∼ logistic(1, 1.1)

and Y ∼ logistic(1, 1.1).
Model Kendall’s τ Exact SR n Empirical SR Copula-based SR RE

Bias MSE Bias MSE

Clayton

0.8 0.7227 50 0.0134 0.0300 0.0164 0.0272 1.1025

200 0.0023 0.0065 0.0038 0.0059 1.1062

500 0.0010 0.0031 0.0011 0.0027 1.1569

0.3 0.8045 50 0.0216 0.0380 0.0222 0.0343 1.0815

200 0.0081 0.0090 0.0077 0.0081 1.1098

500 0.0027 0.0037 0.0034 0.0032 1.1606

-0.3 1.1188 50 0.0240 0.0322 0.0256 0.0290 1.1088

200 0.0067 0.0072 0.0056 0.0065 1.1143

500 0.0022 0.0033 0.0026 0.0029 1.1654

Frank

0.8 0.7244 50 0.0149 0.0100 0.0145 0.0257 1.0142

200 0.0031 0.0064 0.0051 0.0063 1.0199

500 0.0002 0.0026 0.0009 0.0024 1.0740

0.3 0.8179 50 0.0124 0.0292 0.0145 0.0277 1.0552

200 0.0089 0.0074 0.0096 0.0070 1.0604

500 0.0020 0.0029 0.0026 0.0027 1.0756

-0.3 1.1009 50 0.0189 0.0397 0.0226 0.0357 1.1135

200 0.0033 0.0106 0.0020 0.0088 1.2114

500 0.0008 0.0044 -0.0005 0.0036 1.2317

Gumbel

0.8 0.7157 50 0.0179 0.0298 0.0184 0.0278 1.0722

200 0.0059 0.0071 0.0055 0.0065 1.0839

500 0.0015 0.0026 0.0015 0.0024 1.1002

0.3 0.8042 50 0.0142 0.0279 0.0205 0.0258 1.0786

200 0.0045 0.0064 0.0041 0.0059 1.0872

500 0.0020 0.0027 0.0019 0.0024 1.1042
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Table 5: Simulation results when marginal distributions are X ∼ logistic(1, 1.1)

and Y ∼ log normal(−0.35, 0.84).
Model Kendall’s τ Exact SR n Empirical SR Copula-based SR RE

Bias MSE Bias MSE

Clayton

0.8 0.7803 50 0.0724 0.0282 0.0175 0.0166 1.7053

200 0.0325 0.0096 0.0043 0.0035 2.7230

500 0.0161 0.0065 0.0023 0.0016 4.1563

0.3 0.8587 50 0.1054 0.0449 0.0272 0.0231 1.9461

200 0.0403 0.0169 0.0063 0.0052 3.2663

500 0.0236 0.0087 0.0006 0.0020 4.3856

-0.3 1.0310 50 0.2329 0.1468 0.0452 0.0410 3.5828

200 0.1026 0.0511 0.0114 0.0098 5.2097

500 0.0588 0.0238 0.0023 0.0040 5.9223

Frank

0.8 0.7687 50 0.0683 0.0274 0.0106 0.0138 1.9834

200 0.0322 0.0095 0.0033 0.0031 3.0677

500 0.0106 0.0057 -0.0011 0.0012 4.6208

0.3 0.8474 50 0.0939 0.0379 0.0131 0.0174 2.1790

200 0.0463 0.0170 0.0049 0.0043 4.0000

500 0.0265 0.0083 0.0026 0.0017 4.8709

-0.3 1.0384 50 0.2412 0.1571 0.0520 0.0475 3.3104

200 0.1001 0.0527 0.0103 0.0108 4.8675

500 0.0511 0.0264 0.0056 0.0049 5.3951

Gumbel

0.8 0.7484 50 0.0821 0.0312 0.0159 0.0147 2.1240

200 0.0355 0.0096 0.0029 0.0031 3.0860

500 0.0145 0.0059 0.0022 0.0012 4.7467

0.3 0.8104 50 0.1079 0.0485 0.0192 0.0177 2.7356

200 0.0419 0.0166 0.0037 0.0039 4.2918

500 0.0148 0.0085 0.0012 0.0015 5.5455
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Table 6: Simulation results when marginal distributions are X ∼ logistic(1, 1.1)

and Y ∼ normal(1, 2).
Model Kendall’s τ Exact SR n Empirical SR Copula-based SR RE

Bias MSE Bias MSE

Clayton

0.8 0.7217 50 0.0211 0.0268 0.0271 0.0271 0.9859

200 0.0059 0.0068 0.0076 0.0066 1.0267

500 0.0016 0.0026 0.0022 0.0025 1.0306

0.3 0.8050 50 0.0129 0.0337 0.0201 0.0338 0.9988

200 0.0055 0.0083 0.0068 0.0080 1.0414

500 0.0024 0.0030 0.0030 0.0029 1.0467

-0.3 1.1203 50 0.0229 0.0267 0.0303 0.0266 1.0001

200 0.0059 0.0066 0.0083 0.0063 1.0436

500 0.0014 0.0027 0.0017 0.0026 1.0492

Frank

0.8 0.7224 50 0.0202 0.0263 0.0271 0.0271 0.9722

200 0.0057 0.0063 0.0074 0.0063 0.9937

500 -0.0009 0.0025 -0.0002 0.0024 1.0073

0.3 0.8158 50 0.0176 0.0271 0.0248 0.0278 0.9755

200 0.0023 0.0064 0.0045 0.0064 1.0054

500 -0.0006 0.0027 0.0003 0.0027 1.0115

-0.3 1.1061 50 0.0229 0.0426 0.0324 0.0420 1.0144

200 0.0031 0.0085 0.0054 0.0081 1.0481

500 0.0023 0.0034 0.0027 0.0033 1.0509

Gumbel

0.8 0.7160 50 0.0186 0.0275 0.0250 0.0275 1.0009

200 0.0022 0.0064 0.0033 0.0063 1.0177

500 0.0004 0.0025 0.0008 0.0024 1.0251

0.3 0.8048 50 0.0107 0.0254 0.0185 0.0253 1.0016

200 0.0049 0.0062 0.0069 0.0061 1.0194

500 0.0003 0.0025 0.0010 0.0024 1.0263



234 S. S. Sadat Mousavi et al.

Table 7: Simulation results when marginal distributions are X ∼
log normal(−0.35, 0.84) and Y ∼ normal(1, 2).

Model Kendall’s τ Exact SR n Empirical SR Copula-based SR RE

Bias MSE Bias MSE

Clayton

0.8 0.7785 50 0.0156 0.0203 0.0158 0.0198 1.0254

200 0.0084 0.0055 0.0033 0.0053 1.0337

500 0.0037 0.0022 0.0022 0.0020 1.0907

0.3 0.8576 50 0.0231 0.0313 0.0203 0.0301 1.0382

200 0.0076 0.0069 0.0060 0.0063 1.0846

500 0.0027 0.0029 0.0018 0.0026 1.1252

-0.3 1.0286 50 0.0140 0.0254 0.0157 0.0216 1.1720

200 0.0106 0.0074 0.0080 0.0060 1.2327

500 0.0038 0.0030 0.0014 0.0024 1.2851

Frank

0.8 0.7682 50 0.0105 0.0200 0.0066 0.0188 1.0631

200 0.0040 0.0051 0.0028 0.0046 1.1225

500 0.0021 0.0020 0.0007 0.0017 1.1921

0.3 0.8458 50 0.0204 0.0270 0.0156 0.0241 1.1194

200 0.0028 0.0064 0.0017 0.0056 1.1614

500 -0.0004 0.0026 -0.0004 0.0021 1.2507

-0.3 1.0413 50 0.0332 0.0364 0.0244 0.0300 1.2166

200 0.0085 0.0091 0.0051 0.0072 1.2589

500 0.0031 0.0035 0.0016 0.0027 1.3352

Gumbel

0.8 0.7531 50 0.0243 0.0207 0.0209 0.0187 1.1057

200 0.0094 0.0054 0.0058 0.0045 1.2186

500 0.0008 0.0024 0.0010 0.0018 1.3698

0.3 0.8144 50 0.0281 0.0261 0.0184 0.0216 1.2093

200 0.0087 0.0062 0.0050 0.0045 1.3702

500 0.0028 0.0028 0.0017 0.0019 1.4271
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Table 8: Simulation results when marginal distributions are X ∼
log normal(−0.35, 0.84) and Y ∼ logistic(1, 1.1).

Model Kendall’s τ Exact SR n Empirical SR Copula-based SR RE

Bias MSE Bias MSE

Clayton

0.8 0.7803 50 0.0123 0.0253 0.0116 0.0222 1.1421

200 0.0074 0.0060 0.0054 0.0052 1.1582

500 0.0011 0.0025 0.0002 0.0022 1.1593

0.3 0.8587 50 0.0216 0.0310 0.0133 0.0266 1.1682

200 0.0025 0.0077 0.0056 0.0063 1.2145

500 0.0019 0.0033 0.0011 0.0028 1.3302

-0.3 1.0310 50 0.0299 0.0328 0.0197 0.0279 1.1748

200 0.0089 0.0081 0.0029 0.0063 1.2931

500 0.0040 0.0035 0.0005 0.0024 1.4539

Frank

0.8 0.7687 50 0.0203 0.0243 0.0152 0.0218 1.1527

200 0.0058 0.0053 0.0044 0.0045 1.1650

500 -0.0005 0.0025 -0.0016 0.0020 1.2466

0.3 0.8474 50 0.0245 0.0301 0.0154 0.0241 1.2497

200 0.0074 0.0066 0.0057 0.0053 1.2509

500 0.0021 0.0030 0.0017 0.0022 1.3370

-0.3 1.0384 50 0.0306 0.0397 0.0148 0.0300 1.3252

200 0.0104 0.0103 0.0026 0.0074 1.3986

500 0.0036 0.0044 0.0002 0.0029 1.4896

Gumbel

0.8 0.7484 50 0.0291 0.0240 0.0192 0.0207 1.1567

200 0.0097 0.0060 0.0041 0.0045 1.3200

500 0.0044 0.0025 0.0019 0.0017 1.4600

0.3 0.8104 50 0.0304 0.0275 0.0176 0.0211 1.3067

200 0.0101 0.0076 0.0039 0.0048 1.5834

500 0.0043 0.0032 0.0015 0.0020 1.6035
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Figure 1: The box plot of estimates of the Sharpe ratio using the copula-based method

(left panel) and the empirical method (right panel) for the Clayton copula and normal

marginal distributions.



A Copula-based estimator for the Sharpe Ratio of a two-asset portfolio 237

plot-clayton-logis-lognorm.pdf
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Figure 2: The box plot of estimates of the Sharpe ratio using the copula-based method

(left panel) and the empirical method (right panel) for the Clayton copula and logistic

and lognormal marginal distributions.
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Figure 3: The box plot of estimates of the Sharpe ratio using the copula-based method

(left panel) and the empirical method (right panel) for the Clayton copula and lognormal

marginal distributions.
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Table 9: Kendall’s τ between CHF/USD, EUR/USD, and GBP/USD

CHF/USD EUR/USD GBP/USD

CHF/USD 1.000 0.5371 0.4485

EUR/USD 0.5371 1.0000 0.6035

GBP/USD 0.4485 0.6035 1.0000

6. Data Analysis

In this section, we compare the copula approach and the empirical method to

calculate the Sharpe ratio of a portfolio using real data sets. Two cases where

assets have positive or negative dependence are considered. To compare, the value

of the Sharpe ratio has been calculated under the assumption of independence of

assets, too.

6.1 Portfolios with positive dependent assets

We use three European exchange rates, GBP/USD, EUR/USD, and CHF/USD,

and then create four portfolios including them. The first portfolio is composed

of exchange rate GBP against USD and exchange rate EUR against USD, de-

noted by GBP/USD, EUR/USD. The second portfolio is composed of CHF/USD,

EUR/USD, the third portfolio is CHF/USD, GBP/USD, and the fourth portfolio

is composed of all three exchange rates. The analyzed period was from the 1st of

July 2010 to the 1st of June 2021 in monthly frequency. Data were selected from

finance.yahoo.com. Table 9 shows the values of Kendall’s τ between the pairs of

exchange rates that indicate positive dependence. Usually, stock returns are time

series data. Suitable time series models to fit returns are indicated in table 10.

GBP and CHF returns have a better fit to AR(1), and EUR returns have a better

fit to ARMA(1,1). To calculate the Sharpe ratio using the copula approach, first,

suitable marginal distributions for returns and then an appropriate copula struc-

ture are selected for each pair of portfolio components. The Sharpe ratio is then

calculated by the formula (2.1). For given time series data, after applying suitable

time series models, marginal parameters were obtained using the ARMA-filtered

residuals. Different distributions were fitted to the ARMA-filtered residuals, and

the normal, logistic, Student-t, and Cauchy distributions seemed to be suitable.

Table 11 shows the estimated parameters, the Kolmogorov-Smirnov (K-S) statis-

tic, the Anderson-Darling (A-D) statistic, Akaike’s Information Criterion (AIC),

Bayesian Information Criterion (BIC), and p-values of the fitted distributions.

According to the table, we choose the logistic distribution for GBP/USD and

CHF/USD returns and the Student-t distribution for EUR/USD returns.
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Table 10: Time Series Models of Returns

Return Time Series Model Model Equation

GBP AR(1) xt = 0.0001 + 0.0871xt−1 + εt

EUR ARMA(1,1) xt = −0.0002− 0.9395xt−1 + εt − 0.8798εt−1

CHF AR(1) xt = 0.0014− 0.1478xt−1 + εt

GBP

CHF

EUR

c13 c23

GBP—CHF EUR—CHF
c12;3

Figure 4: C- vine structures of the three pair copula constructions.

The copula selection is performed using the BiCopSelect function in the R

package VineCopula Schepsmeier et al. (2018). Table 12 shows the estimated

dependency parameter, the values of Kendall’s tau, the Cramér–von Mises Sn

statistic Genest et al. (2009), AIC, BIC, and p-value for 5 copulas. The Frank

copula is a good fit for the dependence structure of portfolios 1 and 3 and the

Student-t copula is a good fit for portfolio 2. Using the bivariate copula approach,

we can construct the joint distribution of variables with a dependence structure

characterized. Vine copulas build a multivariate copula using bivariate copulas.

For three dimensions:

f(x1, x2, x3) = c12;3(F1|3(x1|x3), F2|3(x2|x3);x3)× c13(F1(x1), F3(x3))

× c23(F2(x2), F3(x3))f3(x3)f2(x2)f1(x1).

Figure 4 indicates the graphical presentation of the three-dimensional vine copula

including GBP, EUR, and CHF. In figure 5, deviation from the Gaussian copula

can be seen in all three panels. The lower right panel has upper and lower tail

dependence. The lower left panel has no tail dependence and is approximately

symmetric. Copula’s parameter estimation results are contained in the table 13.

Table 14 shows the value of the Sharpe ratio calculated by three methods: em-

pirical, copula-based, and under the assumption of independence of returns of the

portfolio assets. In this table, portfolio 1 includes GBP and EUR, portfolio 2 in-

cludes CHF and EUR, portfolio 3 includes CHF and GBP, and portfolio 4 includes

GBP, EUR, and CHF. As it can be seen, due to the positive dependence of assets,

the Sharpe ratio calculated under the assumption of independence of assets is over-

estimated. In most cases, financial data affect each other and are interdependent.



A Copula-based estimator for the Sharpe Ratio of a two-asset portfolio 241

T
ab

le
11

:
F

it
te

d
m

ar
gi

n
al

d
is

tr
ib

u
ti

on
s

fo
r

A
R

M
A

-fi
lt

er
ed

re
si

d
u

a
ls

o
f

ex
ch

a
n

g
e

ra
te

re
tu

rn
s

A
ss
et

D
is
tr
ib
u
ti
o
n

E
st
im

a
te
d
p
a
ra
m
et
er
s

K
-S

A
-D

A
IC

B
IC

P
-V

a
lu
e

G
B
P
/
U
S
D

N
o
rm

a
l

µ̂
=

−
0
/
0
0
3
7
(0
.0
8
7
),
σ̂
=

0
/
9
9
9
(0
.0
6
1
)

0
.0
6
5

0
.4
3
9

3
7
8
.4
8

3
8
4
.2
5

0
.6
1

L
o
g
is
ti
c

L
o
c
a
ti
o
n
=

0
/
0
1
2
6

(0
.0
8
3
)
,
S
c
a
le

=
0
/
5
5
1

(0
.0
3
9
)

0
.0
5
4

0
.3
1
6

3
7
4
.0
1

3
7
9
.7
8

0
.8
3

t
d
f
=

7
/
7
6
(0
.0
4
4
)

0
.0
5
5

0
.3
2
2

3
7
5
.6
7

3
8
4
.3
2

0
.8
0

G
u
m
b
el

L
o
ca

ti
o
n
=

-0
.5
0
6
9
(0
.0
5
7
)
,
S
ca

le
=

1
.0
7
5
(0
.0
4
9
)

0
.1
2
1

3
.2
7
3

4
1
0
.6
8

4
1
6
.4
6

0
.0
4

E
U
R
/
U
S
D

N
o
rm

a
l

µ̂
=

−
0
/
0
0
1
0
(0
.0
1
6
),
σ̂
=

0
/
1
8
8
(0
.0
1
1
)

0
.0
5
3

0
.4
2
2

-6
2
.4
9

-5
6
.7
2

0
.8
5

L
o
g
is
ti
c

L
o
ca

ti
o
n
=
0
/
0
0
3
1
(0
.0
1
5
),

S
ca

le
=
0
/
1
0
5
(0
.0
0
7
)

0
.0
4
6

0
.2
9
7

-6
1
.0
2

-5
9
.2
6

0
.9
2

t
d
f
=
8
/
9
5

(0
.0
6
2
)

0
.0
4
5

0
.2
7
8

-6
3
.1
5

-6
4
.4
4

0
.9
5

G
u
m
b
el

L
o
ca

ti
o
n
=

-0
.0
9
7
1
(0
.0
4
1
)
,
S
ca

le
=

0
.2
0
3
(0
.0
6
7
)

0
.1
2
4

3
.4
4
3

-2
7
.9
0

-2
2
.1
3

0
.0
4

C
H
F
/
U
S
D

N
o
rm

a
l

µ̂
=

0
/
0
0
8
0
(0
.0
8
7
),
σ̂
=

1
/
0
0
0
(0
.0
6
1
)

0
.0
5
8

0
.5
1
5

3
7
8
.6
3

3
8
4
.4
0

0
.7
7

L
o
g
is
ti
c

L
o
c
a
ti
o
n
=
0
/
0
1
1
8

(0
.0
8
2
),

S
c
a
le

=
0
/
5
4
7

(0
.0
3
9
)

0
.0
5
0

0
.2
4
0

3
7
3
.1
6

3
7
8
.9
2

0
.9
0

t
d
f
=

6
/
3
8
(0
.0
3
2
)

0
.0
5
3

0
.2
4
3

3
7
5
.0
5

3
8
3
.7
0

0
.8
5

G
u
m
b
el

L
o
ca

ti
o
n
=

-0
.5
0
1
4
(0
.0
2
7
)
,
S
ca

le
=

1
.1
2
5
(0
.0
5
1
)

0
.1
0
9

4
.0
0
1

4
1
8
.6
2

4
2
4
.3
9

0
.0
8



242 S. S. Sadat Mousavi et al.

Table 12: The estimated parameter and copula goodness-of-fit test statistic for

three portfolios
Portfolio Assumed copula θ log-likelihood Sn Statistic AIC P-Value

rEUR/USD

Student-t 0.38 (0.080), df= 6.68 (0.049) 8.90 0.020 -13.84 0.49

rGBP/USD Gumbel 1.30 (0.079) 8.45 0.018 -14.90 0.63

Clayton 0.66 (0.020) 4.13 0.046 -9.04 0.00

Frank 2.47 (0.032) 9.71 0.017 -17.42 0.69

Normal 0/35 (0.075) 7.90 0.022 -13.80 0.46

-rEUR/USD

Student-t 0.80 (0.041), df= 2 (0.036) 73.64 0.017 -143.28 0.49

rCHF/USD Gumbel 2.30 (0.104) 56.37 0.021 -110.74 0.19

Clayton 2.75 (0.208) 39.46 0.061 -76.91 0.00

Frank 7.75 (0.058) 56.50 0.018 -110.99 0.46

Normal 0.70 (0.036) 42.76 0.019 -83.52 0.35

rGBP/USD

Student-t 0.30 (0.048), df= 6.77 (0.051) 5.13 0.016 -6.26 0.83

rCHF/USD Gumbel 1.21 (0.068) 4.56 0.017 -7.13 0.75

Clayton 0.48 (0.142) 3.31 0.028 -4.62 0.17

Frank 1.81 (0.052) 5.41 0.014 -8.83 0.89

Normal 0.27 (0.082) 4.27 0.016 -6.55 0.78

vine copula.png

Figure 5: Contour plots. Respectively, Survival BB8, Frank, and t copulas.

Table 13: Selected copula families in vine copula

Term Family copula Parameter(s) Kendall’s τ

c13 Frank 1.81 0.19

c23 t 0.81, df = 2 0.6

c12;3 Survival BB8 1.87, 0.82 0.19
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Table 14: Estimated value of the Sharpe ratio for four portfolios

Portfolio Weight Independence Empirical method Copula method

Portfolio (1)

0.2 0.0116 -0.0006 0.0109

0.4 0.0162 -0.0002 0.0142

0.6 0.0199 0.0005 0.0172

0.8 0.0206 0.0022 0.0189

Portfolio (2)

0.2 0.0234 0.0016 0.0199

0.4 0.0422 0.0055 0.0321

0.6 0.0572 0.0128 0.0437

0.8 0.0630 0.0283 0.0541

Portfolio (3)

0.2 0.0370 0.0190 0.0345

0.4 0.0549 0.0328 0.0489

0.6 0.0645 0.0427 0.0584

0.8 0.0654 0.0477 0.0623

Portfolio (4)

w1 = 0.2, w2 = 0.2 0.0651 0.0239 0.0534

w1 = 0.2, w2 = 0.4 0.0542 0.0090 0.0408

w1 = 0.4, w2 = 0.2 0.0599 0.0175 0.0468

w1 = 0.4, w2 = 0.4 0.0404 0.0049 0.0313

Also, Pearson correlation considers only linear dependence. Therefore, the value

calculated with the copula method is a better estimate. According to this table,

portfolio 1 has the lowest Sharpe ratio and the exchange rate of CHF increases

the Sharpe ratio of the portfolio. Therefore, as the weight of CHF increases, the

Sharpe ratio increases (In all three methods, portfolio 3 seems to have a larger

Sharpe ratio). Also, the portfolio with a higher positive correlation between the

exchange rates has a smaller Sharpe ratio.

6.2 Portfolios with negative dependent assets

In this section, we examine the effect of the negative correlation between assets

on the copula-based Sharpe ratio compared to the independence and empirical

methods. Liu, Chang, and ChuiLiu et al. (2016) examined the effectiveness

of Gold and the US dollar (USD) as hedge assets against stock prices for seven

developed markets. According to Liu et al. (2016), USD and Gold are hedge assets

in some countries during normal market conditions. They show that USD/CAD is

negatively correlated with the S&P/TSX 300 and USD/CAD is a hedge asset for

the portfolio. Also, USD/CAD and Gold have a negative correlation. The weekly

data of stock indices S&P/TSX 300 in Canada, exchange rate USD/CAD, and

Gold are collected over the period 13 September 2021 - 3 September 2022. These

data are obtained from https://www.tgju.org/.

Table 15 indicates Kendall’s tau between data and table 16 indicates time

series models fitted to returns. Table 17 shows the goodness-of-fit test statistics for
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Table 15: Kendall’s tau between S&P/TSX 300, USD/CAD, and Gold

S&P/TSX 300 USD/CAD Gold/CAD

S&P/TSX 300 1.000 -0.5288 0.8384

USD/CAD -0.5288 1.0000 -0.3672

Gold/CAD 0.8384 -0.3672 1.0000

Table 16: Time series model of the Returns

Return Time series model Model

S&P/TSX 300 AR(1) xt = −0.0011 + 0.1610xt−1 + εt

USD/CAD AR(1) xt = 0.0008 + 0.2182xt−1 + εt

Gold/CAD AR(1) xt = −0.0005 + 0.2106xt−1 + εt

marginal distributions of filtered residuals. The Gumbel distribution is selected for

USD/CAD filtered residuals, the t-distribution for S&P/TSX 300 filtered residuals,

and the logistic distribution for Gold filtered residuals.

The result of copula goodness-of-fit tests given in Table 18 suggest that the

rotated 90 degree Joe copula is a good fit for returns of USD/CAD and S&P/TSX

300, also the Rotated 270-degree Joe copula Joe (2014) for the returns of USD/CAD

and Gold/CAD. The estimated values of the Sharpe ratio calculated by three meth-

ods are given in Table 19. As we can see, under the assumption of independence of

returns and the empirical method, the estimated value of the Sharpe ratios is less

than the copula approach. Therefore, when faced with a negative dependence, the

independence assumption and empirical method underestimate the Sharpe ratio.

7. Concluding Remarks

This paper considered a copula-based Sharpe ratio for a two-asset portfolio, en-

hancing the accuracy of its estimation. The traditional covariance calculation

is replaced with Hoeffding’s formula, allowing for the consideration of various

dependencies without assuming linearity. The study examines features of the

copula-based Sharpe ratio, establishing its upper and lower bounds and demon-

strating when conventional methods may lead to overestimation or underestima-

tion. Through simulations, the copula-based Sharpe ratio consistently outperforms

the empirical Sharpe ratio, particularly for asymmetric marginal distributions.

Analysis of actual data shows that all three estimation methods—assuming inde-

pendence, the empirical method, and the copula-based method—yield the same

asset ranking. However, in cases of both positive and negative asset dependencies,
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Table 19: Estimated values of Sharpe ratio for the portfolios

Portfolio Weight Independence Empirical method Copula method

S&P/TSX 300 0.2 0.1118 0.1165 0.1500

-USD/CAD 0.4 0.1008 0.0081 0.1409

0.6 0.0817 -0.0455 0.0970

0.8 0.0667 -0.0636 0.0710

USD/CAD 0.2 0.0149 -0.0294 0.0158

- Gold/CAD 0.4 0.0360 -0.0001 0.0425

0.6 0.0646 0.0558 0.0839

0.8 0.0893 0.1032 0.1064

the empirical method underestimates the Sharpe ratio compared to the copula-

based method. Theoretical results and analyses reveal that increased positive

dependence among portfolio assets results in a lower Sharpe ratio, while negative

dependence leads to a higher Sharpe ratio.
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