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Abstract: Breast cancer (BC) is one of the leading causes of death in women

worldwide, and early diagnosis can save many lives. The Breast Imaging Report-

ing and Data System (BIRADS), developed by the American College of Radiology

(ACR), is a standard method used in diagnosis. However, physicians face chal-

lenges in determining BIRADS values, and many factors have not been consid-

ered in past diagnostic methods. This article presents a novel decision support

system (DSS). In the proposed DSS, c-mean clustering is used to determine the

molecular subtype for patients lacking this value, combining mammography report

processing with hospital information systems (HIS) from electronic files. Several

classifiers, including convolutional neural networks (CNN), decision tree (DT),

multi-level fuzzy min-max neural network (MLF), multi-class support vector ma-

chine (SVM), and XGBoost, are trained to determine the BIRADS value. These

classifier outputs are then combined using weighted ensemble learning with the

majority voting algorithm. This assists physicians in the early diagnosis of BC.

Results are evaluated using accuracy, specificity, sensitivity, positive predictive

value (PPV), negative predictive value (NPV), and F1-score. The obtained values

are 97.94%, 98.79%, 92.08%, 92.34%, 98.80%, and 92.19%, respectively.

Keywords: weighted ensemble learning, combined machine learning, decision

support system, breast cancer diagnosis, BIRADS

Mathematics Subject Classification (2010): 68T05, 62C20.

∗Corresponding Author: zahaby@pnu.ac.ir



72 M. Zahaby & I. Makhdoom

1. Introduction

Cancer is now one of the top causes of death globally. In developed nations, it is the

second leading cause of death after heart disease, while in less developed regions, it

ranks third. Cancer results in more fatalities than diseases like tuberculosis, AIDS,

and malaria combined Balakumar and et al. (2016). Without effective prevention,

the next decade could see over 85 million deaths from cancer worldwide Balakumar

and et al. (2016). Presently, cancer is responsible for 12% of global deaths Bray

and et al. (2018). Among women, breast cancer is one of the most frequently

diagnosed cancers. Statistics show that 19.9% of cancer-related deaths in women

are linked to breast cancer U.S. Cancer Statistics Working Group (2024). The

World Health Organization (WHO) estimates that between one in eight to one

in ten women will be diagnosed with breast cancer in their lifetime Isfahani and

et al. (2020). Early detection is a key factor in the successful treatment of the

disease, as identifying breast cancer in its early stages significantly improves the

likelihood of recovery and survival Dehghan and et al. (2018); Ginsburg and

et al. (2020). Medical decision support systems (MDSS), developed through

collaboration between physicians and engineers, are designed to assist healthcare

providers in making informed medical decisions Alaa and et al. (2016); Mazo

and et al. (2020); Sim and et al. (2017). Today, many medical facilities have

recognized the value of MDSS in managing breast cancer Mazo and et al. (2020).

Research suggests that these systems, by providing visualized patient data, enable

doctors to quickly access the necessary information to determine the most suitable

treatment Park and et al. (2021). Mammography reports are one of the important

inputs used by MDSS to help diagnose and treat breast cancer Esmaeili and et al.

(2020).

Radiologists rely on the BIRADS classification system, developed by the Amer-

ican College of Radiology, to interpret mammography findings and describe them

in medical reports Magny and et al. (2023). This system is recognized as one

of the most reliable methods for evaluating and assessing the risk of breast le-

sions through mammography Farrokh and et al. (2019). The BIRADS system is

divided into seven levels, ranging from 0 to 6, with each level offering a specific

interpretation of the mammogram results Vanderheyden and Xie (2020). Despite

various medical decision support systems (MDSS) being introduced to assist in

diagnosing cancer patients using electronic health record data, no MDSS has yet

been developed to classify breast cancer patients by combining information from

mammography reports, electronic patient records (HIS), and molecular subtypes.

Preliminary studies indicate a gap in this area Castro and et al. (2017); Gao and

et al. (2015); Gupta and et al. (2018); Nassif and et al. (2012); Percha and et

al. (2012); Dorothy and et al. (2013); Zhang and et al. (2019).
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This article is divided into four sections. Section 1 provides an introduction

to the article’s context, outlining the advancements and limitations in the field

of study, along with a brief overview of its objectives. Section 2 presents a pro-

posed decision support system, explaining its various stages and components in

detail. All necessary information for understanding the system’s operation is also

provided. In Section 3, the results from the proposed system are evaluated and

analyzed. Finally, Section 4 discusses the system and offers conclusions about its

practicality and effectiveness.

2. Literature Review

In 2012, Percha et al. Percha and et al. (2012) processed medical reports and

categorized them according to BIRADS, though their focus was limited to breast

tissue. Also in 2012, Nassif et al. Nassif and et al. (2012) extracted BIRADS

features from clinical texts and compared them with manual reports, but no BI-

RADS grading was applied. In 2013, Sippo et al. Dorothy and et al. (2013)

automated the extraction of BIRADS features from radiology reports using the

BIRADS Observation Kit and natural language processing (NLP). In 2015, Gao

et al. Gao and et al. (2015) used NLP to extract information from unstructured

mammography reports, but their approach was confined to diagnosing four types

of breast complications, relying solely on medical reports. In 2016, Bozkurt et al.

Bozkurt and et al. (2016) introduced a decision support system based on NLP to

diagnose malignancies from BIRADS reports and radiology texts. In 2017, Cas-

tro et al. Castro and et al. (2017) presented a rule-based NLP approach for

classifying radiology reports, though it utilized only one type of textual data. In

2017, Gupta et al. Gupta and et al. (2018) proposed a method using parse tree

structures and semantics to convert mammography reports into structured data,

utilizing only medical reports. Esmaili et al., in 2020, Esmaeili and et al. (2020)

introduced a decision support system to assist doctors in interpreting mammog-

raphy text reports and developed a model capable of predicting when a biopsy

might be necessary. In 2022, Achilonu et al. Achilonu and et al. (2022) de-

veloped a rule-based NLP algorithm that extracted key breast cancer parameters

from pathology reports, focusing specifically on molecular subtypes, using only

molecular subtype reports. Higa, in 2018, Higa (2018) employed artificial neural

networks and decision tree classification methods to predict breast cancer using

clinical data. In 2019, Zhang et al. Zhang and et al. (2019) applied deep learning

techniques to extract clinical information related to breast cancer, though their

approach was notably complex. In 2023, Spaeth et al. Spaeth and et al. (2023)

introduced a breast cancer diagnostic model that incorporates key clinical factors,
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including family history and polygenic risk, enabling the exclusion of moderate

factors to enhance diagnostic accuracy.

Based on previous research, mammography reports, health information system

(HIS) data, and molecular subtypes have typically been utilized independently for

BIRADS diagnosis. In this study, however, we combine electronic health record

information and molecular subtypes with mammography reports to assess the im-

pact of this additional information on BIRADS diagnosis. The aim of this research

is to develop a decision support system that predicts BIRADS values and molecu-

lar subtypes. To achieve this, mammography reports are initially processed using

natural language processing (NLP) and transformed into vectors with word2vec

Guo and et al. (2019). Additionally, 15 features from the electronic health records

of patients are extracted, which include 2 numerical and 13 nominal variables that

are then combined with the vectors from the mammography reports. The un-

supervised c-mean method is employed to cluster the molecular subtypes of the

samples, assigning molecular subgroup values to each cluster’s data. For classi-

fication and determination of BIRADS, several algorithms are utilized, including

convolutional neural networks (CNN), decision trees (DT), multi-level fuzzy min-

max neural networks (MLF), multi-class support vector machines (SVM), and

XGBoost. The predicted BIRADS values from each classifier are then used as

base learners, which are combined through weighted ensemble learning using a

majority voting algorithm to improve prediction accuracy.

3. The Proposed Method

This paper presents a novel BIRADS diagnosis prediction model as part of the

proposed decision support system (DSS). The dataset used comprises two main

sources: mammography reports and electronic patient records, extracted from

the hospital information system (HIS). The dataset consists of 250 mammogra-

phy images, accompanied by their reports and electronic medical records from

Shahidzadeh Hospital Medical Training Center in Behbahan, Iran, covering the

years 2020 to 2022. The mammography text reports contain 210 distinct features,

while the electronic records contribute 15 features. Table 1 outlines 2 numerical

features, and Table 2 lists 13 nominal features. In total, 225 features are collected

for each patient, combining both mammography report data and electronic record

information.

Additionally, Table 3 provides details on the distribution of the 250 patients

across the various BIRADS categories.

Figure 1 illustrates the different stages of the proposed approach, organized into

five phases. In the first phase, the dataset is gathered, consisting of mammography



Enhanced DSS for BC Diagnosis 75

Table 1: Numerical features extracted from HIS
Healthy people (n=17) Patients (n=233)Variable

name
Variable description

Standard deviation ± mean Standard deviation ± mean

1 Size Lesion size 5.41±5.59 6.29±4.71

2 Age Age of clients/patients 53.52± 11.48 43.89±32.11

reports and HIS data for each individual. Since mammography reports contain

unstructured text, they were processed and transformed into vectors using natural

language processing (NLP) techniques. In the second phase, important features

from the HIS data were identified through consultation with a physician. In the

third phase, because the dataset only includes BIRADS classifications, it was nec-

essary to determine the molecular subtype classes. Using the c-means algorithm,

an unsupervised clustering technique, the data were grouped into four clusters as

outlined in Table 4. Each cluster was then assigned a value corresponding to its

respective molecular subtype. In the fourth phase, multiple models were trained

to predict BIRADS values, including convolutional neural networks (CNN), de-

cision tree (DT), multi-level fuzzy min-max neural network (MLF), multi-class

support vector machine (SVM), and XGboost. In the final phase, the predicted

BIRADS values from these models were combined using a weighted ensemble learn-

ing method with majority voting, and the results were validated with evaluation

parameters.

3.1 The first phase: Dataset

Our dataset consists of two primary sources: mammography reports and electronic

patient records (a subset from the HIS). The research process began with the col-

lection of medical data from Shahidzadeh Hospital Medical Training Center in

Behbahan, Iran, covering the period from 2020 to 2022. This dataset initially in-

cluded the mammography reports and electronic records of 400 patients. However,

due to incomplete data for some patients, only the information of 250 patients with

complete records was ultimately used for the study.

3.2 The second phase: Processing

3.2.1 Convert MTR to vector

Figure 2 shows the components of the proposed method for classifying medical

reports and the process of extracting a vector from a mammography report. It is

important to mention that this figure highlights only the text processing workflow.

During preprocessing, mammography reports were stemmed using the NLTK

library Loper and et al. (2002). Prepositions and punctuation marks were re-
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Table 2: Nominal features extracted from HIS
Variable

name
Variable description

Healthy people

Qty (No.=17)

Patients

Qty (No.=233)

1 Breast secretion
Presence/absence of abnormal breast dis-

charge

No=5

Yes=12

No=136

Yes=97

2 Side
Left, right, or Bilateral (both sides of the

chest)

Left=5

Right=8

Bilateral=4

Left=83

Right=108

Bilateral=42

3 Pain History of pain in the breast area
No=6

Yes=11

No=86

Yes=147

4 Pregnancy Presence/absence of pregnancy history
No=7

Yes=10

No=40

Yes=193

5 Disease Presence/absence of disease history
No=12

Yes=5

No=121

Yes=112

6 Breastfeeding
Presence/absence of a history of the Breast-

feeding

No=9

Yes=8

No=72

Yes=161

7 Shape

Breast shape with three states: oval, round

and irregular, which can be different based on

genetics, age, weight, and hormone level.

Oval=3

Round=6

Irregular=8

Oval=34

Round=47

Irregular=152

8 Menstruation
Presence/absence of regular menstruation ac-

cording to age

No=5

Yes=12

No=37

Yes=196

9 Birth control pills Taking/not taking birth control pills
No=13

Yes=4

No=142

Yes=91

10 Heredity

Inheritance was divided into three groups.

People who have no family history of cancer.

People with a history of other cancers and peo-

ple with a family history of breast cancer

No=8

Yes (Breast)=3

Yes (Others)=6

No=44

Yes (Breast)=49

Yes (Others)=140

11 Marital status Presence/absence of marriage history
Single=2

Married=15

Single=40

Married=193

12 Related features

Presence/absence of the following as related

features in the patient’s records: skin thick-

ening, skin shrinkage, nipple shrinkage, struc-

tural distortion, axillary adenopathy, and cal-

cium masses.

Skin thickening=3

Skin retraction=4

Nipple retraction=5

Architectural

distortion=2

Axillary

adenopathy=2

Calcification=1

Skin thickening=48

Skin retraction=65

Nipple retraction=21

Architectural

distortion=26

Axillary

adenopathy=31

Calcification=42

13 Menopause Entering/not entering the menopause period
No=8

Yes=9

No=186

Yes=47

moved, except for negations. For instance, in the sentence ”No tangible mass in

the breast or axillary is seen,” the negative term is retained. Numbers, both in-

teger and decimal, were converted to their corresponding text form. To maintain

local dependencies, a bigram collection of word pairs was created based on mutual

information. To enhance the accuracy of word embeddings, bigrams that appeared

less than 50 times were discarded, while those occurring more than 1,000 times

were treated as single words.

Next, key terms were extracted using a predefined dictionary. If a negation

appeared in a sentence, its meaning was inverted, or the corresponding vector was

reversed. For example, in the previous sentence, ”tangible mass” could indicate

the absence of breast cancer. If this phrase is in the dictionary, its meaning is
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Table 3: Patients distribution according to BIRADS class

Class Number of patients

BIRADS 0 9

BIRADS 1 17

BIRADS 2 24

BIRADS 3 21

BIRADS 4 78

BIRADS 5 69

BIRADS 6 32

Total 250

flipped, and if no opposite term is found, the Word2vec vector is reversed. To

reduce ambiguities and enhance the semantic precision of the reports, domain

ontology was applied in the text processing phase. A lexical crawler Banerjee and

et al. (2019) was employed to identify derived terms sharing a common root

with predefined terms, which were then mapped to controlled terms (key terms).

Along with the dictionary, commonly available terms (CLEVER) Banerjee and

et al. (2019) were also used to help identify clinical contexts and map them

appropriately.

After merging the key terms with those obtained from CLEVER, a total of

260 key terms were created. These terms serve two main purposes: (a) to shorten

reports through mapping, and (b) to assist in generating text-aware vectors. An

unsupervised method was utilized to create word embeddings with the Word2vec

model Guo and et al. (2019). To train Word2vec, the Skip-gram technique

was used with a vector length of 210 and a window size of 8. Each report was

represented using the selected key terms, and the mean of all corresponding word

vectors was computed to obtain the final report vector, as shown in Equation 3.1.

After merging key terms from CLEVER, a total of 260 key terms were obtained,

primarily serving two purposes: (a) reducing report complexity through mapping

and (b) aiding in the generation of text-aware vectors. An unsupervised method

was employed to generate word embeddings using the Word2vec model Guo and

et al. (2019). To train Word2vec, Skipgram with vector length 210 and window

width 8 was used. In each report, selected key terms were used to describe that

text. The final text representation was obtained by averaging all the extracted

vectors. Each report vector was calculated based on equation 3.1.

VMTR =
1

N

N∑
i=1

VWi
(3.1)
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Here, VMTR is the report’s vector, N is the number of words selected from the

report, and V(Wi) is the vector of each word obtained from Word2vec.

3.2.2 HIS feature selection

Breast cancer specialists were consulted to identify the most relevant features for

diagnosing breast cancer based on data obtained from the hospital information

system (HIS). HIS data were extracted from the picture archiving and communi-

cation system (PACS) and the electronic files of patients at Shahidzadeh Hospital

Medical Training Center in Behbahan, Iran from 2020 to 2022. The electronic

records encompass medical documents, images, and reports stored in PACS. HIS

is a comprehensive information system that covers various aspects of hospital oper-

ations, including financial, patient health, legal, and administrative services. The

database incorporates information from the PACS system used in medical training

centers.

3.3 The third phase: Clustering

Breast cancer is one of the heterogeneous diseases characterized by a variety of

molecular subtypes, which are classified based on receptor and immunochemical

status. Key receptors involved include the estrogen receptor (ER), progesterone re-

ceptor (PR), human epidermal growth factor receptor 2 (HER2), the proliferation

marker Ki67, and the epidermal growth factor receptor (EGFR). Breast cancer

can be categorized into four primary molecular subtypes: luminal A, luminal B,

HER2, and basal-like molecular class (BLBC). Each subtype is associated with

different rates of recurrence and survival, which are critical factors in determining

the appropriate treatment strategies Kao and et al. (2011).

3.3.1 c-mean clustering

To identify molecular subtypes, patients need to undergo an invasive biopsy pro-

cedure to collect breast tissue. In this study, only 52 out of the 250 samples con-

tained molecular subtype features. Given the importance of molecular subtypes

in breast cancer progression, c-mean clustering was used to assign subtypes to

samples without this information. This approach enables the system to be trained

to accurately identify the molecular subtype for patients in the early stages of the

disease who have not yet undergone a biopsy. Initially, all patients were organized

into four clusters using c-mean clustering, based on the characteristics obtained in

the second phase. Once the clustering process was completed, molecular subtypes

were assigned to each cluster according to the values of the cluster centers. In the

c-mean method, the samples are divided into c clusters, where c (the number of
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Table 4: Molecular subtypes and immunophenotype
Molecular subtypes Immunophenotype

BLBC ER-, PR-, HER2- (triple negative), CK5/6+, and/or EGFR+

HER2 ER-, PR-, HER2+, CK5/6±
Luminal A ER+ and/or PR+, HER2-, CK5/ 6±, and Ki67 <14%

Luminal B ER+ and/ or PR+, CK5/ 6±, HER2+, or Ki67≥14%; or PR < 20%

molecular subtypes) is predetermined. The objective function is represented by

equation 3.2.

J = argmin

 n∑
i=1

c∑
j=1

umij ‖xi − cj‖
2

 (3.2)

In equation 3.2, m is a real number greater than 1, typically set to 2. Here,

n represents the number of samples, c denotes the cluster centre, u indicates the

degree of membership, and x refers to the sample. To minimize the value of j,

the membership degree and cluster centres are updated in each iteration using

equations 3.3 and 3.4, respectively Bezdek and et al. (1984),Davtalab and et al.

(2013).

uij =
1∑c

k=1

(
‖xi−cj‖
‖xi−ck‖

) 2
m−1

(3.3)

cj =

∑n
i=1 u

m
ij .xi∑n

i=1 u
m
ij

(3.4)

The clustering process followed these key criteria: (1) Only individuals diag-

nosed with breast cancer were included, and (2) each cluster was assigned to one of

four molecular subtypes based on the immunohistochemical results obtained after

surgery or biopsy, as outlined by the 13th St. Gallen International Breast Cancer

Conference in 2013 Kao and et al. (2011). The relationship between molecular

subtypes and immunophenotypes is presented in Table 4.

Thus, a logical connection between BIRADS classification and molecular sub-

types was established. With a classifier, molecular subtypes can now be identified

along with their associated probabilities using BIRADS data.

3.4 The Fourth Phase: Classification

3.4.1 Convolutional Neural Network (CNN)

Machine learning algorithms perform well within practical computational limits,

enabling valuable data-driven insights Alesheykh (2016). Convolutional Neural
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Networks (CNNs) play a crucial role in machine learning and are widely applied

in image, speech, and text processing Kalchbrenner and Blunsom (2014). In this

study, CNN is used as a classifier for BIRADS detection, showcasing its capability

to capture complex relationships between variables while effectively handling noisy

data. The input is processed through convolution operations, followed by pooling

layers to decrease dimensionality and reduce the risk of overfitting Xu and et al.

(2019). During backpropagation, the parameters are optimized through error

minimization. ReLU is generally applied as the activation function in the first and

second convolution layers, while the softmax function is used in the output layer.

The loss function utilized is mean squared error, and the optimization algorithm

used is Adam Jais and et al. (2019), which is recognized for its adaptive learning

rate.

3.4.2 Decision Tree (DT)

Decision tree learning is a widely used supervised machine learning technique for

classification and regression tasks. In these tree structures, the leaves represent

class labels, while the branches signify combinations of features that lead to those

labels Hastie and Tibshirani (2001); Provost and Fawcett (2013); Piryonesi and

El-Diraby (2020). Decision trees are constructed by minimizing entropy, a measure

of uncertainty in data Hastie and Tibshirani (2001); Piryonesi and El-Diraby

(2020). While early decision tree models were limited to discrete variables, modern

algorithms can handle both discrete and continuous variables Piryonesi and El-

Diraby (2020); Wu and et al. (2008). The purpose of a decision tree is to predict

the value of a target variable based on input measurements. A key advantage

of decision trees is their simplicity and interpretability, making them widely used

Piryonesi and El-Diraby (2020); Wu and et al. (2008); Piryonesi and El-Diraby

(2018). However, they also have limitations, such as a lack of robustness and

suboptimal accuracy Wu and et al. (2008). In this study, decision trees are also

applied to classification and BIRADS detection.

3.4.3 Multi-Level Fuzzy Min-Max Neural Network (MLF)

MLF is an improved version of the Fuzzy Min-Max Neural Network Davtalab and

et al. (2013), which employs ”hyper-boxes” to classify samples. A hyper-box is

an n-dimensional structure defined by a minimum point, a maximum point, and

a membership function, with each hyper-box representing a distinct class. During

training, hyper-boxes are dynamically created and adjusted as new samples are

introduced. The definition of a hyper-box is given by Equation 3.5:

Bj = {X,Vj ,Wj , f (X,Vj ,Wj)∀X ∈ In} (3.5)
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Figure 3: SVM hyperplane

Vj and Wj represent the upper and lower boundaries of a hyper-box, respec-

tively. X refers to an individual sample, while n indicates the number of di-

mensions in the feature vectors. The sizes of these hyper-boxes are controlled by

Equation 3.6:

∀i=1...D

(
max

(
wi

b, x
i
)
−min

(
vib, x

i
))
≤ Θ (3.6)

Equation 3.6 defines the expansion coefficient, symbolized by Θ. The algorithm

consists of three layers: an input layer, a hyper-box layer, and an output layer,

where class predictions are made Davtalab and et al. (2013). In this study, the

MLF was used to train the system for effective recognition of BIRADS features.

3.4.4 Multi-class Support Vector Machine (SVM) Algorithm

The Support Vector Machine (SVM) algorithm aims to find the optimal hyperplane

that maximizes the margin between two classes. This separating hyperplane is

mathematically expressed through Equation 3.7 Vishwanathan and Murty (2002):

WTx+ b = 0 (3.7)

In this context, x represents the input vector containing the feature data, b

refers to the bias term, W is the weight vector that defines the distance between

the hyperplane and the data points, and WT stands for the transpose of W . Deter-

mining the optimal hyperplane involves evaluating several potential hyperplanes

that can separate the class labels. The algorithm selects the one that maximizes

the margin, meaning it is the furthest from the data points, as shown in Figure 3.

In this study, the Radial Basis Function (RBF) kernel was used, and after model

extraction Chang and Lin (2011), class probabilities were determined based on
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BIRADS. Data normalization was performed using the standard deviation method

Hafemeister and Satija (2019). Seven Support Vector Machines (SVMs) were em-

ployed, each corresponding to a different BIRADS category. As shown in Table 5,

seven SVMs evaluated each sample. The fourth SVM yielded the highest proba-

bility, indicating that the sample belongs to the fourth class (”Probably benign”)

Magny and et al. (2023).

Table 5: SVM values
SVM 1 SVM 2 SVM 3 SVM 4 SVM 5 SVM 6 SVM 7

0.01 0.04 0.02 0.76 0.06 0.05 0.06

3.4.5 XGBoost

XGBoost is a distributed and scalable machine learning library that leverages Gra-

dient Boosted Decision Trees (GBDT) to enhance performance in various tasks,

prioritizing both speed and efficiency. Gradient Boosting is a technique commonly

used for solving regression and classification problems by combining several weak

models into a single, strong predictive model through an iterative process Piryonesi

and El-Diraby (2020). As part of the ensemble learning category, this method

consistently outperforms simpler algorithms like decision trees or bagging tech-

niques such as Random Forest. However, the effectiveness of Gradient Boosting

can depend on the nature of the input data Piryonesi and El-Diraby (2020). In

this study, XGBoost was also utilized for classification purposes, specifically for

detecting BIRADS categories.

3.5 The Fifth Phase: Ensemble and Validation

In the fifth phase, as depicted in Figure 4, when a patient is referred to the

treatment system, the process begins with gathering information from medical

text reports (MTR), specifically mammography reports in this study, along with

the patient’s electronic health records from the HIS system. After performing data

fusion, text processing, and clustering, the BIRADS values are predicted using

various base learners, including CNN, DT, MLF, SVM, and XGBoost. These

predictions are then combined using weighted ensemble learning to generate the

final output.

3.5.1 Weighted Ensemble Learning

Weighted ensemble learning is a machine learning strategy where multiple models,

often called ”base learners,” are trained to address the same problem and then
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combined to improve performance in tasks like classification or regression. Each

model’s contribution is weighted, and the predictions are aggregated to achieve

better accuracy, reduce errors, and enhance generalization. Compared to a single

model, ensemble methods provide stronger and more reliable predictions Garćıa-

Pedrajas and et al. (2005); Chen and et al. (2022).

A common and straightforward approach to ensemble learning is majority vot-

ing Dimitriadou and et al. (2001); Wang and et al. (2013), where the class

of an object is determined by the majority decision of the individual classifiers.

The decision of the t-th classifier for class j is denoted as d(t,j) ∈ {0, 1}, where

t represents the index of the classifier (t = 1, 2, 3, ..., T ) and j refers to the class

(j = 1, 2, 3, ..., C). In this context, T stands for the number of outputs from the

base classifiers, and C indicates the total number of classes. If the t-th classifier

selects class j, d(t,j) is assigned a value of 1; otherwise, it is set to 0. The weighted

ensemble decision for class k, as computed by Equation 3.8, is determined through

a majority voting process.

T∑
t=1

dt,k = max
j

T∑
t=1

wtdt,j (3.8)

Here, wt represents the weight of the t-th classifier, calculated as the average

accuracy of that base learner. Weighted ensemble learning is applied here to pre-

dict BIRADS values using the majority voting approach. The performance of this

method is then compared to that of the individual base classification algorithms.

3.5.2 Validation

The BIRADS results generated by the base learners, as well as the final output

from the weighted ensemble learning using the majority voting method, are vali-

dated using evaluation metrics derived from the confusion matrix. These metrics

include accuracy, specificity, sensitivity, positive predictive value (PPV), negative

predictive value (NPV), and F1-score. To assess the performance, K-fold cross-

validation was employed with K set to 10. The calculations for these metrics are

provided in Equations 4.13 through 4.18.

4. Analysis and Evaluation of Results

A computer with the following specifications was utilized to implement this plan:

Processor: Intel(R) Core(TM) i7-4790 CPU @ 3.60GHz

Installed memory (RAM): 2 × 8 GB DDR RAM

VGA: GT 730 2GB
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Figure 4: Roadmap of the proposed method

HDD: 256GB SSD + 1TB SATA

The research was conducted using the Microsoft Windows 10 64-bit operating

system, with Python 3.8.7 employed for programming within the Visual Studio

Code environment.

4.1 Evaluation Parameters

As shown in Table 6, the confusion matrix is used as one of the evaluation metrics

for classifiers. It is an N × N square matrix, where N represents the number of

classes—in this case, 7 classes for BIRADS. The main diagonal of the matrix indi-

cates the number of correct detections, while the other entries represent incorrect

detections.

Table 6: Confusion matrix Hafemeister and Satija (2019)

Original/actual values

Original Class 1 ... Original Class j

Predicted

Class 1

Class 1, which is correctly

recognized as class 1
...

Class j, which is mistakenly

recognized as class 1

..
.

..
.

..
.

..
.

Predicted

values Predicted

Class j

Class 1, which is mistakenly

recognized as class j
...

Class j, which is correctly

recognized as class j

In binary classification models, where only the presence or absence of a disease

is diagnosed, the confusion matrix includes terms such as true positive (TP), true

negative (TN), false positive (FP), and false negative (FN). However, for BIRADS

diagnosis, which involves seven classes, these concepts are extended.

In this context, TPi represents the true positive value for the i-th class, referring

to cases where both the actual and predicted class are i. TPi is calculated using

Equation 4.9. Similarly, FPi represents the false positive value for the i-th class,
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indicating cases where the actual class is not i, but the predicted class is i. FPi

is determined using Equation 4.10.

On the other hand, FNi represents the false negative value for the i-th class,

which occurs when the actual class is i, but the predicted class is not i. FNi is

calculated using Equation 4.11. Finally, TNi denotes the true negative value for

the i-th class, representing cases where neither the actual class nor the predicted

class is i. TNi is obtained using Equation 4.12.

TPi = Cii i = 0, 1, · · · , 6 (4.9)

FPi =

6∑
i 6=j=0

Cij i = 0, 1, · · · , 6 (4.10)

FNi =

6∑
i 6=j=0

Cji i = 0, 1, · · · , 6 (4.11)

TNi =

6∑
i6=j=0

6∑
i6=k=0

Cjk i = 0, 1, · · · , 6 (4.12)

The parameters including accuracy, specificity, sensitivity, positive predictive

value (PPV), negative predictive value (NPV), and F1-score are calculated using

Equations 4.13 to 4.18, respectively Shahabi and Hassanpour (2016); Tharwat

(2021).

Accuracy =
TP + TN

TP + TN + FP + FN
(4.13)

Specificity =
TN

TN + FP
(4.14)

Sensitivity =
TP

TP + FN
(4.15)

PPV =
TP

TP + FP
(4.16)

NPV =
TN

TN + FN
(4.17)

F1−measure =
2× PPV × Sensitivity
PPV + Sensitivity

(4.18)

where TP , TN , FP , and FN denote as mean of TPi, TNi, FPi, and FNi

respectively.
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Table 7: Methods runtime
Runtime (ms)

Overall Average

CNN 349765 11659

Decision Tree 5292 176

MLF 17581 586

SVM 9711 324

XGboost 15033 501

Proposed DSS 5859 195

Table 8: Descriptives statistics
95% Confidence Interval for Mean

N Mean Std. Deviation Std. Error
Lower Bound Upper Bound

Minimum Maximum

CNN 30 .845371429 .0121918513 .0022259173 .840818916 .849923941 .8068571 .8674286

Decision Tree 30 .885409524 .0101376684 .0018508766 .881624056 .889194991 .8617143 .8982857

MLF 30 .839619048 .0201697697 .0036824793 .832087532 .847150563 .8034286 .8822857

SVM 30 .888723810 .0146771464 .0026796680 .883243273 .894204346 .8525714 .9120000

XGboost 30 .853676190 .0105664302 .0019291574 .849730621 .857621760 .8365714 .8777143

Proposed DSS 30 .898780952 .0076145471 .0013902197 .895937634 .901624271 .8788571 .9108571

4.2 Assessment of Methods

In this section, the methods discussed in this article were evaluated using statistical

hypothesis testing. Each method was executed 30 times under identical conditions,

and the accuracy of all methods was recorded for each run. The overall and average

execution times for each method are shown in Table 7.

Subsequently, an ANOVA test was performed using SPSS version 25 to compare

the six methods. The results of this analysis are presented in Tables 8 and 9.

To compare the accuracy of the methods, the ANOVA test with Fisher’s F

statistic was applied, with the hypothesis defined in Equation 4.19, as follows:

{
H0 : µCNN = µDecision Tree = µMLF = µSVM = µXGboost = µProposed DSS

HA : At least one of the means is different from the others.

(4.19)

Based on the results in Table 9, the p-value (Sig = 0.000) is less than the

significance level (α = 0.05), leading to the rejection of the null hypothesis. This

indicates that at least one of the means differs from the others.

To identify the source of this difference, post hoc tests were conducted. As

shown in Tables 10 and 11, the p-values associated with the proposed DSS, high-

lighted in yellow, are all less than 0.05. This result leads to the rejection of the

null hypothesis in all cases, confirming a significant difference between the mean
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Table 9: ANOVA result
Sum of Squares df Mean Square F Sig.

Between Groups .096 5 .019 110.441 .000

Within Groups .030 174 .000

Total .126 179

of the proposed DSS and the other five methods.

The post hoc tests (Tukey’s HSD and LSD) further validate the presence of a

significant difference between the proposed DSS and the other methods.

Figure 5 also illustrates the superior performance of the proposed DSS method

compared to the other approaches.
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Figure 5: Mean of accuracy for all methos

4.3 Results

Figures 6 through 11 illustrate the accuracy, specificity, PPV, NPV, sensitivity, and

F1-measure for various methods, including Convolutional Neural Network (CNN),

Decision Tree, Multi-Level Fuzzy Min-Max Neural Network (MLF), Support Vec-

tor Machine (SVM), XGBoost, and the proposed Decision Support System (DSS)

for BIRADS detection, using only text mining.

It is evident that as the dimensions of the resulting vector increase, the classifi-

cation accuracy improves. However, beyond 160 dimensions, there is a noticeable

decline in accuracy. This behavior aligns with findings from previous studies (e.g.,
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Table 10: Multiple Comparisons for Tukey HSD
95% Confidence Interval

(I) Methods (J) Methods Mean Difference (I-J) Std. Error Sig.
Lower Bound Upper Bound

Decision Tree -.0400380952 .0034047068 .000 -.049849586 -.030226604

MLF .0057523809 .0034047068 .541 -.004059110 .015563872

SVM -.0433523810 .0034047068 .000 -.053163872 -.033540890

XGboost -.0083047619 .0034047068 .149 -.018116253 .001506729

CNN

Proposed DSS -.0534095239 .0034047068 .000 -.063221015 -.043598033

CNN .0400380952 .0034047068 .000 .030226604 .049849586

MLF .0457904761 .0034047068 .000 .035978985 .055601967

SVM -.0033142858 .0034047068 .926 -.013125776 .006497205

XGboost .0317333332 .0034047068 .000 .021921843 .041544824

Decision Tree

Proposed DSS -.0133714288 .0034047068 .002 -.023182919 -.003559938

CNN -.0057523809 .0034047068 .541 -.015563872 .004059110

Decision Tree -.0457904761 .0034047068 .000 -.055601967 -.035978985

SVM -.0491047619 .0034047068 .000 -.058916253 -.039293271

XGboost -.0140571429 .0034047068 .001 -.023868634 -.004245652

MLF

Proposed DSS -.0591619049 .0034047068 .000 -.068973396 -.049350414

CNN .0433523810 .0034047068 .000 .033540890 .053163872

Decision Tree .0033142858 .0034047068 .926 -.006497205 .013125776

MLF .0491047619 .0034047068 .000 .039293271 .058916253

XGboost .0350476190 .0034047068 .000 .025236128 .044859110

SVM

Proposed DSS -.0100571430 .0034047068 .041 -.019868634 -.000245652

CNN .0083047619 .0034047068 .149 -.001506729 .018116253

Decision Tree -.0317333332 .0034047068 .000 -.041544824 -.021921843

MLF .0140571429 .0034047068 .001 .004245652 .023868634

SVM -.0350476190 .0034047068 .000 -.044859110 -.025236128

XGboost

Proposed DSS -.0451047620 .0034047068 .000 -.054916253 -.035293271

CNN .0534095239 .0034047068 .000 .043598033 .063221015

Decision Tree .0133714288 .0034047068 .002 .003559938 .023182919

MLF .0591619049 .0034047068 .000 .049350414 .068973396

SVM .0100571430 .0034047068 .041 .000245652 .019868634

Proposed DSS

XGboost .0451047620 .0034047068 .000 .035293271 .054916253
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Table 11: Multiple Comparisons for Tukey LSD
95% Confidence Interval

(I) Methods (J) Methods Mean Difference (I-J) Std. Error Sig.
Lower Bound Upper Bound

Decision Tree -.0400380952 .0034047068 .000 -.046757936 -.033318254

MLF .0057523809 .0034047068 .093 -.000967460 .012472222

SVM -.0433523810 .0034047068 .000 -.050072222 -.036632540

XGboost -.0083047619 .0034047068 .016 -.015024603 -.001584921

CNN

Proposed DSS -.0534095239 .0034047068 .000 -.060129365 -.046689683

CNN .0400380952 .0034047068 .000 .033318254 .046757936

MLF .0457904761 .0034047068 .000 .039070635 .052510317

SVM -.0033142858 .0034047068 .332 -.010034127 .003405555

XGboost .0317333332 .0034047068 .000 .025013493 .038453174

Decision Tree

Proposed DSS -.0133714288 .0034047068 .000 -.020091269 -.006651588

CNN -.0057523809 .0034047068 .093 -.012472222 .000967460

Decision Tree -.0457904761 .0034047068 .000 -.052510317 -.039070635

SVM -.0491047619 .0034047068 .000 -.055824603 -.042384921

XGboost -.0140571429 .0034047068 .000 -.020776984 -.007337302

MLF

Proposed DSS -.0591619049 .0034047068 .000 -.065881746 -.052442064

CNN .0433523810 .0034047068 .000 .036632540 .050072222

Decision Tree .0033142858 .0034047068 .332 -.003405555 .010034127

MLF .0491047619 .0034047068 .000 .042384921 .055824603

XGboost .0350476190 .0034047068 .000 .028327778 .041767460

SVM

Proposed DSS -.0100571430 .0034047068 .004 -.016776984 -.003337302

CNN .0083047619 .0034047068 .016 .001584921 .015024603

Decision Tree -.0317333332 .0034047068 .000 -.038453174 -.025013493

MLF .0140571429 .0034047068 .000 .007337302 .020776984

SVM -.0350476190 .0034047068 .000 -.041767460 -.028327778

XGboost

Proposed DSS -.0451047620 .0034047068 .000 -.051824603 -.038384921

CNN .0534095239 .0034047068 .000 .046689683 .060129365

Decision Tree .0133714288 .0034047068 .000 .006651588 .020091269

MLF .0591619049 .0034047068 .000 .052442064 .065881746

SVM .0100571430 .0034047068 .004 .003337302 .016776984

Proposed DSS

XGboost .0451047620 .0034047068 .000 .038384921 .051824603
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Figure 6: Variations of accuracy with the change of dimensions in the vector

resulting from word2vec

Bofang and et al. (2019)), which suggest that increasing dimensions can nega-

tively affect the quality of word2vec, and consequently, the accuracy. This issue

was further examined by adjusting the dimensions, and 160 dimensions were ulti-

mately selected for further processing, as they produced the best results.

Figure 6 shows the variation in accuracy for all classifiers used in this research

across dimensions ranging from 110 to 200. The proposed DSS achieved the high-

est accuracy of 97.94% when using a dimension of 160. At the same dimension,

the accuracies for CNN, Decision Tree (DT), Multi-Level Fuzzy Min-Max Neu-

ral Network (MLF), Support Vector Machine (SVM), and XGBoost were 91.06%,

94.11%, 90.49%, 93.09%, and 91.54%, respectively.

Figure 7 illustrates the variation in specificity for all classifiers across the speci-

fied dimensions. The proposed decision support system (DSS) achieved the highest

specificity at 98.79% in dimension 160. In the same dimension, the specificity for

CNN, Decision Tree (DT), MultiLevel Fuzzy Min-Max Neural Network (MLF),

Support Vector Machine (SVM), and XGboost were 96.79%, 97.83%, 96.38%,

97.67%, and 97.34%, respectively.

Figure 8 shows the variation in sensitivity for all classifiers within the men-

tioned dimensions. The proposed DSS reached its highest sensitivity at 92.08% in

dimension 160. In the same dimension, the sensitivity for CNN, DT, MLF, SVM,

and XGBoost was 84.62%, 84.49%, 80.45%, 87.45%, and 87.28%, respectively.

Figure 9 presents the variation in positive predicted value (PPV) across the

specified dimensions. The best PPV for the proposed DSS occurred in dimension
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Figure 7: Variations of specificity with the change of dimensions in the vector

resulting from word2vec
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Figure 8: Variations of sensitivity with the change of dimensions in the vector

resulting from word2vec
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Figure 9: Variations of PPV with the change of dimensions in the vector resulting

from word2vec

Table 12: Confusion matrix of proposed DSS
Confusion Matrix ID Class Sensitivity Specificity PPV NPV F1 Measure Accuracy

20 0 1 0 1 0 1 Class1 84.62% 98.66% 88.00% 98.22% 86.27% 97.20%

1 20 0 0 0 1 0 Class2 90.91% 99.12% 90.91% 99.12% 90.91% 98.40%

0 1 34 0 0 1 1 Class3 94.44% 98.60% 91.89% 99.06% 93.15% 98.00%

1 0 0 36 1 0 0 Class4 94.74% 99.06% 94.74% 99.05% 94.74% 98.40%

0 1 1 0 49 0 0 Class5 94.23% 98.99% 96.08% 98.49% 95.15% 98.00%

1 0 0 1 1 44 1 Class6 95.65% 98.04% 91.67% 99.01% 93.62% 97.60%

1 0 0 1 0 0 27 Class7 90.00% 99.09% 93.10% 98.64% 91.53% 98.00%

160 with a value of 92.34%. In that same dimension, the PPV for CNN, DT,

MLF, SVM, and XGboost was 78.53%, 88.43%, 79.91%, 77.68%, and 83.07%,

respectively.

Figure 10 displays the variation in negative predicted value (NPV) for all clas-

sifiers in the given dimensions. The proposed DSS showed the highest NPV at

98.80% in dimension 160. In the same dimension, the NPV for CNN, DT, MLF,

SVM, and XGboost was 95.86%, 97.87%, 97.40%, 97.26%, and 97.54%, respec-

tively.

Figure 11 presents the variation in the F1-measure for all classifiers across the

specified dimensions. The proposed Decision Support System (DSS) achieved the

highest F1-measure of 92.19% at a dimension of 160. At the same dimension, the

F1-measures for CNN, Decision Tree (DT), Multi-Level Fuzzy Min-Max Neural

Network (MLF), Support Vector Machine (SVM), and XGBoost were 78.24%,

88.63%, 82.79%, 87.97%, and 86.10%, respectively.

Table 12 summarizes the sensitivity, specificity, positive predictive value (PPV),
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Figure 10: Variations of NPV with the change of dimensions in the vector resulting

from word2vec
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Figure 11: Variations of f1-measure with the change of dimensions in the vector
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negative predictive value (NPV), F1-measure, and accuracy for BIRADS classifica-

tion using the proposed DSS. The values for classes one through seven correspond

to BIRADS levels zero through six. Most disease classes were diagnosed with an

accuracy exceeding 98%. The disease class corresponding to BIRADS = 5 (the

sixth class) exhibited the highest sensitivity at 95.65%.

The specificity for healthy individuals was 99.12%, demonstrating strong per-

formance in correctly identifying healthy cases. The average specificity was 98.79%,

with the lowest value observed for the third class and the highest for the seventh

class (99.09%). These results indicate that the proposed method excels in speci-

ficity.

The average PPV value was 92.34%, with the highest PPV of 96.08% observed

in the fifth class.

The NPV for healthy individuals was 99.12%, confirming the proposed method’s

strong ability to correctly identify healthy cases. The highest NPV value, 99.06%,

was found in the third class, while the lowest was 98.22% in the first class.

The average F1-measure was 92.19%, with the maximum value reaching 95.15%

in the fifth class, and the minimum at 86.27% in the first class, reflecting a solid

detection rate across all classes.

The average accuracy of the proposed method in differentiating between sick

and healthy cases was 97.94%. The accuracy ranged from a minimum of 97.20% to

a maximum of 98.40%, demonstrating the method’s consistency in classification.

In conclusion, these evaluation metrics demonstrate that the proposed method

performs effectively in detecting BIRADS classes, significantly aiding in disease

diagnosis and the determination of appropriate treatment strategies. The integra-

tion of HIS (Hospital Information System) values alongside text processing results

further enhances BIRADS detection performance, contributing to more accurate

and reliable outcomes.

Table 13: Comparison between proposed DSS (Weighted Ensemble Learning) and

old method (Ensemble Learning)

Metric Proposed DSS Old Method

Accuracy 97.94% 89.35%

Specificity 98.79% 65.87%

Sensitivity 97.08% 87.41%

Positive Predicted Value (PPV) 92.34% 75.19%

Negative Predicted Value (NPV) 98.80% 93.81%

F1-Measure 92.19% 72.69%

Based on the metrics presented in Table 13, it is clear that the proposed method
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significantly outperforms the old method in almost all evaluation criteria:

1. Accuracy: The proposed method achieves 97.94%, demonstrating a sub-

stantial improvement over the old method’s 89.35%. This indicates better over-

all performance in correctly classifying results. 2. Specificity: The proposed

method’s specificity is 98.79%, compared to the old method’s 65.98%. This indi-

cates that the new method is much more effective in correctly identifying negative

cases. 3. Sensitivity: The proposed method achieves a sensitivity of 92.08%,

which is slightly higher than the old method’s 87.41%. This indicates a bet-

ter ability to identify positive cases correctly. 4. Positive Predicted Value

(PPV): The proposed method has a PPV of 92.34%, significantly outperforming

the old method’s 75.19%, indicating higher reliability in predicting positive cases.

5. Negative Predicted Value (NPV): The proposed method achieves 98.80%,

while the old method scores 93.81%, highlighting superior accuracy in predicting

negative cases. 6. F1-Measure: The F1-measure of the proposed method is

92.19%, compared to the old method’s 72.69%. This metric balances precision

and recall, underscoring the better-rounded performance of the proposed method.

5. Discussion and Conclusion

The American College of Radiology (ACR) introduced the BIRADS system to

standardize mammography reports, significantly contributing to the uniformity of

reports and improving the consistency of treatment planning. This standardiza-

tion allows for more precise prioritization of treatment progress. However, this

approach also has limitations, such as varying interpretations among physicians

when determining BIRADS values. To address this issue, this study proposes

leveraging information from electronic health records (EHRs). By combining un-

structured data (mammography reports) with structured data (electronic records

from the Hospital Information System or HIS), a hybrid approach is used to en-

hance the accuracy and reliability of BIRADS classification.

After preprocessing the mammography reports, keywords were transformed

into vectors using Word2vec, with the average vectors of the keywords represent-

ing each text. This process resulted in a 210-dimensional vector for each report.

Additionally, 15 features were selected from the patients’ electronic health records,

which included 2 numerical variables and 13 nominal variables. These features

were combined with the 210-dimensional vectors from the mammography reports,

yielding a total of 225 features for classification. The BIRADS classes were deter-

mined using various algorithms such as CNN, DT, MLF, SVM, and XGboost. The

estimated BIRADS classes were then aggregated using weighted ensemble learning

with a majority voting algorithm. The performance of the model was evaluated
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using several metrics, including sensitivity, specificity, PPV, NPV, F1-measure,

and accuracy. The highest evaluation scores for BIRADS estimation were 95.65%

for sensitivity, 99.12% for specificity, 96.08% for PPV, 99.12% for NPV, 95.15%

for F1-measure, and 98.40% for accuracy.

The accuracy of BIRADS detection using the proposed method is 97.94%.

This decision support system (DSS) enhances the physician’s ability to make more

informed decisions by integrating data from both the Hospital Information System

(HIS) and medical text reports. Compared to similar approaches, this method

improves the detection of diseases, the assessment of a patient’s health status, and

the determination of the severity of the condition. As a result, physicians can

more accurately tailor the treatment plans for individual patients.

In this study, data fusion was employed to enhance accuracy. For future re-

search, it is advised to employ weighted base learners to boost system efficiency.

Additionally, since mammography images provide valuable insights to physicians,

it is suggested to explore decision fusion, image analysis, and deep learning in-

tegration techniques. This approach could lead to more precise estimations of

disease severity, ultimately aiding physicians in making better-informed treatment

decisions.
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