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Abstract: This study generalizes the joint empirical likelihood (JEL), which is

named the joint penalized empirical likelihood (JPEL), and presents a comparative

analysis of two innovative empirical likelihood methods: the restricted penalized

empirical likelihood (RPEL) and the joint penalized empirical likelihood. These

methods extend traditional empirical likelihood approaches by integrating criteria

based on the minimum variance and unbiasedness of the estimator equations. In

RPEL, estimators are obtained under these two criteria, while JPEL facilitates the

joint application of the estimator equations used in RPEL, allowing for broader

applicability.

We evaluate the effectiveness of RPEL and JPEL in regression models through

simulation studies and evaluate the performance of RPEL and JPEL, focusing on

parameter accuracy, model selection (as measured by the Empirical Bayesian In-

formation Criterion), predictive accuracy (Mean Squared Error), and robustness

to outliers. Results indicate that RPEL consistently outperforms JPEL across all

criteria, with RPEL yielding simpler models and more reliable estimates, particu-

larly as sample sizes increase. These findings suggest that RPEL provides greater

stability and interpretability for regression models, making it a superior choice

over JPEL for the scenarios tested in this study.
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1. Introduction

Empirical likelihood (EL) is a non-parametric statistical method that has evolved

over several decades. Its development reflects a growing need for flexible statis-

tical techniques that do not rely heavily on strict parametric assumptions. The

concept of EL was first introduced by Owen (1988), who proposed a method for

constructing confidence regions based on the empirical distribution function. This

approach allows statisticians to perform inference without assuming a specific un-

derlying distribution for the data. Initially, the method was developed to estimate

confidence intervals and regions for parameters based on a single sample.

Today, many statisticians use this method to analyze various real-world data.

Owen (1990) further advanced EL by pioneering the EL ratio statistics, applying

them to various non-parametric problems and demonstrating that these statistics

asymptotically follow a chi-squared distribution. He also developed confidence in-

tervals and hypothesis tests for model parameters based on likelihood ratio statis-

tics within a parametric framework. Subsequent work by DiCiccio, and Romano

(1989) and Hall and La Scala (1990) addressed these statistics’ asymptotic prop-

erties and essential corrections.

Qin and Lawless (1994) established that EL, in conjunction with appropriate

estimating equations, offers a valid non-parametric fit for data. In the EL frame-

work, parameter estimates are derived by maximizing the EL function subject

to estimating equations and additional restrictions, notably the zero expectation

value of these equations under the probability model p1, p2, ..., pn.

Further contributions by Newey and Smith (2004) and Chen et al. (2009)

demonstrated appealing statistical properties of the estimators obtained through

this method. However, studies by Chen et al. (2009), Hjort et al. (2009), Tang

and Leng (2010), and Leng and Tang (2012) indicated that conventional asymp-

totic results for EL estimators hold only when the dimension p of the parameters

and the number r of estimating equations grow at a rate slower than the sample

size n. In contrast, challenges arise in high-dimensional contexts where both p and

r increase with n.

To address these challenges, Tang and Leng (2010), Leng and Tang (2012), and

Chang et al. (2015) utilized sparsity assumptions and penalty functions to achieve

parameter sparsity, showing that sparse parameter estimators with desirable prop-

erties are attainable. Nonetheless, issues persist in high-dimensional data analysis

using EL.

Taso (2004) identified an under-coverage problem, where true parameter values

are often not contained within EL-based confidence regions at the nominal level

when n is fixed and p is relatively large. Tsao and Wu (2014) proposed an extended

EL approach to mitigate this under-coverage by imposing additional constraints
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on the parameter space. Meanwhile, Bartolucci, F. (2007) introduced a penalized

EL method that optimizes the product of probabilities penalized by a loss function

related to model parameters. Lahiri and Mukhopadhyay (2012) conducted similar

work with a different type of loss function, exploring the properties of the penalized

EL ratio statistic within a high-dimensional framework. Chang et al. (2017) further

investigated the penalized EL estimator in the context of high-dimensional sparse

model parameters, addressing new challenges in this evolving field.

Bayati et al. (2021) introduced Restricted Empirical Likelihood (REL) and Re-

stricted Penalized Empirical Likelihood (RPEL) estimators. These estimators are

derived under the criteria of unbiasedness and minimum variance for estimating

equations. As a result, they exhibit desirable properties, particularly demon-

strating greater robustness against outliers compared to some existing estimators.

Bayati et al. (2021) applied this method in autoregressive models.

Shantia and Ghoreishi (2024) presented the Restricted Joint Empirical Like-

lihood (RJEL) method for semi-parametric hierarchical models, focusing on the

effect of distribution dispersion at the second level. Their simulation studies high-

lighted the effectiveness of shrinkage estimates from RJEL, particularly in cases

with outlier data and heavy-tailed distributions. This article applied the penalty

function on RJEL and named it JPEL. Then, it compares RPEL and JPEL.

Various studies have also explored recent advancements in penalized empirical

likelihood methods. Arslan, and Ozdemir (2023) introduced a robust penalized

empirical likelihood approach for linear regression, focusing on enhancing robust-

ness against outliers and model misspecification. Wang et al. (2019) proposed a

penalized empirical likelihood method for sparse Cox regression models, demon-

strating improved predictor selection accuracy. Additionally, Ji, and Liu (2024)

developed a penalized empirical likelihood technique for population size estima-

tion, incorporating a half-normal prior to enhance robustness. These studies pro-

vide further insights into applying and developing penalized empirical likelihood

techniques in regression analysis.

First, the basic concepts of likelihood were reviewed. This method was intro-

duced by Owen (1988), which combines the reliability of non-parametric methods

and the flexibility of parametric methods. Then, restricted penalized empirical

likelihood (RPEL) was explained. It showed that RPEL has attractive proper-

ties, especially for handling outlier data. The joint penalized empirical likelihood

(JPEL) is an adjusted version of RPEL, where the dependence among estimat-

ing equations is eliminated. The remainder of this paper is organized as follows.

Section 2 provides a description of EL methods. In Section 3, Bayesian analysis

for these methods is explained. The EBIC for RPEL and JPEL is introduced in
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Section 4. In Section 5, RPEL and JPEL are applied and compared in a multi-

ple regression model. Finally, a simulation study is presented. To validate our

proposed methodology, we analyze the Boston Housing Data set using multiple

regression techniques, including standard LR, RPEL, and JPEL.

2. Methods of EL

EL uses estimating equations to obtain the best estimates of parameters. The

most notable feature of the EL method is that, under mild conditions, the null

distribution of the EL ratio statistic follows the standard chi-square distribution,

similar to parametric settings. Since its development, the EL method has found

extensive application across various fields of statistics. However, the method is

primarily designed for independent observations and encounters challenges when

applied to dependent data, such as time series. Bayati et al. (2021) addressed

this problem using REL and Bayesian techniques, which will be explained in more

detail in this article.

Let x1,x2, ...,xn ∈ Rd be independent and identically distributed observations and

θ = (θ1, ..., θp)
T be a p-dimensional parameter in parameter space Θ. In addition,

a r-dimensional vector of estimating equations is g(X; θ) = (g1(X; θ), ..., gr(X; θ))T ,

where gl(X;θ) for l = 1, ..., r are unbiased estimating equations. It is assumed that

θ0 ∈ Θ is the true vector of parameters. Thus,

E(gl(X;θ0)) =

n∑
i=1

pigl(x;θ0) = 0, l = 1, ..., r,

where p1, ..., pn are the corresponding probabilities. More details are provided

by Hjort et al. (2009) and Chang et al. (2015). The EL approach estimates

the probabilities by maximizing
n∏
i=1

pi under unbiased and probability constraints.

That is

RE(θ) = sup
p1,...,pn

{ n∏
i=1

pi : pi > 0,

n∑
i=1

pi = 1,

n∑
i=1

pigl(xi;θ) = 0
}
.

Owen (1988) and Qin and Lawless (1994) by Lagrange multiplier (λ1, ..., λr) es-

tablished that pi ∝ 1
1+λT g(xi;θ)

maximizes RE(θ). So,

`(θ) ∝ −
n∑
i=1

log
[
1 + λTg(xi;θ)

]
,

is the logarithm of the EL function. Thus, the maximum EL estimator of θ is

obtained

(θ̂
EL
, λ̂) = arg min

θ
max
λ

{ n∑
i=1

log
[
1 + λTg(xi;θ)

]}
. (2.1)
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Tang and Wu (2013) proposed a two-layer algorithm to compute θ̂
EL

. The inner

layer maximizes (2.1) to obtain λ̂ for a given θ, while the outer layer determines

the optimal value of θ as a function of λ̂. Both layers utilize the coordinate descent

algorithm, updating one component at a time. For further details, see Tang and

Wu (2013).

2.1 REL

While the traditional EL method relies solely on the unbiasedness of estimating

equations, the RPEL estimator satisfies both unbiasedness and minimum vari-

ance criteria. This approach offers a new estimation method with advantageous

properties, improving robustness against outliers compared to the traditional EL

method.

Bayati et al. (2021) established that, under the criteria of unbiasedness and mini-

mum variance for the estimating equation, the pi’s must follow a specific formula

pi ∝
1

1 + wTg∗(xi;θ)
. (2.2)

Then

LR(θ,w) ∝
n∏
i=1

pi =

n∏
i=1

1

1 + wTg∗(xi;θ)
,

where g∗(x;θ) = (g21(x;θ), ..., g2r(x;θ))T and w = (w1, ..., wr)
T ∈ R+r.

Practically, LR(θ,w) offers appealing properties compared to L(θ) ∝
n∏
i=1

1
1+λT g(xi;θ)

in EL. First, LR(θ,w) allows us to assume that the elements of the vector w are

independent of θ, whereas in L(θ), the dependence of λ on θ is a fundamental

assumption. This makes LR(θ,w) a semi-parametric version of the standard EL

function. Second, by assuming sparsity in the vectors θ and w (to reduce the

number of parameters and the number of the estimating equation respectively)

and leveraging the convexity of − logLR(θ,w), the REL method becomes appli-

cable to high-dimensional data.

To obtain the estimators of (θ,w), namely (θ̂
REL

, ŵREL), we use the logarithm

of REL which is

`R(θ,w) = −
n∑
i=1

log
[
1 + wTg∗(xi;θ)

]
. (2.3)

Based on (2.3), the maximum estimators of (θ,w) are given as

(θ̂
REL

, ŵREL) = arg min
θ∈Θ

max
w∈Wn

{
n∑
i=1

log
[
1 + wTg∗(xi;θ)

]}
,

where Wn(θ) = {w ∈ R+r : wTg∗(xi;θ) < γ} for the tuning parameter γ.
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2.2 Joint Empirical Likelihood

According to (2.2), changes in wl’s or gl’s affect other wl’s or gl’s. Because of

1 + w1g
2
1(xi;θ) + ... + wrg

2
r(xi;θ), wl’s and gl’s are dependent. As a result, each

estimating equation is influenced by others. JEL reduces the degree of dependence

among the estimating equations. Shantia and Ghoreishi (2024) suggested using

(1 + w1g
2
1(xi;θ))...(wrg

2
r(xi;θ)) instead of 1 + w1g

2
1(xi;θ) + ... + wrg

2
r(xi;θ) so

that the role of each estimating equations in parameter estimation is accounted

separately. Therefore we have

LJ(θ,w) =

n∏
i=1

r∏
l=1

1

1 + wlg2l (xi;θ)
. (2.4)

Since the likelihood function (2.4) consists of the product of two partially bounded

empirical likelihood, Shantia and Ghoreishi (2024) refered to it as a JEL. Based on

logarithm of LJ(θ,w), the maximum estimator of (θ,w)), namely (θ̂
JEL

, ŵJEL),

are given as

(θ̂
JEL

, ŵJEL) = argmin
θ∈Θ

max
w∈Wn

{
n∑
i=1

r∑
l=1

log
[
1 + wlg

2
l (xi;θ)

]}
.

2.3 A Penalty Framework for REL and JEL

While the REL or JEL estimator θ̂ generally performs well in practical applica-

tions, it becomes inefficient in high-dimensional settings with numerous param-

eters. Moreover, many models exhibit sparsity in their parameters, particularly

in high-dimensional regression, where several independent variables may not in-

fluence the response. To shrink these irrelevant parameters to zero, an effective

approach is to apply a suitable penalty function that reduces the dimensionality

of θ and w. Bayati et al. (2021) suggested two forms of penalty functions for θ

and w, for θ applied P1(θ) =
p∑
k=1

θ2k, and for w and some fixed a > 0 used

P2(w) =

r∑
l=1

{ (wl − a)2

2wl
+

3

2
logwl − log a

}
, (2.5)

where A and B are some positive constants called hyper-parameters.. They demon-

strated that the penalty function (2.5) is sensitive to both small and large values

of w, a crucial property that enhances the efficacy of estimation by selectively

down-weighting less significant equations.
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3. Baysian analysis

Computing RPEL or JPEL estimates presents significant challenges. In this paper,

we conduct a Bayesian analysis of the parameters, adopting an approach to RPEL

and JPEL that differs from Lazar (2003) methodology for EL by incorporating

distinct priors for θ and w. This framework provides closed-form conditional

posteriors for various estimating equations, facilitating practical implementation.

Bayati et al. (2021) applied penalty functions to construct posterior density for

θ and w. In this paper, we extend this approach, with the posterior density for

RPEL given by

πR(θ,w) ∝
n∏
i=1

1

1 + wTg∗(xi;θ)
× e−u1P1(θ) × e−u2P2(w), (3.6)

and the posterior density for JPEL is given by

πJ(θ,w) ∝
n∏
i=1

r∏
l=1

1

1 + wlg2l (xi;θ)
× e−u1P1(θ) × e−u2P2(w). (3.7)

Since (1+wTg∗(xi;θ)) ≥ 0 in Equation (3.6), we can exploit the properties of the

exponential distribution. Let s follow an exponential distribution with parameter

(1 + wTg∗(xi;θ)), so that

1

1 + wTg∗(xi;θ)
=

∞∫
0

e−s(1+wT g∗(xi;θ))ds.

Considering si ∼ Exponential(1 + wTg∗(xi;θ)) for i = 1, . . . , n. We can rewrite

πR(θ,w) as

πR(θ,w) ∝
∞∫
0

· · ·
∞∫
0

e
−

n∑
i=1

si[1+wT g∗(xi;θ)]−u1P1(θ)−u2P2(w)
ds1ds2 . . . dsn.

Similarly, for JPEL, let sil ∼ Exponential(1 + wlg
2
l (xi;θ)) for i = 1, . . . , n and

l = 1, . . . , r, noting that 1+wlg
2
l (xi;θ) ≥ 0 in Equation (3.7). We can then rewrite

πJ(θ,w) as

πJ(θ,w) ∝
∞∫
0

· · ·
∞∫
0

e
−

n∑
i=1

r∑
l=1

sij [1+wlg
2
l (xi;θ)]−u1P1(θ)−u2P2(w)

ds11ds12 . . . dsnr.

For statistical inference, random samples can be drawn from the marginal densi-

ties using Markov Chain Monte Carlo (MCMC) methods. These samples allow

for approximating the posterior distributions of the parameters, enabling efficient

estimation and uncertainty quantification, even in complex models. We utilize
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Gibbs sampling, a specific MCMC technique, for the parameters w,θ, si and sij .

This method simplifies the sampling process by providing closed-form conditional

distributions. For this purpose we define

πR(θ,w, s1, . . . , sn) ∝ e
−

n∑
i=1

si[1+wT g∗(xi;θ)]−u1P1(θ)−u2P2(w)
,

and

πJ(θ,w, s11, . . . , snr) ∝ e
−

n∑
i=1

r∑
l=1

sil[1+wlg
2
l (xi;θ)]−u1P1(θ)−u2P2(w)

,

Gibbs sampling enables us to sample each variable conditionally, holding the others

constant, which is computationally simpler than sampling from the joint distribu-

tion. By employing penalty functions as prior densities for the parameters, our

method, termed RPEL and JPEL, allows for flexible control over the number of

parameters and estimating equations.

4. Empirical Bayesian Information Criterion (EBIC)

for RPEL and JPEL

The EBIC is primarily used for model selection in high-dimensional data settings,

such as when the number of predictors is close to or exceeds the number of ob-

servations. Additionally, it can be used to compare various models. According to

Bayati et al. (2021), EBIC is applied for RPEL and JPEL and has the following

formula:

EBIC(RPEL) :=
p(M0) + r(M0)

2
log(n) +

n∑
i=1

1

1 + ‖w‖1
log
[
1 + ŵTg∗(xi; θ̂)

]
,

EBIC(JPEL) :=
p(M0) + r(M0)

2
log(n) +

n∑
i=1

r∑
l=1

1

1 + wl
log
[
1 + ŵlg

2
l (xi; θ̂)

]
,

where p(M0) and r(M0) are the number of parameters and estimating equation in

model M0 respectively and ‖.‖ stands for the l1-norm.

5. RPEL and JPEL in a multiple regression model

There are many widely used regression models for analyzing high-dimensional

data, including linear regression, multiple linear regression, Poisson regression,

logistic regression, bridge regression, etc. In this section, we focus on the multiple

linear regression model. In many statistical problems, the response variable is

influenced by more than one independent variable. Let p represent the number
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of independent variables (xi1, xi2, . . . , xip) affecting the response variable yi. We

define the regression model as follows:

yi = θ1xi1 + θ2xi2 + · · ·+ θpxip + εi i = 1, 2, . . . , n,

where xi1 = 1, with θ1 as the intercept and θj (for j = 2, . . . , p) as the slope of xi.

The errors εi are independent random variables.

Using ordinary least squares, the estimating equations take the form:

gl(xi;θ) = xil
(
yi − θ1xi1 − · · · − θpxip

)
, l = 1, 2, . . . , p. (5.8)

Additionally, other estimating equations may be available. Specifically, we take

r = p, meaning the number of estimating equations matches the number of pa-

rameters. Bayati et al. (2021) demonstrate that when r > p, setting a penalty

function on w can highlight important estimating equations. We will discuss how

RPEL and JPEL are used for the regression model.

With the penalty functions P1(θ) =
p∑
l=1

θ2l and P2(w) as defined in (2.5), the prior

distributions are:

π1(θ) = e−u1P1(θ) =
1

B
p
2

e
− 1

2B

p∑
j=1

θ2j
,

π2(w) = e−u2P2(w) =

r∏
l=1

A

w
3/2
l

e
− (wl−A)2

2wl . (5.9)

The REL and JEL functions for the regression model are defined as:

LR(θ,w) =

∞∫
0

· · ·
∫ ∞
0

e
−

n∑
i=1

si

(
1+w1g

2
1(xi;θ)+···+wrg

2
r(xi;θ)

)
ds1 . . . dsn,

LJ(θ,w) =

∞∫
0

· · ·
∫ ∞
0

e
−

n∑
i=1

r∑
l=1

sil

(
1+wlg

2
l (xi;θ)

)
ds11 . . . dsnr.

Thus, the corresponding RPEL and JPEL functions for the regression model (5.8)

are:

πR(θ,w, s1, . . . , sn) ∝ e
−

n∑
i=1

si[1+wT g∗(xi;θ)]− 1
2B

∑p
j=1 θ

2
j− 3

2

∑r
l=1 lnwl−

∑r
l=1

(wl−A)2

2wl ,

πJ(θ,w, s11, . . . , snr) ∝ e
−

n∑
i=1

r∑
l=1

sil[1+wlg
2
l (xi;θ)]− 1

2B

∑p
j=1 θ

2
j− 3

2

∑r
l=1 lnwl−

∑r
l=1

(wl−A)2

2wl .

Next, we employ a Bayesian method to find the posterior density for each

parameter and apply Gibbs sampling. The posterior density distribution of each

parameter is obtained as follows:
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

si ∼ Exp
(

1 +
r∑
l=1

wl g
∗
l (xi,θ)

)
, i = 1, . . . , n

wl ∼ GIG
(

2
n∑
i=1

sig
∗
l (xi,θ) + 1, A2,− 1

2

)
, l = 1, . . . , r

θj ∼ N
(
µj , σ

2
j

)
, j = 1, . . . , p

(5.10)

The value of µj and σj for RPEL and JPEL are:

µRPELj =

n∑
i=1

r∑
l=1

siwlx
2
ilxij

(
yi −

∑
k 6=j

xikθk

)
n∑
i=1

r∑
l=1

siwlx2ilx
2
ij + 1

2B0

, σRPELj =
[
2

n∑
i=1

r∑
l=1

siwlx
2
ilx

2
ij +

1

B0

]−0.5
,

µJPELj =

n∑
i=1

r∑
l=1

silwlx
2
ilxij

(
yi −

∑
k 6=j

xikθk

)
n∑
i=1

r∑
l=1

silwlx2ilx
2
ij + 1

2B0

, σJPELj =
[
2

n∑
i=1

r∑
l=1

silwlx
2
ilx

2
ij +

1

B0

]−0.5
,

where GIG stands for the generalized inverse Gaussian distribution, with the prob-

ability density function f(x; a, b, p) = (a/b)p/2

2Kp(
√
ab)
xp−1e−

ax+b/x
2 , where a > 0, b > 0,

p ∈ R, and Kp is the modified Bessel function of the second kind.

Using the conditional densities from equation (5.10), we can easily apply the Gibbs

sampling method to generate random samples from the parameters’ marginal dis-

tribution for statistical inferences.

6. Simulation study and application

In this section, we compare the performance of the RPEL and JPEL estimators

for regression models using a simulation study. The simulation results indicate

that RPEL performs better than JPEL. Therefore, we apply RPEL and JPEL to

a real data analysis.

6.1 Simulation study

To evaluate the estimators, we use EBIC and MSE. We execute the Gibbs sampling

scheme from equation (5.10) to generate M = 5000 samples from the marginal

distributions of the parameters, with a burn-in period of 20%.

Let the regression model be

yi = θ1 + θ2xi2 + θ3xi3 + εi, i = 1, 2, . . . , n,
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where θ = (θ1, θ2, θ3)T is the parameter vector of our interest, xi2’s and xi3’s

are independent samples from the exponential Exp(1) and N(0, 0.25) respectively.

Also, the errors are independent samples from the mixture distribution

εi ∼ 0.5N(0, 0.5) + 0.5Unif(−1, 1).

We assume the true parameter values θ = (1, 2, 0)T , and generate for various

sample sizes n = 20, 50, 500. The results are in Table 1. For a small sample size

(n = 20), RPEL provides estimates very close to the true values, especially for

θ̂2. However, θ̂3 shows a significant deviation from the true value of 0, indicating

challenges in estimating parameters that are close to zero. JPEL’s estimates, while

also relatively close, show slightly greater deviations, especially in the θ̂2 estimate,

which is more than 0.08 away from the true value.

Table 1: Estimation of the parameters

Sample size Method θ̂1 θ̂2 θ̂3 EBIC MSE

n = 20 RPEL 0.9446 2.0066 0.2748 10.5478 0.2262

JPEL 0.9822 2.0859 0.2094 10.6113 0.3078

n = 50 RPEL 0.9726 2.0140 0.1065 13.7892 0.0940

JPEL 1.0966 1.9271 -0.0960 14.4516 0.1243

n = 500 RPEL 0.9965 1.9962 0.0106 24.7085 0.0920

JPEL 1.0290 1.9674 -0.0744 34.3325 0.10310

For a moderate sample size (n = 50), with a larger sample size, RPEL contin-

ues to produce increasingly accurate estimates. The estimate for θ̂1 is very close

to 1, and θ̂2 remains very close to 2. JPEL shows a more notable deviation in θ̂3,

which is estimated at −0.0960, highlighting the sensitivity of JPEL to parameter

estimation when the true value is near zero.

The estimates reveal that as the sample size increases, RPEL’s performance

remains robust, while JPEL begins to exhibit instability. For a large sample size

(n = 500), RPEL estimates are remarkably close to the true parameter values,

particularly θ̂1, and θ̂2, demonstrating high accuracy.

JPEL’s estimates, while improving somewhat with the larger sample size, still

deviate significantly for θ̂3, which reflects potential issues with model specification

or penalization in estimating near-zero coefficients.

The results indicate that RPEL consistently provides better estimates as the

sample size increases, highlighting its efficiency in parameter estimation for regres-

sion models.

For each sample size, RPEL exhibits lower EBIC values compared to JPEL.

The lower EBIC values for RPEL indicate a preference for simpler models, which
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can lead to more interpretable and reliable parameter estimates. In the context of

model selection, RPEL’s performance suggests it balances model fit and complex-

ity more effectively than JPEL, especially at larger sample sizes where complexity

increases.

The MSE values provide insights into the predictive accuracy of the estimators.

RPEL consistently outperforms JPEL in terms of MSE across all sample sizes,

indicating that RPEL provides more accurate predictions of the response variable.

Notably, the MSE values decrease as the sample size increases, which is expected;

however, JPEL does not demonstrate the same level of accuracy improvement as

RPEL.

Table 2: Estimation of the parameters with outliers

Sample size Method θ̂1 θ̂2 θ̂3 EBIC MSE

n = 20 RPEL 0.9752 2.0792 0.0649 14.5594 4.4316

JPEL 1.0513 2.0504 0.0339 17.0852 5.0941

n = 50 RPEL 0.9616 2.0278 0.1156 17.0723 3.3126

JPEL 1.0847 1.9478 -0.0042 28.46 3.81

n = 500 RPEL 1.0467 1.9916 -0.0166 36.9725 3.1386

JPEL 1.1080 1.9895 -0.0765 110.6261 3.5448

To assess the impact of outliers on parameter estimates, we replace 5% of

the values in the response variable y with random values drawn from a N(10, 1)

distribution. The results of this outlier analysis are presented in Table 2.

Across all sample sizes, JPEL consistently shows higher EBIC values than

RPEL, especially for larger sample sizes, where JPEL’s EBIC reaches over 110

compared to RPEL’s 36.97. This suggests that RPEL might be better suited

for achieving simpler models (lower EBIC) when outliers are present, indicating

a potential advantage in model selection with RPEL in the presence of outliers.

RPEL appears more robust to outliers across sample sizes, offering estimates closer

to the true parameter values, lower EBIC (indicating simpler models), and lower

MSE values (indicating better predictive accuracy).

JPEL tends to show more variability in parameter estimates, higher EBIC

values (suggesting increased model complexity), and higher MSE values, especially

in larger sample sizes, indicating a greater sensitivity to the presence of outliers.

6.2 Real Data Analysis

To illustrate our methodology, we utilize the Boston Housing Dataset, which is

publicly available through the MIT OpenCourseWare website. This dataset con-
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tains information on housing in Boston, Massachusetts, including various features

such as crime rate, average number of rooms per dwelling, and distance to em-

ployment centers. The target variable in our analysis is the median house price.

The dataset is well-suited for multiple regression analysis, as it allows us to

examine the relationships between multiple predictor variables and the housing

prices. The analysis helps demonstrate the effectiveness of our proposed approach

in real-world scenarios.

The variables in the dataset that we consider for regression analysis include:

• X1: Per capita crime rate by town.

• X2: Proportion of non-retail business acres per town.

• X3: Nitrogen oxide concentration (pollution level).

• X4: Average number of rooms per dwelling.

• X5: Proportion of owner-occupied units built before 1940.

• X6: Weighted distances to five Boston employment centers.

• X7: Property tax rate per 10,000.

• X8: Pupil-teacher ratio by town.

• Y : Median value of owner-occupied homes (in 1000s) (Target variable).

We define our multiple regression model as follows:

Y = θ0 + θ1X1 + θ2X2 + · · ·+ θ8X8 + ε,

Table 3:
Method θ̂1 θ̂2 θ̂3 θ̂4 θ̂5 θ̂6 θ̂7 θ̂7 MSE

LR 0.350 -0.084 -2.629 7.488 -0.064 -0.844 -0.011 -0.519 6.662

RPEL 0.301 -0.0857 -2.707 7.483 -0.065 -0.851 -0.011 -0.593 6.127

JPEL 0.069 -0.0753 -2.887 7.470 -0.064 -0.857 -0.011 -0.599 6.150

The performance of our methodology is evaluated using three different ap-

proaches, LR, RPEL, and JPEL. Table 3 presents the estimated coefficients (θ̂i)

for each method, along with the MSE as a measure of model performance.

From the results in Table 3, we observe that the estimates for the regres-

sion coefficients vary slightly across the methods. The LR approach provides a

baseline for comparison. The RPEL and JPEL methods incorporate penalization
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techniques, which can improve generalization and reduce overfitting by imposing

constraints on the regression coefficients.

In particular, the RPEL and JPEL methods yield lower MSE compared to

the LR, suggesting that these approaches enhance predictive performance. The

RPEL achieves the lowest MSE (6.127), demonstrating its effectiveness in improv-

ing model accuracy. The JPEL follows closely with the MSE of 6.150, indicating

that joint penalization also contributes to improved estimation.

Overall, the results confirm that employing penalized regression techniques

such as RPEL and JPEL can lead to improved predictive accuracy and robustness

in the estimation of housing prices.

Discussion and Results

Overall, the results demonstrate that RPEL outperforms JPEL in terms of param-

eter estimation accuracy, model selection (EBIC), predictive accuracy (MSE), and

robustness to outliers. RPEL provides more accurate and reliable estimates across

all sample sizes and is better suited for model selection and prediction in both

normal and outlier-affected data. JPEL, while useful in some contexts, exhibits

greater instability and sensitivity to data challenges, especially when the true pa-

rameter values are close to zero or when outliers are present. Thus, for regression

models where estimation stability and interpretability are critical, RPEL is the

preferred choice over JPEL.
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