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Abstract:
Abstract:
Reliability assessment, vital in high-stakes engineering, often employs the stress-
strength model. However, traditional models frequently assume independence be-
tween stress and strength, an assumption that can lead to inaccurate reliability es-
timates when dependence exists due to real-world factors. To address this, the cur-
rent study proposes a dependent stress-strength model using copula theory, which
flexibly models dependence by separating marginal and joint distributions. Four
copula familiesFarlie-Gumbel-Morgenstern, Ali-Mikhail-Haq, Gumbel’s bivariate
exponential, and Gumbel-Hougaardare investigated for their ability to capture di-
verse dependency patterns. The Inverse Lomax distribution is utilized for both
stress and strength marginals due to its suitability for heavy-tailed reliability data.
The copula dependence parameter θ is estimated via conditional likelihood and
Blomqvist’s beta-based method of moments. The asymptotic distributions of these
estimators are derived, and their performance is evaluated through extensive simu-
lations. The research thoroughly examines how system reliability R changes with θ
across various model configurations. Findings indicate that the Gumbel-Hougaard
copula demonstrates the highest sensitivity of R to θ, effectively capturing a wide
range of dependency strengths. This paper highlights the critical need to incorpo-
rate dependence in stress-strength models and offers practical guidance for copula
selection, thereby enhancing the accuracy and robustness of reliability predictions
in complex engineering systems. A practical examination of a real dataset is con-
ducted to demonstrate the concept.

Keywords: Ali-Mikhail-Haq, Blomqvist’s beta, Copula, Farlie-Gumbel-
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1 Introduction

The role of reliability analysis in engineering systems remains essential because it

protects both the safety and operational performance of multiple industrial sectors

including aerospace and automotive and civil infrastructure and electronics. Relia-

bility engineering depends on the stress-strength model as a fundamental analysis

method to evaluate component or system operational probability during specific

performance requirements. This model compares the stress applied to a system

with its inherent strength, and reliability is determined by the probability that the
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strength exceeds the stress. Church and Harris [3] were the first to introduce the

stress-strength reliability framework in 1970. A substantial body of literature has

focused on analyzing the reliability of the stress-strength model, especially when

both variables are assumed to be independent and follow the same parametric fam-

ily. See also, Wong [27] and Sengupta [22]. According to Jovanovi and Raji [16]

stress-strength model uses gamma distribution for X and exponential distribution

for Y .

In Jovanović and Rajić [15] examined the reliability estimation problem involv-

ing two independent random variablesX with geometric and Y with exponential

distributional characteristics. Hu et al. [12] developed their study by working to

calculate confidence intervals for stress-strength reliability parameters within the

case of geometric and exponential distributed variables X and Y .

The stress and strength variables in practical situations present dependence be-

cause of common environmental elements or production methods or operational

variables. Traditional reliability models base their assumptions on independent re-

lationships between stress and strength variables which produces inaccurate and

optimistic prediction results. Neglecting statistically dependent relationships be-

tween variables produces major inaccuracies when computing failure risks because

it results in underprediction of failure probabilities which endangers system safety.

Dependent stress-strength models emerged as a solution to this issue.

One approach to considering dependencies is through the use of bivariate distri-

butions. In the field of stress- strength models, bivariate distributions can be used

to model the joint distribution of stress and strength, which can then be used to

calculate the probability of failure. For instance, Nadarajah [17] investigated the

reliability of dependent stress-strength models using a bivariate Beta distribution,

while Gupta et al. [6] examined it through a bivariate log-normal distribution. Re-

cently, Xavier and Jose [28] presented a Bayesian estimation of the reliability of

the dependent stress-strength model using the bivariate exponentiated half-logistic

distribution.

Copulas represent an alternative approach that lets users model random variable

dependencies through flexible methods. Copulas function by breaking joint distribu-

tion modeling from individual variable distributions thus providing advanced mech-

anisms to depict variable interdependencies. Using copulas provides researchers a

method to detect intricate dependencies between variables that bivariate distribu-

tions cannot visualize which strengthens stress resistance model performance and

accuracy. This model is particularly useful in assessing the probability of failure of

components under varying conditions. Recent advancements in the application of

copula functions have significantly enhanced the analysis of stress-strength models

by allowing for the modeling of dependencies between random variables.

The copula function has been employed by many researchers. Domma and Gior-

dano [4] derived a reliability by utilizing the Farlie-Gumbel-Morgenstern (FGM)

copula and generalized FGM copula to model the dependence. Patil et al. [19]
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examine how dependency affects the probability R = P (Y < X) under ex-

ponential distributions and introduce copula-based approaches for estimating R.

Hakamipour [8] introduces a novel copula-based method for analyzing multicom-

ponent stress-strength reliability, offering valuable insights into the dependence

structures between stress and strength variables. Hakamipour [9] examines the es-

timation of reliability for s-out-of-k multicomponent systems based on the Gumbel

copula function under progressively censored samples. Hakamipour [10] introduces

a novel statistical framework for analyzing dependent competing risks in progressive-

stress accelerated life tests, where units’ lifetimes follow a Gompertz distribution

and dependence is modeled using the Gumbel copula.

According to Sklar’s theorem [25] mentioned below, using copulas is an effective

method for modeling the dependency between variables. For details on copulas, we

refer to Nelsen [18].

Sklar’s Theorem: for any joint distribution function H of random variables X

and Y with respective marginal distribution functions F (x) and G(y), there exists

a copula function C such that for all x, y in (−∞,∞),

H(x, y) = C(F (x), G(y)).

Moreover, if both F and G are continuous, the copula C is unique. In cases where

continuity does not hold, C is uniquely determined on the product of the ranges of

F and G, i.e., RangeF ×RangeG.

Various types of copula functions exist, each with distinct characteristics and

benefits. The most frequently utilized copulas are the Gaussian, Clayton, Gumbel,

and Frank copulas. These copulas vary in their shapes and properties, making

each one suitable for different dependence structures. The choice of correct copula

function serves as a fundamental element that determines the precision of depen-

dence representation as well as estimation accuracy. The analysis of dependent

stress-strength models requires selecting appropriate copulas because their choice

determines both dependence strength and tail behavior. However, the appropriate

choice of copula function is typically unknown. The most suitable model can be

identified based on the Akaike Information Criterion (AIC).

Copulas incorporate a parameter θ, referred to as the dependence parameter. In

this study, we concentrate on the FGM copula, a member of the non-Archimedean

family, characterized by a dependence parameter θ within the interval [−1, 1]. Fur-
thermore, we consider three copulas from the Archimedean family, each defined over

distinct ranges of the dependence parameter θ: the Ali-Mikhail-Haq (AMH) copula,

Gumbel’s bivariate exponential (Gumbel’s BE) copula, and the Gumbel-Hougaard

(GH) copula.

The dependence parameter θ lies within the interval [−1, 1] for the AMH copula,

[0, 1] for Gumbel’s BE copula, and [1,∞] for the GH copula. The corresponding

ranges of Kendall’s tau (τ) for the FGM, AMH, Gumbel’s BE, and GH copulas are

[−0.22, 0.22], [−0.1817, 0.3333], [−0.4, 0], and [0, 1] respectively [20]. The FGM and
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AMH copula models are capable of capturing both positive and negative dependence

structures, whereas Gumbel’s BE copula captures only negative dependence, and

the GH copula represents solely positive dependence.

In this paper, we examine the expression for R and its estimation in the context

of four significant copula models that have non-identical Inverse Lomax margins.

To estimate R, we adopt two methods: one utilizes conditional likelihood, while

the other employs the method of moments based on Blomqvist’s beta. For each of

the four copulas, we analyze the effect of dependence on R by illustrating how R

varies with θ.

An expression for the reliability is

R = P [Y < X] =

∫
P
[
Y < x|X = x

]
f(x)dx, (1)

where P
[
Y < x|X = x

]
indicates the conditional probability, and f refers to the

probability density function (PDF) of the random variable X.

The Inverse Lomax (IL) Distribution, known for its flexibility and heavy tails,

has garnered interest in statistical modeling, especially in areas such as finance,

reliability engineering, and risk analysis. As a member of an inverted family of

distributions, the IL Distribution is applicable in various scenarios where the failure

rate is non-monotonic [24]. It serves as an alternative to several other distributions,

including Gamma and Weibull, among others [23]. For more information, please

refer to Jamilu et al. [13]. In reliability analysis, the stress-strength model describes

the lifetime of a component whose random strength X is subjected to a random

stress Y . Consequently, we examine the IL distribution as the marginal distribution

for the random variables X and Y , along with their corresponding Cumulative

Distribution Functions.

F (x; ζ1, γ) = (1 +
γ

x
)−ζ1 , x > 0 (2)

and

G(y; ζ2, γ) = (1 +
γ

y
)−ζ2 , y > 0 (3)

where ζ1, ζ2 > 0 are shape parameters and γ > 0 is scale parameter.

In Section 2, we analyze R as a function of θ and the parameters (ζ1, ζ2, γ) as-

sociated with the margins of the four copulas. To investigate how the dependency

between X and Y influences R, we plot the graph of R versus θ for various combi-

nations of (ζ1, ζ2, γ). An explicit formula for R could not be established for these

copulas with IL marginal distributions. Consequently, we employ a Monte Carlo

integration method to calculate R for specified values of the margin parameters

and θ.

Given fixed values of (ζ1, ζ2, γ) and θ, we randomly generate N values of Xi from

the IL distribution with parameters (ζ1, γ) which has a PDF f(x) = γζ1
x2 (1+ γ

x )
−ζ1−1,

for x > 0, ζ1 > 0, γ > 0 and approximate the integral
∫∞
0

g(x)f(x)dx by
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1
N

∑N
i=1 g(Xi). According to the law of large numbers, the estimated result ap-

proaches the true value as N → ∞. We chose N = 100000 for our calculations.

To examine the influence of θ on R, we plot a graph of R against θ. Using obser-

vations from n independent pairs (X1, Y1), . . . , (Xn, Yn), we explore two methods

for estimating θ and, consequently, R. Both methods adhere to what is commonly

referred to in the literature as the ’two-stage estimation procedure’ [14]. In the ini-

tial phase, the marginal parameters are estimated using the Maximum Likelihood

Estimation (MLE) method based on their respective probability distributions. The

first strategy for estimating the dependence parameter θ involves solving the score

equation dℓ
dθ = 0, where ℓ represents the conditional log-likelihood function con-

structed from the conditional density of Y given X. This is achieved through the

Newton-Raphson iterative procedure, employing the previously estimated marginal

parameters. Details of this method are provided in Section 3. Alternatively, a non-

parametric estimation technique is applied for θ. Such methods often rely on invert-

ing dependence measures like Spearman’s rho (ρ), Kendall’s tau (τ), or Blomqvist’s

beta (β). Nevertheless, for the specific copula models considered here, closed-form

expressions for the population versions of Spearman’s rho and Kendall’s tau are

either unavailable or their inversion is analytically intractable. Therefore, we adopt

an approach based on Blomqvist’s beta, as suggested by Nelson [18] and originally

introduced by Blomqvist [1]; further elaboration is given in Section 4. The asymp-

totic behavior of each estimator of R is examined within their respective sections.

Section 5 reports the results of Monte Carlo simulations conducted to assess and

compare the estimators’ performance. To illustrate the influence of dependence

on the estimation, we also include plots of R estimates as a function of the true

parameter θ. In Section 6, we apply our findings to real data. Finally, conclusions

are provided in Section 7.

2 Expressions for R

In the following subsections, we derive expressions for R corresponding to various

copula families with IL marginal distributions. The form of R outlined in (1) for

IL marginals is expressed as follows:

R = P [Y < X] =

∫ ∞

0

P
[
Y ≤ x|X = x

]
f(x)dx, (4)

where f(x) = γζ1
x2 (1 + γ

x )
−ζ1−1, for x > 0, ζ1 > 0, γ > 0 is PDF of X.

It can be noted that in the case of independence between the random variables

X and Y , the following relation holds:

R = P [Y < X] =
ζ1

ζ1 + ζ2
.

If the joint distribution function of (X,Y ) is represented as Cθ(F (x), G(y)) using
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the copula function Cθ, then:

P
[
Y ≤ y|X = x

]
=

∂Cθ(u, v)

∂u
|u=F (x),v=G(y), (5)

see Nelsen [18].

2.1 FGM Copula

The FGM copula [18] is given by

Cθ(u, v) = uv[1 + θ(1− u)(1− v)]; 0 ≤ u, v ≤ 1; −1 ≤ θ ≤ 1. (6)

The bivariate copula serves as the joint distribution function for two random

variables that have uniform margins. We will refer to these random variables as U

and V throughout the paper. Therefore,

∂Cθ(u, v)

∂u
= v[1 + θ(1− 2u)(1− v)].

Consequently, from 5, we obtain:

P
[
Y ≤ y|X = x

]
= (1 +

γ

y
)−ζ2

[
1 + θ

(
1− (1 +

γ

y
)−ζ2

)(
1− 2(1 +

γ

x
)−ζ1

)]
,

x > 0, y > 0. (7)

Consequently, the expression for reliability R as presented in Equation (4) be-

comes:

R =
ζ1

ζ1 + ζ2
+ θ
( 2ζ1
ζ1 + ζ2

− 2ζ1
2ζ1 + ζ2

− ζ1
ζ1 + 2ζ2

)
. (8)

2.2 AMH Copula

The AMH copula [18] is defined as

Cθ(u, v) =
uv

1− θ(1− u)(1− v)
; 0 ≤ u, v ≤ 1; −1 ≤ θ ≤ 1. (9)

Then
∂Cθ(u, v)

∂u
=

v
(
1− θ(1− v)

)(
1− θ(1− u)(1− v)

)2 .
Therefore, based on Equation (5),

P
[
Y ≤ y|X = x

]
=

(1 + γ
y )

−ζ2
(
1− θ

(
1− (1 + γ

y )
−ζ2
))

1− θ
(
1− (1 + γ

x )
−ζ1
)(
1− (1 + γ

y )
−ζ2
) , x > 0, y > 0. (10)

Consequently, the reliability R indicated in Equation (4) is

R =

∫ ∞

0

γζ1
x2

(1 + γ
x )

−(ζ1+ζ2)−1
(
1− θ + θ(1 + γ

x )
−ζ2
)

1− θ + θ(1 + γ
x )

−ζ2 + θ(1 + γ
x )

−ζ1 − θ(1 + γ
x )

−ζ1−ζ2
dx. (11)
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2.3 Gumbel’s BE Copula

Gumbel’s BE copula [18] is given by

Cθ(u, v) = u+ v− 1+ (1− u)(1− v)e−θ ln(1−u) ln(1−v); 0 ≤ u, v ≤ 1; 0 ≤ θ ≤ 1.

(12)

Then,

∂Cθ(u, v)

∂u
= 1− e−θ ln(1−u) ln(1−v)(1− v)

(
1− θ ln(1− v)

)
.

So, from (5),

P
[
Y ≤ y|X = x

]
= 1−

(
1− (1 +

γ

x
)−ζ1

)−θ ln
(
1−(1+ γ

y )−ζ2

)(
1− (1 +

γ

y
)−ζ2

)
(
1− θ ln

(
1− (1 +

γ

y
)−ζ2

))
(13)

Thus, the reliability R given in (4) is given by

R = 1−
∫ ∞

0

γζ1
x2

(1 +
γ

x
)−ζ1−1

(
1− (1 +

γ

x
)−ζ2

)1−θ ln
(
1−(1+ γ

x )−ζ1

)
×
(
1− θ ln

(
1− (1 +

γ

x
)−ζ2

))
dx. (14)

2.4 GH Copula

This group of copulas was initially introduced by Émile and Gumbel [5] and is also

mentioned by Hougaard [11]. It is defined as follows:

Cθ(u, v) = exp
[
−
(
− lnuθ +− ln vθ

) 1
θ
]
; 0 ≤ u, v ≤ 1; 1 ≤ θ <∞. (15)

Therefore,

∂Cθ(u, v)

∂u
=
− lnuθ−1

u

(
− lnuθ +− ln vθ

) 1
θ−1

exp
[
−
(
− lnuθ +− ln vθ

) 1
θ
]
.

Hence, from (5),

P
[
Y ≤ y|X = x

]
= exp

[
−
(
ζθ1 ln(1 +

γ

x
)θ + ζθ2 ln(1 +

γ

y
)θ
) 1

θ

]
×ζθ−1

1 (1 +
γ

x
)ζ1 ln(1 +

γ

x
)θ−1

[
ζθ1 ln(1 +

γ

x
)θ + ζθ2 ln(1 +

γ

y
)θ
] 1

θ−1

. (16)

Thus, the reliability R given in (4) is given by

R =
ζθ1

ζθ1 + ζθ2
. (17)
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2.5 Variation in R with Respect to θ

To explore the effect of dependence on R, we plot its variation with respect to the

parameter θ for selected values of (ζ1, ζ2, γ) across the four copula models. Set 1:

(ζ1, ζ2, γ) = (1, 2, 1), Set 2: (ζ1, ζ2, γ) = (2, 1, 1), Set 3: (ζ1, ζ2, γ) = (0.5, 1.5, 2), Set

4: (ζ1, ζ2, γ) = (1.5, 0.5, 2), Set 5: (ζ1, ζ2, γ) = (0.3, 0.7, 0.5), Set 6: (ζ1, ζ2, γ) =

(0.7, 0.3, 0.5). Figure 1 shows how R changes in relation to θ for the four copulas.
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Figure 1: Variation in R against dependence parameter θ for the six sets.

Based on the graph, we can infer that if ζ1 > ζ2, then R > 0.5 for the FGM,

Gumbel’s BE, and GH copulas. Additionally, under the condition that ζ1 > ζ2,

R < 0.5 tends to increase with increasing θ for the FGM, Gumbel’s BE, and GH

copulas, whereas it declines for the AMH copula. Conversely, if ζ1 < ζ2, then

R < 0.5 for the FGM and GH copulas, and R decreases with θ for the FGM, AMH,

and GH copulas.

Throughout the analysis, the graph of R generally appears to be nearly linear in

relation to θ, with the exception of the GH copula. The changes in R concerning θ

occur more rapidly for the GH copula compared to the other three copulas.

The graphical analysis demonstrates that the GH copula induces the most sub-

stantial variation in the reliability measure R as the dependence parameter θ

changes, resulting in the widest observed range of R values across all copulas exam-

ined. In contrast, the Gumbel’s BE copula yields minimal variability in R. More-

over, the difference between reliability estimates under independence and those

obtained under dependence is relatively small for the FGM, AMH, and Gumbel’s

BE copulas. This limited sensitivity may be attributed to the narrower range of

dependence these models are capable of capturing. In comparison, the GH cop-
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ula supports a broader spectrum of dependency strength, as reflected in its higher

achievable values of Kendall’s tau and Blomqvist’s beta, as discussed in the in-

troduction. Accordingly, the reliability measure R exhibits greater sensitivity to

changes in dependence when modeled using the GH copula.

3 Likelihood-Based Estimation of θ and R

Let (xi, yi), i = 1, 2, . . . , n represent a random sample drawn from the joint distribu-

tion function H(x, y). To estimate the parameters, we adopt a two-step estimation

procedure as outlined in [14]. In the initial stage, the marginal parameters ζ1, ζ2
and γ are obtained by maximizing the corresponding marginal likelihoods. As a

result, the likelihood function associated with the observed values (x1, x2, . . . , xn)

is expressed as:

L(x1, x2, . . . , xn; ζ1, γ) = γnζn1

n∏
i=1

1

x2
i

(1 +
γ

xi
)−ζ1−1,

and the log-likelihood function is given by

ℓ = lnL(x1, x2, . . . , xn; ζ1, γ)

= n ln γ + n ln ζ1 − 2

n∑
i=1

lnxi − (ζ1 + 1)

n∑
i=1

ln(1 +
γ

xi
).

Using the log-likelihood mentioned above, the MLEs ζ̂1 and γ̂ for ζ1 and γ are

determined as the solutions to

∂ℓ

∂ζ1
=

n

ζ1
−

n∑
i=1

ln(1 +
γ

xi
) = 0. (18)

and

∂ℓ

∂γ
=

n

γ
− (ζ1 − 1)

n∑
i=1

1

xi + γ
= 0. (19)

Considering the non-linearity of equations (18) and (19), the MLEs ζ̂1 and γ̂

of ζ1 and γ are obtained using the Newton-Raphson iterative procedure. Likewise,

the MLE ζ̂2 for ζ2 can be derived from the sample (y1, y2, . . . , yn) drawn from Y .

Since the joint density is given by h(xi, yi) = f(yi|xi)fX(xi) and fX(xi) does

not depend on θ, we maximize
∏n

i=1 f(yi|xi) to estimate θ. We replace the pa-

rameters of the margins with their estimates. Let L(y|x) =
∏n

i=1 f(yi|xi). The

form of ∂ lnL(y|x)
∂θ , derived from the conditional distribution of y1, y2, . . . , yn given

x1, x2, . . . , xn, for each of the four copulas under consideration, is provided in the

subsequent subsections.
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3.1 FGM Copula

Based on Equation (7), the conditional probability density function of Y given

X = x is expressed as follows:

f(y|X = x) =
γζ2
y2

(1 +
γ

x
)−ζ1(1 +

γ

y
)−2ζ2−1

×
(
(1 +

γ

x
)ζ1(1 +

γ

y
)ζ2 + θ

(
(1 +

γ

x
)ζ1 − 2

)(
(1 +

γ

y
)ζ2 − 2

))
. (20)

Therefore,

∂ lnL(y|x)
∂θ

=

n∑
i=1

(
(1 + γ

xi
)ζ1 − 2

)(
(1 + γ

yi
)ζ2 − 2

)
(1 + γ

xi
)ζ1(1 + γ

yi
)ζ2 + θ

(
(1 + γ

xi
)ζ1 − 2

)(
(1 + γ

yi
)ζ2 − 2

) (21)

We replace (ζ1, ζ2, γ) with their estimates and solve ∂ lnL
∂θ = 0 using the Newton-

Raphson method to estimate θ.

3.2 AMH Copula

The conditional density function of Y given that X = x, based on Equation (10),

is expressed as follows:

f(y|X = x) =
γθζ2(1 +

γ
x )

−ζ1(1 + γ
y )

−2ζ2−1
(
1− θ(1− (1 + γ

y )
−ζ2)

)
y2W 2

+
γθζ2(1 +

γ
y )

−2ζ2−1 + γζ2(1 +
γ
y )

−ζ2−1
(
1− θ(1− (1 + γ

y )
−ζ2)

)
y2W

, (22)

where

W = 1− θ
(
1− (1 +

γ

x
)−ζ1

)(
1− (1 +

γ

y
)−ζ2

)
.

and with the margin parameters replaced by their estimated values

∂ lnL(y|x)
∂θ

= −
n∑

i=1

1− (1 + γ
xi
)−ζ1(1− (1 + γ

yi
)−ζ2)

Wi

n∑
i=1

2θ − 2 + (1 + γ
xi
)−ζ1

(
1− 2θ − 2θ(1 + γ

yi
)−2ζ2

)
1− 2θ + θ2 + (1 + γ

xi
)−ζ1

(
θ − θ2 − θ2(1 + γ

yi
)−2ζ2

) . (23)

3.3 Gumbel’s BE Copula

Utilizing Equation (13), the conditional density function of Y given X = x is

defined as:

f(y|X = x) =
γζ2
y2

(1 +
γ

y
)−ζ2−1

(
1− (1 +

γ

x
)−ζ1

)−θ ln(1−(1+ γ
y )−ζ2 )

V, (24)
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where

V =
(
1− θ− θ ln(1− (1+

γ

y
)−ζ2)+ θ

[
θ ln(1− (1+

γ

y
)−ζ2)− 1

]
ln(1− (1+

γ

x
)−ζ1)

)
.

and with the marginal parameters replaced by their corresponding estimates:

∂ lnL(y|x)
∂θ

= −
n∑

i=1

ln
(
1− (1 +

γ

yi
)−ζ2

)
ln
(
1− (1 +

γ

xi
)−ζ1

)
+

n∑
i=1

−1− ln(1− (1 + γ
yi
)−ζ2) + ln(1− (1 + γ

xi
)−ζ1)

[
− 1 + 2θ ln(1− (1 + γ

yi
)−ζ2)

]
Vi

.

(25)

3.4 GH copula

The conditional density function of Y given X = x, as derived from Equation (16),

is expressed as

f(y|X = x) = −ζθ−1
1 (1 +

γ

x
)ζ1 ln(1 +

γ

x
)θ−1 γ(1− θ)ζ2

y(y + γ)
Z

1
θ−2 exp(−Z 1

θ )

× ln(1 +
γ

y
)θ−1 +

γζθ2 exp(−Z
1
θ ) ln(1 + γ

y )
θ−1Z

2
θ−2

y(y + γ)
, (26)

where

Z = ζθ1 ln(1 +
γ

x
)θ + ζθ2 ln(1 +

γ

y
)θ.

and with the marginal parameters replaced by their corresponding estimates

∂ lnL(y|x)
∂θ

= −n ln ζ1 −
n

θ
+

n∑
i=1

ln
(
ln(1 +

γ

xi
)
)
+ 2

n∑
i=1

ln
(
ln(1 +

γ

yi
)
)

+n ln ζ2 − 2

n∑
i=1

Z
1
θ
i

(
Si −

lnZi

θ2
)
− 3

θ2

n∑
i=1

lnZi + (
3

θ
− 3)

n∑
i=1

Si, (27)

where

Si =
[
ζθ1 ln(1 +

γ

xi
)θ ln

(
ln(1 +

γ

xi
)
)
+ ζθ1 ln ζ1 ln(1 +

γ

xi
)θ

+ζθ2 ln(1 +
γ

yi
)θ ln

(
ln(1 +

γ

yi
)
)
+ ζθ2 ln ζ2 ln(1 +

γ

yi
)θ
]
/Zi.

3.5 Asymptotic Properties of the Likelihood-Based Estima-
tors

Consider a bivariate random sample (Xi, Yi); i = 1, 2, . . . , n, drawn from the joint

distribution of (X,Y ). Let the parameter vector be denoted by η = (ζ1, ζ2, γ, θ),
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and its estimator by η̂ = (ζ̂1, ζ̂2, γ̂, θ̂), which is known to be a consistent es-

timator of η (see [14]). To establish the asymptotic distribution, define g =

(∂ lnL1

∂ζ1
, ∂ lnL1

∂γ , ∂ lnL2

∂ζ2
, ∂ lnL2

∂γ , ∂ lnL
∂θ ) = (g1, g2, g3, g4, g5), denote a row vector, such

that

L1 =
γnζn1∏n
i=1 x

2
i

n∏
i=1

x2
i (1 +

γ

xi
)−ζ1−1,

L2 =
γnζn2∏n
i=1 y

2
i

n∏
i=1

y2i (1 +
γ

yi
)−ζ2−1.

L represents the conditional likelihood of Y rs
i given Xrs

i and is influenced by the

chosen copula function. We get

g1 =
∂ lnL1

∂ζ1
=

n

ζ1
−

n∑
i=1

ln(1 +
γ

xi
),

g2 =
∂ lnL1

∂γ
=

n

γ
− (ζ1 + 1)

n∑
i=1

1

xi + γ
,

g3 =
∂ lnL2

∂ζ2
=

n

ζ2
−

n∑
i=1

ln(1 +
γ

yi
),

g4 =
∂ lnL2

∂γ
=

n

γ
− (ζ2 + 1)

n∑
i=1

1

yi + γ
.

and g5 for FGM, AMH, Gumbel’s BE and GH copulas are provided in (21), (23),

(25) and (27) respectively.

Define η̂ = (ζ̂1, ζ̂2, γ̂, θ̂) as the estimator derived from the two-stage esti-

mation process and let Xn = (X1, . . . , Xn) and Y n = (Y1, . . . , Yn). The

asymptotic distribution of
√
n(η̂ − η)T is asymptotically equivalent to that of[

−E
(∂gT (Xn,Y n,η)

∂η

)]−1

Z, where Z ∼ N
(
0, cov(g(Xn, Y n, η))

)
, see [14]. The asymp-

totic variance-covariance matrix of
√
n(η̂−η)T , commonly referred to as the inverse

Godambe information matrix, is discussed in Joe [14].

V = D−1
g Mg (D

−1
g )T ,

where

Dg = E
[∂gT (Xn, Y n, η)

∂η

]
= E



∂g1
∂ζ1

∂g1
∂ζ2

∂g1
∂γ

∂g1
∂θ

∂g2
∂ζ1

∂g2
∂ζ2

∂g2
∂γ

∂g2
∂θ

∂g3
∂ζ1

∂g3
∂ζ2

∂g3
∂γ

∂g3
∂θ

∂g4
∂ζ1

∂g4
∂ζ2

∂g4
∂γ

∂g4
∂θ

∂g5
∂ζ1

∂g5
∂ζ2

∂g5
∂γ

∂g5
∂θ


, (28)
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and

Mg = E
[
gT (Xn, Y n, η)g(Xn, Y n, η)

]
= E


g21 g1g2 g1g3 g1g4 g1g5

g2g1 g22 g2g3 g2g4 g2g5

g3g1 g3g2 g23 g3g4 g3g5

g4g1 g4g2 g24 g24 g4g5

g5g1 g5g2 g25 g5g4 g25

 ,

(29)

Let ∂g1
∂ζ1

= − n
ζ2
1
, therefore E

(
∂g1
∂ζ1

)
= − n

ζ2
1
. Similarly, E

(
∂g1
∂γ

)
=
∑n

i=1 E
(

1
xi+γ

)
,

E
(

∂g1
∂ζ2

)
= E

(
∂g1
∂θ

)
= 0, E

(
∂g2
∂ζ1

)
= −

∑n
i=1 E

(
1

xi+γ

)
, E
(

∂g2
∂γ

)
= − n

γ2 , E
(

∂g2
∂ζ2

)
=

E
(

∂g2
∂θ

)
= 0, E

(
∂g3
∂ζ2

)
= − n

ζ2
2
, E
(

∂g3
∂γ

)
=
∑n

i=1 E
(

1
yi+γ

)
, E
(

∂g3
∂ζ1

)
= E

(
∂g3
∂θ

)
= 0,

E
(

∂g4
∂ζ2

)
= −

∑n
i=1 E

(
1

yi+γ

)
, E
(

∂g4
∂γ

)
= − n

γ2 , E
(

∂g4
∂ζ1

)
= E

(
∂g3
∂θ

)
= 0.

Hence,

Dg =



− n
ζ2
1

0 n
ζ1+γ 0

− n
ζ1+γ 0 − n

γ2 0

0 − n
ζ2
2

n
ζ2+γ 0

0 − n
ζ2+γ − n

γ2 0

E
(

∂g5
∂ζ1

)
E
(

∂g5
∂ζ2

)
E
(

∂g5
∂γ

)
E
(

∂g5
∂θ

)


, (30)

An estimate of the asymptotic variance-covariance matrix is derived by sub-

stituting the estimates of ζ1, ζ2, γ and θ. Subsequently, the computation of the

expected values within the matrices Dg and Mg is performed via Monte Carlo simu-

lation techniques. Section 5 illustrates the application of the Godambe information

criterion for a particular parameter configuration.

Additionally, for the copulas discussed in Section 2, R is a continuous function

of η, represented as R = h(η). The function h is also continuous in η, which means

that R̂ = h(η̂) serves as a consistent estimator for R.

Furthermore, since the function h(.) has continuous partial derivatives of first

order, the conditions for the Delta method are satisfied, allowing us to proceed with

its application. √
n(R̂−R) d−→N

(
0, h′(η)V h′(η)

T )
,

where h′(η) =
(

∂h
∂ζ1

, ∂h
∂ζ2

, ∂h
∂γ ,

∂h
∂θ

)
, and d−→ denotes convergence in distribution.

4 Estimation using Blomqvist’s beta

Blomqvist’s beta is a rank-based dependence measure that evaluates the association

between two variables around their medians, rather than means. This coefficient

captures the probability that a randomly selected pair of observations will fall

in the same quadrant with respect to the marginal medians. As a result, it is
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particularly robust to outliers and non-normal distributions. Initially introduced

by Blomqvist [1] and later elaborated by Nelsen [18], this measure provides a simple

yet informative summary of concordance near the center of the joint distribution. A

closed-form expression exists for the population version of Blomqvist’s beta, making

it a useful tool in both theoretical and applied contexts.

β(Cθ) = −1 + 4Cθ(
1

2
,
1

2
). (31)

Blomqvist’s beta can be employed across a wide range of copula families, making

it a flexible tool for assessing dependence structures. Notably, it often serves as

a reliable approximation to other well-known rank-based measures such as Spear-

man’s rho and Kendall’s tau, particularly when the joint distribution is symmet-

ric. As discussed in Nelsen [18], this measure retains its interpretability and ro-

bustness under various dependence settings. Given a random sample (Xi, Yi), for

i = 1, 2, . . . , n, drawn from a continuous bivariate distribution, the empirical coun-

terpart of Blomqvist’s beta, denoted by βn, is computed as follows:

βn =
n1 − n2

n1 + n2
. (32)

Let X̃n and Ỹn denote the sample medians of the random variables X and Y ,

respectively. The value n1 represents the number of sample observations (Xi, Yi)

for which both components lie on the same side of their corresponding mediansi.e.,

Xi is greater than X̃n and Yi is greater than Ỹn, or Xi is less than X̃n and Yi is less

than Ỹn. In contrast, n2 counts the number of discordant observations, where one

component lies above and the other below its sample medianspecifically, either Xi

is greater than X̃n with Yi is less than Ỹn, or Xi is less than X̃n with Yi is greater

than Ỹn. The asymptotic distribution of the empirical Blomqvist’s beta, denoted

by βn, has been rigorously analyzed in both bivariate and multivariate contexts by

Schmid and Schmidt [21]. The findings are as follows:

√
n(βn − β) d−→N

(
0, σ2

β,C

)
as n→∞

The asymptotic variance σ2
β,C is reported in Genest et al. [7] as

σ2
β,C = 16C(

1

2
,
1

2
)
[
1− C(

1

2
,
1

2
)
]
+ 4
[
C1(

1

2
,
1

2
)− C2(

1

2
,
1

2
)
]2

+16C(
1

2
,
1

2
)
[
− C1(

1

2
,
1

2
)− C2(

1

2
,
1

2
) + 2C1(

1

2
,
1

2
)C2(

1

2
,
1

2
)
]
, (33)

where C1(u, v) =
∂C(u,v)

∂u and C2(u, v) =
∂C(u,v)

∂v must be present throughout and

continuous on the interval [0, 1]2. Next, by solving the equation β(Cθ) = βn for θ,

we obtain the sample estimate θβ,n of θ for a specific copula. For more information,

refer to Genest et al. [7]. The estimator of θ can be represented as θβ,n = gβ(βn),

where θ = gβ(β). It is important to note that the estimate of θ derived from
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Blomqvist’s beta does not rely on the estimates of the margin parameters. Addi-

tionally, if g′β(β) exists and is non-zero, the Delta method provides the asymptotic

behavior of θβ,n as follows

√
n(θβ,n − θ) d−→N

(
0, σ2

θ,C

)
as n→∞

where σ2
θ,C =

[
g′β(β)

]2
σ2
β,C .

By utilizing the estimates (ζ̂1, ζ̂2, γ̂, θβ,n) of the parameters (ζ1, ζ2, γ, θ), we ob-

tain an estimate R̂β of R.

It should be emphasized that, for the class of copulas introduced in Section

2, the function R depends continuously on the parameter vector η = (ζ1, ζ2, γ, θ).

Moreover, the estimator η̂β is a consistent estimator of η, as established in [7].

As a result of the continuous mapping theorem, the estimator R̂β also converges

in probability to R, implying its consistency. The upcoming subsections present

further details on Blomqvist’s beta and the asymptotic variance σ2
θ,C corresponding

to the copulas analyzed in Section 2.

4.1 FGM Copula

From (31), we derive that β(Cθ) = θ/4. Additionally, β is within the range [− 1
4 ,

1
4 ].

Thus, θ can be determined by inverting Blomqvist’s beta, resulting in θ = 4β.

Genest et al. [7] provide a closed-form expression for the asymptotic variance of the

estimator of Blomqvist’s beta. This result can be readily validated using equation

(33).

The explicit formula for the asymptotic variance of the estimator for β is provided

in Genest et al. [7], and it can be readily confirmed using (33) that

σ2
β,C = 1− θ2

16
.

For this copula, the function gβ(β) = 4β, which means g′β(β) = 4. Consequently,

the asymptotic variance of θβ,C can be expressed as

σ2
θ,C =

[
g′β(β)

]2
σ2
β,C = 16− θ2.

4.2 AMH Copula

From (31), we get β(Cθ) =
θ

4−θ . Moreover, β ∈ [− 1
5 ,

1
3 ]. Thus, θ can be determined

by inverting Blomqvist’s beta, resulting in θ = 4β
1+β . Schmid and Schmidt [21]

derived an explicit expression for the asymptotic variance of βn, which can be

directly verified through equation (33).

σ2
β,C =

16(θ4 − 7θ3 + 36θ2 − 80θ + 64)

(4− θ)5
.
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In the case of this particular copula, the transformation function associated

with Blomqvist’s beta is given by gβ(β) =
4β
1+β , which implies that its derivative is

g′β(β) =
4

(1+β)2 . Consequently, the asymptotic variance of θβ,n can be expressed as

σ2
θ,C =

[
g′β(β)

]2
σ2
β,C =

θ4 − 7θ3 + 36θ2 − 80θ + 64

4− θ
.

4.3 Gumbel’s BE Copula

From (31), we have β(Cθ) = e−θ(ln 2)2 − 1. Additionally, β falls within the range

of [−0.381497, 0]. Consequently, θ can be calculated by inverting Blomqvist’s beta,

resulting in the formula θ = − ln(β+1)
(ln 2)2 .

The asymptotic variance σ2
β,C of the estimator βn can be efficiently obtained

once the quantities Cθ(
1
2 ,

1
2 ) = 1

4e
−θ(ln 2)2 and C1(

1
2 ,

1
2 ) = C2(

1
2 ,

1
2 ) = 1 − 1

2 (1 +

θ ln 2)e−θ(ln 2)2 are determined. Thus, (33) produces

σ2
β,C = 4e−θ(ln 2)2

[
e−θ(ln 2)2

(3
4
+ θ ln 2

)
+ 2
(
1− 1

2
(1 + θ ln 2)e−θ(ln 2)2

)2
− 1
]
.

By utilizing the function gβ(β) = − ln(β+1)
(ln 2)2 and its derivative g′β(β) =

− 1
(ln 2)2(β+1) , the asymptotic variance of θβ,n can be expressed as

σ2
θ,C =

[
g′β(β)

]2
σ2
β,C =

4

(ln 2)4e−θ(ln 2)2
×[

eθ(ln 2)2(
3

4
+ θ ln 2) + 2

(
1− 1

2
(1 + θ ln 2)e−θ(ln 2)2

)2
− 1
]
.

4.4 GH Copula

From (31), we get β(Cθ) = 4e−2
1
θ ln 2−1. Moreover, β ∈ [0, 1). Thus, θ is derived by

inverting Blomqvist’s beta to obtain θ = ln 2

ln
[
ln( 4

β+1 )/ ln 2
] . Schmid and Schmidt [21]

provided the explicit formula for the asymptotic variance of βn, and it can also be

easily confirmed using (33) that

σ2
β,C = 8hθ

[
1− 2hθ + (2

1
θ+1hθ − 1)2

]
where hθ = e−2

1
θ ln 2. By considering the function gβ(β) =

ln 2

ln
ln 4

β+1
ln 2

and its deriva-

tive g′β(β) =
ln 2

(β+1) ln( 4
β+1 )

[
ln

ln 4
β+1
ln 2

]2 , the asymptotic variance of θβ can be expressed

as

σ2
θ,C =

[
g′β(β)

]2
σ2
β,C =

(
ln 2
)2[

1− 2hθ + (2
1
θ+1hθ − 1)2

]
2hθ

(
lnhθ

)2[
ln(− lnhθ)− ln(ln 2)

]2 .
Additionally, to derive the asymptotic distribution of the estimator Rθ,n, we

examine two scenarios: (i) when (ζ1, ζ2, δ) are known, and (ii) when (ζ1, ζ2, δ) are

unknown. These scenarios will be addressed in the subsequent subsection.
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4.5 Asymptotic Properties of the Estimator of R

Let {(Xi, Yi), i = 1, 2, . . . , n} denote a bivariate random sample drawn from the

joint distribution of (X,Y ). Define η = (ζ1, ζ1, δ). The functions (g, g1, g2, g3, g4
are as specified in Section 3.5, and let g5 = βn − β.

Case I: when (ζ1, ζ1, δ) are known.

Assuming the parameters (ζ1, ζ1, δ) are known, the estimator R can be expressed

as Rθ,n = hθ(θn), which depends solely on the parameter θ. Accordingly, the Delta

method characterizes the asymptotic distribution of
√
n(Rθ,n −R) d−→N

(
0, σ2

R,C

)
as n→∞

where σ2
R,C =

[
h′
θ(θ)

]2
σ2
θ,C .

However, due to the absence of a closed-form expression for R, deriving an

explicit form for the asymptotic variance σ2
R,C of Rθ,n is infeasible. Therefore, a

bootstrap-based approach is employed to obtain a consistent estimate of σ2
R,C .

Case II: when (ζ1, ζ1, δ) and θ are unknown.

Define η = (ζ1, ζ1, δ, θ) and denote by η̂ = (ζ̂1, ζ̂1, δ̂, θβ,n) the parameter estimates

obtained via the two-stage estimation procedure. As outlined in Section 3.5,

the asymptotic variance-covariance matrix of η̂ is given by the inverse Godambe

information matrix:

V = D−1
g Mg(D

−1
g )T

where Dg and Mg are as in (28) and (29) respectively.

(√
n(ζ̂1 − ζ1),

√
n(ζ̂2 − ζ2),

√
n(γ̂ − γ),

√
n(β̂n − β)

)
d−→N

(
0, V

)
as n→∞.

Furthermore, since the estimator for θ can be expressed as θβ,n = gβ(βn), and pro-

vided that the derivative g′β(βn) exists and is nonzero, the asymptotic distribution

of θβ,n follows from the Delta method:(√
n(ζ̂1 − ζ1),

√
n(ζ̂2 − ζ2),

√
n(γ̂ − γ),

√
n(θ̂β,n − θ)

)
d−→N

(
0, V1

)
as n→∞,

where

V1 =


1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 g′β(β)

V


1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 g′β(β)


T

.

Moreover, the estimator of R can be represented as Rθ,n = h(ζ̂1, ζ̂2, γ̂, θβ,n), and

the function h(.) is continuously differentiable with respect to all its arguments. By

applying the Delta method once more, we obtain:
√
n(Rn −R) d−→N

(
0, V2

)
as n→∞
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where

V2 =
( ∂R
∂ζ1

,
∂R

∂ζ2
,
∂R

∂γ
,
∂R

∂θ

)
V1

( ∂R
∂ζ1

,
∂R

∂ζ2
,
∂R

∂γ
,
∂R

∂θ

)T
.

5 Simulation study

To assess the effectiveness of the proposed estimators, multiple synthetic data sets

were generated under various parameter configurations. Specifically, combinations

of marginal parameters (ζ1, ζ2, γ) such as (1, 2, 1), (2, 1, 1), (0.5, 1.5, 2), (1.5, 0.5, 2),

(0.3, 0.7, 0.5), and (0.7, 0.3, 0.5) were considered in conjunction with several values

of the dependence parameter θ, tailored to each of the four copula models discussed

earlier.

For each specific parameter setting, 100 independent data sets were simulated,

each consisting of 50 observations. The data generation process begins by drawing

a random sample (x1, x2, . . . , xn) from the IL distribution with parameters (ζ1, γ).

Subsequently, the corresponding values yi are generated from the conditional dis-

tribution of Y given X = xi. Marginal parameters ζ1, ζ2 and γ are then estimated

using the MLE.

Let θ̂ and R̂ denote the estimates of the dependence parameter θ and the func-

tion R, respectively, obtained through the two-stage ML estimation approach. Al-

ternatively, θβ,n and Rθ,n represent the corresponding estimators derived from the

method based on Blomqvist’s beta.

In the two-stage ML framework, estimation begins with computing θ̂, followed

by the evaluation of R̂ using the full set of estimated parameters η̂ = (ζ̂1, ζ̂2, γ̂, θ̂).

Simulation outcomes based on this methodology are reported in Table 1 for the

FGM and AMH copulas, in Table 2 for Gumbel’s bivariate extreme value (BE)

copula, and in Table 3 for the GH copula. Within each cell of Tables 1 to 3,

the first row displays the estimated value of θ, while the second row reports the

associated Mean Squared Error (MSE). These results indicate that the estimates

of θ are generally close to their corresponding true values.

Figure 2 illustrates the behavior of R̂ across varying values of θ for all four

copula models, under the six parameter settings (ζ1, ζ2, γ) described in Section 2.5.

As evidenced by the plots, the trend of R̂ with respect to θ closely mirrors that of

the true function R. Tables 4, 5, and 6 present the numerical values of R̂ and the

corresponding MSEs for each scenario.

Example of Godambe information: In order to calculate the Godambe

information matrix, we utilized Monte Carlo methods to obtain the expected values

E
(
∂g5
∂ζ1

)
, E
(
∂g5
∂ζ2

)
, E
(
∂g5
∂γ

)
and E

(
∂g5
∂θ

)
in Dg, as well as all expected values in Mg,

which are defined by equations (30) and (29) respectively. For instance, we examine

the parameters (ζ1, ζ2, γ, θ) = (1, 2, 1, 0.5) for the FGM, AMH, and Gumbel’s BE

copulas, and (ζ1, ζ2, γ, θ) = (1, 2, 1, 5) for the GH copula. The inverse Godambe

information matrix V is determined accordingly.
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Figure 2: Variation in R̂ against dependence parameter θ for the six sets.

FGM
0.0011 0.0037 −0.0041 0.1672

0.0037 0.0103 −0.0172 0.9284

−0.0041 −0.0172 0.1928 −56.1308
0.1672 0.9284 −56.1308 462.7825


AMH

0.0007 0.0014 −0.0026 −0.0359
0.0014 0.0362 −0.0141 −0.0158
−0.0026 −0.0141 0.0632 0.4830

−0.0359 −0.0158 0.4830 0.0129


Gumbel’s BE

0.0045 0.0023 −0.0067 −0.0461
0.0023 0.0171 −0.0089 −0.0103
−0.0067 −0.0089 0.7462 0.6631

−0.0461 −0.0103 0.6631 0.1267


GH

0.0006 0.0009 0.0004 −0.0507
0.0009 0.0224 0.0073 −1.1165
0.0004 0.0073 0.1736 −4.4812
−0.0507 −1.1165 −4.4812 3.7612


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In the second approach, the rank-based moment estimates of βn are derived using

(32). For large values of n, the estimator βn follows a normal distribution with an

asymptotic variance σβ,C , as indicated in (33). The estimates for the dependence

parameter, represented as θβ,n, are determined by solving the equation β(Cθ) = βn,

by (31) and (32) to find θ. Furthermore, with the estimates (ζ̂1, ζ̂2, γ̂, θβ,n), we can

derive the estimate Rθ,n.

The findings from the numerical investigation are presented in Tables 7, 8, 9 and

10. In each table, the estimate θβ,n of θ, the MSE for θβ,n, and the 95% confidence

intervals (CIs) for θ, calculated using a normal approximation, are displayed. Tables

7, 8, 9 and 10 reveal that the estimates θβ,n for θ are generally near the actual value,

with the exception of θ = 0.1 for Gumbel’s BE copula. Additionally, the MSE for

θβ,n is relatively high and tends to rise as θ increases in the case of the GH copula.

Figure 3 shows how Rθ,n changes in relation to θ for the four copulas discussed

in Section 2.5. The figure reveals that the trend in the estimates Rθ,n of R as θ

varies mirrors the trend in the actual R as θ changes. The values of Rθ,n and the

MSEs for Rθ,n are presented in Tables 11, 12, and 13. It can be observed from

Tables 11, 12, and 13 that the MSE values are relatively low; therefore, Rθ,n is

considered a reliable estimator.

-1 -0.5 0 0.5 1

Theta

0

0.2

0.4

0.6

0.8

1

R

FGM

-1 -0.5 0 0.5 1

Theta

0

0.2

0.4

0.6

0.8

1

R

AMH

0 0.2 0.4 0.6 0.8 1

Theta

0

0.2

0.4

0.6

0.8

1

R

Gumbel BE

Set 1

Set 2

Set 3

Set 4

Set 5

Set 6

1 2 3 4 5 6 7 8 9 10

Theta

0

0.2

0.4

0.6

0.8

1

R

GH

Set 1

Set 2

Set 3

Set 4

Set 5

Set 6

Figure 3: Variation in Rθ,n against dependence parameter θ for the six sets.

6 Application

We utilize the stress-strength data set reported in Tolba et al. [26] and reproduced

in Table 14. We independently fitted the IL distribution to the datasets corre-
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sponding to variables X and Y . Table 15 presents the Kolmogorov-Smirnov (K-S)

distance used to assess the goodness-of-fit, following the approach outlined in [2]

along with the associated p-values for both variables, indicating that the IL distri-

bution provides a good fit to each dataset.

Based on the data set, the dependence measures yield the following results:

τ = 0.2359, β = 0.2937, and the ρ = 0.8412. Based on the ranges of τ and β

mentioned in the introduction, the AMH and GH copulas are suitable for modeling

the dependency between the variables among the four copulas evaluated. The MLEs

of the IL marginal parameters for variables X and Y are found to be (ζ̂1, ζ̂2, δ̂) =

(1.0077, 1.5314, 0.0915), respectively.

In Table 16, the estimates of the dependence parameter θ obtained via both

the two-stage likelihood method θ̂ and the Blomqvist’s beta approach θβ,n are

presented. The corresponding values of the target function R, namely R̂ and Rθ,n,

are also shown for the AMH and GH copula families.

The AIC measure, is given by

AIC = −2 lnL(θ̂, θ̂ is the MLE) + 2(number of model parameters).

For further details, the reader is referred to the Joe [14]. For the stress-strength

test data, the AIC value under the independence assumption is 2355.7318. There-

fore, dependent models provide a better fit. Moreover, it can be concluded that

copula GH offers a better fit to the data compared to copula AMH.

7 Conclusions

This study systematically investigated the influence of copula selection on the re-

liability index R within a dependent stress-strength modeling framework, where

both stress and strength variables follow IL distributions. Addressing the critical

limitations of conventional independence assumptions, the research emphasizes the

necessity of incorporating dependence structures to achieve more accurate reliabil-

ity estimates in practical engineering contexts. Leveraging the flexibility of copula

theory, the modeling framework decouples marginal behaviors from joint dependen-

cies, allowing for the representation of a wide range of dependence patterns.

Closed-form expressions for R were derived for four widely used copula families,

and the variation of reliability with respect to the dependence parameter θ was

thoroughly examined. Two estimation techniques for θthe conditional likelihood

method and the method of moments based on Blomqvist’s betawere employed,

and their asymptotic distributions were studied through extensive Monte Carlo

simulations. For copula cases where an analytical form of R was intractable, a

Monte Carlo approach was utilized for numerical approximation.

Simulation results confirmed that the proposed methodology accurately captured

the underlying behavior of reliability across various dependency levels and copula

types. Notably, the GH copula demonstrated enhanced performance due to its
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Table 1: Estimates θ̂ along with its MSE using FGM and AMH copula with the
sample size n = 50.

Copula Parameters θ

(ζ1, ζ2, γ) -0.9 -0.5 -0.1 0.1 0.5 0.9

FGM (1,2,1) θ̂ -0.8215 -0.4755 -0.0625 0.0924 0.4775 0.8377

MSE 0.0915 0.1732 0.1992 0.2018 0.1592 0.0923

(2,1,1) θ̂ -0.8361 -0.4432 -0.1421 0.0641 0.4775 0.8251

MSE 0.0672 0.1537 0.1983 0.1962 0.1655 0.0844

(0.5,1.5,2) θ̂ -0.8333 -0.4318 -0.1240 0.0631 0.5122 0.8385

MSE 0.0613 0.1314 0.1845 0.1834 0.1357 0.07011

(1.5,0.5,2) θ̂ -0.8312 -0.4530 -0.1283 0.0682 0.4685 0.8286

MSE 0.0806 0.1622 0.1953 0.1793 0.1492 0.0764

(0.3,0.7,0.5) θ̂ -0.8235 -0.4918 -0.1433 0.0793 0.4417 0.8179

MSE 0.0705 0.1652 0.1811 0.1713 0.1592 0.0758

(0.7,0.3,0.5) θ̂ -0.8134 -0.4219 -0.0835 0.0851 0.5284 0.8512

MSE 0.0915 0.1467 0.0925 0.1851 0.1697 0.0680

AMH (1,2,1) θ̂ -0.8431 -0.5207 -0.1063 0.0654 0.5064 0.8873

MSE 0.0702 0.1176 0.1036 0.0872 0.0442 0.0525

(2,1,1) θ̂ -0.8514 -0.5384 -0.0710 0.0671 0.4618 0.8935

MSE 0.0521 0.1223 0.0982 0.0781 0.0532 0.0161

(0.5,1.5,2) θ̂ -0.8602 -0.5216 -0.1346 0.1024 0.5183 0.8903

MSE 0.0533 0.0982 0.0971 0.0591 0.0537 0.0623

(1.5,0.5,2) θ̂ -0.8681 -0.5820 -0.0670 0.1191 0.4833 0.8956

MSE 0.0472 0.1253 0.09720 0.0787 0.0910 0.0063

(0.3,0.7,0.5) θ̂ -0.8552 -0.4662 -0.1113 0.0931 0.5043 0.8957

MSE 0.0571 0.1087 0.0985 0.0980 0.0516 0.0527

(0.7,0.3,0.5) θ̂ -0.8492 -0.5177 -0.1232 0.0681 0.4786 0.8825

MSE 0.0537 0.1204 0.1184 0.0884 0.0521 0.0520

wider support for strong positive dependence, reflected in the higher sensitivity of

R to variations in θ relative to the FGM, AMH, and Gumbel’s BE copulas. Addi-
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tionally, the observed patterns of variation in estimated reliability with respect to

θ were consistent with the corresponding theoretical trends across both estimation

methods. Mean squared errors of the reliability estimates remained low for all cop-

ulas, and the conditional likelihood approach yielded estimates of θ closer to their

true values compared to Blomqvist’s beta.

Overall, this work provides valuable theoretical insights and practical guidance

for selecting appropriate copula functions in stress-strength reliability analysis in-

volving dependent variables. The proposed framework significantly enhances the

robustness and precision of reliability assessments, offering important contributions

to the modeling and design of complex engineering systems with inherent depen-

dency structures.

Table 2: Estimates θ̂ along with its MSE using Gumbel’s BE copula with the sample
size n = 50.

Parameters θ

(ζ1, ζ2, γ) 0.1 0.3 0.5 0.7 0.9

(1,2,1) θ̂ 0.1321 0.3228 0.5321 0.6691 0.8815

MSE 0.0271 0.0475 0.0426 0.0392 0.0235

(2,1,1) θ̂ 0.1282 0.3188 0.5347 0.7143 0.8717

MSE 0.0295 0.0456 0.0526 0.0326 0.0286

(0.5,1.5,2) θ̂ 0.1266 0.3176 0.5268 0.6856 0.8773

MSE 0.0275 0.0462 0.0492 0.0404 0.0358

(1.5,0.5,2) θ̂ 0.1217 0.3102 0.5317 0.7213 0.8954

MSE 0.0214 0.0425 0.0437 0.0473 0.0195

(0.3,0.7,0.5) θ̂ 0.1253 0.3183 0.5271 0.6855 0.8736

MSE 0.0217 0.0446 0.0482 0.0421 0.0255

(0.7,0.3,0.5) θ̂ 0.1118 0.3170 0.5172 0.7023 0.8712

MSE 0.0178 0.0431 0.0301 0.0411 0.0402
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Table 3: Estimates θ̂ along with its MSE using GH copula with the sample size
n = 50.

Parameters θ

(ζ1, ζ2, γ) 2 4 6 8 10

(1,2,1) θ̂ 2.3782 4.2377 6.5317 7.7469 9.1036

MSE 0.2513 0.4633 0.5782 0.7426 0.6662

(2,1,1) θ̂ 2.3305 4.2380 6.3604 7.8103 9.1176

MSE 0.2276 0.4692 0.4218 0.7426 0.6381

(0.5,1.5,2) θ̂ 2.2476 4.1973 6.4521 7.8430 9.0817

MSE 0.1875 0.3882 0.5174 0.5639 0.6857

(1.5,0.5,2) θ̂ 2.2054 4.1733 6.3207 7.8274 9.3126

MSE 0.1640 0.3776 0.3176 0.6007 0.5127

(0.3,0.7,0.5) θ̂ 2.2533 4.1638 6.4122 7.7421 9.0646

MSE 0.1976 0.3726 0.5108 0.7607 0.6833

(0.7,0.3,0.5) θ̂ 2.2190 4.1913 6.3712 7.8361 9.2033

MSE 0.1833 0.3854 0.4283 0.6012 0.5985
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Table 4: Estimates R̂ along with its MSE using FGM and AMH copula with the
sample size n = 50.

Copula Parameters θ

(ζ1, ζ2, γ) -0.9 -0.5 -0.1 0.1 0.5 0.9

FGM (1,2,1) R̂ 0.3627 0.3510 0.3359 0.3313 0.3155 0.3025

MSE 0.0027 0.0019 0.0023 0.0018 0.0029 0.0020

(2,1,1) R̂ 0.6356 0.6515 0.6621 0.6709 0.6825 0.6972

MSE 0.0016 0.0022 0.0019 0.0018 0.0024 0.0021

(0.5,1.5,2) R̂ 0.2892 0.2721 0.2536 0.2450 0.2289 0.2106

MSE 0.0019 0.0015 0.0021 0.0010 0.0008 0.0016

(1.5,0.5,2) R̂ 0.7123 0.7272 0.7451 0.7533 0.7709 0.7877

MSE 0.0017 0.0029 0.0012 0.0018 0.0023 0.0014

(0.3,0.7,0.5) R̂ 0.3336 0.3194 0.3026 0.2954 0.2818 0.2664

MSE 0.0017 0.0009 0.0021 0.0013 0.0011 0.0010

(0.7,0.3,0.5) R̂ 0.6645 0.6801 0.6948 0.7025 0.7178 0.7349

MSE 0.0023 0.0015 0.0028 0.0021 0.0019 0.0012

AMH (1,2,1) R̂ 0.2421 0.2205 0.1985 0.1869 0.1541 0.1133

MSE 0.0025 0.0018 0.0016 0.0012 0.0021 0.0017

(2,1,1) R̂ 0.4224 0.4086 0.3893 0.3815 0.3571 0.3277

MSE 0.0015 0.0011 0.0017 0.0019 0.0010 0.0014

(0.5,1.5,2) R̂ 0.1683 0.1507 0.1321 0.1211 0.0976 0.0644

MSE 0.0007 0.0016 0.0010 0.0012 0.0015 0.0008

(1.5,0.5,2) R̂ 0.4099 0.3972 0.3846 0.3798 0.3622 0.3453

MSE 0.0013 0.0019 0.0024 0.0011 0.0019 0.0016

(0.3,0.7,0.5) R̂ 0.3276 0.3045 0.2753 0.2577 0.2238 0.1797

MSE 0.0016 0.0026 0.0014 0.0018 0.0010 0.0006

(0.7,0.3,0.5) R̂ 0.6703 0.6519 0.6272 0.6172 0.5891 0.5565

MSE 0.0013 0.0017 0.0025 0.0016 0.0009 0.0021
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Table 5: Estimates R̂ along with its MSE using Gumbel’s BE copula with the
sample size n = 50.

Parameters θ

(ζ1, ζ2, γ) 0.1 0.3 0.5 0.7 0.9

(1,2,1) R̂ 0.3526 0.3615 0.3653 0.3734 0.3776

MSE 0.0022 0.0017 0.0027 0.0013 0.0011

(2,1,1) R̂ 0.6655 0.6531 0.6455 0.6366 0.6328

MSE 0.0016 0.0014 0.0008 0.0023 0.0012

(0.5,1.5,2) R̂ 0.3349 0.3437 0.3537 0.3625 0.3671

MSE 0.0018 0.0012 0.0011 0.0008 0.0013

(1.5,0.5,2) R̂ 0.7488 0.7344 0.7209 0.7106 0.7027

MSE 0.0016 0.0015 0.0011 0.0014 0.0018

(0.3,0.7,0.5) R̂ 0.6075 0.6213 0.6313 0.6394 0.6451

MSE 0.0020 0.0014 0.0018 0.0019 0.0010

(0.7,0.3,0.5) R̂ 0.7433 0.7344 0.7298 0.7230 0.7183

MSE 0.0017 0.0025 0.0011 0.0020 0.0026
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Table 6: Estimates R̂ along with its MSE using GH copula with the sample size
n = 50.

Parameters θ

(ζ1, ζ2, γ) 2 4 6 8 10

(1,2,1) R̂ 0.2025 0.0604 0.0163 0.0033 9.7721×10−4

MSE 0.0027 0.0025 0.0017 0.0012 0.0006

(2,1,1) R̂ 0.7986 0.9401 0.9834 0.9953 0.9981

MSE 0.0019 0.0014 0.0016 0.0013 0.0011

(0.5,1.5,2) R̂ 0.1012 0.0131 0.0022 1.4301×10−4 1.66713 ×10−5

MSE 0.0015 0.0016 0.0010 0.0007 0.0004

(1.5,0.5,2) R̂ 0.8989 0.9868 0.9989 0.9992 0.9989

MSE 0.0013 0.0010 0.0012 0.0007 0.0005

(0.3,0.7,0.5) R̂ 0.1545 0.0333 0.0057 0.0008 2.0825 ×10−4

MSE 0.0015 0.0018 0.0011 0.0009 0.0007

(0.7,0.3,0.5) R̂ 0.8462 0.9665 0.9922 0.9966 0.9982

MSE 0.0021 0.0017 0.0014 0.0019 0.0015
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Table 11: Estimates R̂θ,n along with its MSE using FGM and AMH copula with
the sample size n = 50.

Copula Parameters θ

(ζ1, ζ2, γ) -0.9 -0.5 -0.1 0.1 0.5 0.9

FGM (1,2,1) R̂ 0.3572 0.3518 0.3343 0.3322 0.3158 0.3042

MSE 0.0021 0.0024 0.0043 0.0025 0.0023 0.0031

(2,1,1) R̂ 0.6352 0.6521 0.6625 0.6712 0.6842 0.6981

MSE 0.0022 0.0037 0.0015 0.0023 0.0026 0.0039

(0.5,1.5,2) R̂ 0.2896 0.2728 0.2531 0.2433 0.2297 0.2097

MSE 0.0027 0.0026 0.0025 0.0031 0.0017 0.0022

(1.5,0.5,2) R̂ 0.7134 0.7274 0.7446 0.7538 0.7711 0.7879

MSE 0.0034 0.0025 0.0018 0.0014 0.0014 0.0012

(0.3,0.7,0.5) R̂ 0.3332 0.3196 0.3029 0.2957 0.2817 0.2668

MSE 0.0019 0.0011 0.0017 0.0010 0.0009 0.0015

(0.7,0.3,0.5) R̂ 0.6648 0.6803 0.6955 0.7028 0.7182 0.7351

MSE 0.0024 0.0012 0.0018 0.0019 0.0017 0.0015

AMH (1,2,1) R̂ 0.2423 0.2208 0.1982 0.1872 0.1547 0.1135

MSE 0.0021 0.0016 0.0018 0.0015 0.0013 0.0014

(2,1,1) R̂ 0.4222 0.4088 0.3896 0.3818 0.3570 0.3275

MSE 0.0017 0.0014 0.0026 0.0023 0.0012 0.0015

(0.5,1.5,2) R̂ 0.1689 0.1509 0.1318 0.1213 0.0979 0.0647

MSE 0.0016 0.0014 0.0015 0.0009 0.0012 0.0011

(1.5,0.5,2) R̂ 0.4097 0.3967 0.3852 0.3804 0.3624 0.3451

MSE 0.0010 0.0027 0.0019 0.0017 0.0021 0.0021

(0.3,0.7,0.5) R̂ 0.3272 0.3039 0.2762 0.2572 0.2245 0.1784

MSE 0.0021 0.0016 0.0023 0.0025 0.0019 0.0013

(0.7,0.3,0.5) R̂ 0.6718 0.6511 0.6281 0.6175 0.5884 0.5566

MSE 0.0016 0.0009 0.0011 0.0019 0.0014 0.0016
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Table 12: Estimates R̂θ,n along with its MSE using Gumbel’s BE copula with the
sample size n = 50.

Parameters θ

(ζ1, ζ2, γ) 0.1 0.3 0.5 0.7 0.9

(1,2,1) R̂ 0.3531 0.36215 0.3662 0.3739 0.3773

MSE 0.0012 0.0023 0.0018 0.0009 0.0015

(2,1,1) R̂ 0.6648 0.6527 0.6441 0.6389 0.6305

MSE 0.0025 0.0019 0.0012 0.0013 0.0014

(0.5,1.5,2) R̂ 0.3342 0.3455 0.3540 0.3594 0.3695

MSE 0.0022 0.0011 0.0009 0.0011 0.0017

(1.5,0.5,2) R̂ 0.7510 0.7341 0.7226 0.7110 0.7021

MSE 0.0012 0.0013 0.0011 0.0009 0.0024

(0.3,0.7,0.5) R̂ 0.6097 0.6194 0.6291 0.6392 0.6463

MSE 0.0016 0.0011 0.0012 0.0013 0.0009

(0.7,0.3,0.5) R̂ 0.7452 0.7366 0.7283 0.7254 0.7188

MSE 0.0008 0.0007 0.0012 0.0013 0.0014
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Table 13: Estimates R̂θ,n along with its MSE using GH copula with the sample
size n = 50.

Parameters θ

(ζ1, ζ2, γ) 2 4 6 8 10

(1,2,1) R̂ 0.2018 0.0580 0.0144 0.0048 0.0008

MSE 0.0021 0.0008 0.0011 0.0010 0.0009

(2,1,1) R̂ 0.8018 0.9422 0.9863 0.9978 0.9979

MSE 0.0023 0.0012 0.0019 0.0017 0.0015

(0.5,1.5,2) R̂ 0.0991 0.0117 0.0034 0.0081 0.0016

MSE 0.0011 0.0009 0.0029 0.0015 0.0008

(1.5,0.5,2) R̂ 0.9001 0.9895 0.9977 0.9971 0.9962

MSE 0.0010 0.0014 0.0008 0.0017 0.0013

(0.3,0.7,0.5) R̂ 0.1565 0.0316 0.0072 0.0026 1.0311 ×10−4

MSE 0.0019 0.0012 0.0008 0.0015 0.0009

(0.7,0.3,0.5) R̂ 0.8438 0.9684 0.9941 0.9969 0.9976

MSE 0.0027 0.0012 0.0007 0.0011 0.0021

Table 14: Real data (Strength X and stress Y ).

X 0.853 0.759 0.866 0.809 0.717 0.544 0.492 0.403 0.344 0.213 0.116

0.092 0.070 0.059 0.048 0.036 0.029 0.021 0.014 0.011 0.008 0.006

Y 0.853 0.759 0.874 0.800 0.716 0.557 0.503 0.399 0.334 0.207 0.118

0.118 0.097 0.078 0.067 0.056 0.044 0.036 0.026 0.019 0.014 0.010

Table 15: Goodness-of-fit tests for fitting IL distribution to real data.

Variable K-S statistic P-value

X 0.1389 0.7665

Y 0.1408 0.7761

Table 16: Estimates θ̂, θβ,n, R̂ and Rθ,n, of θ and R respectively for FGM, AMH
and GH copula for real data.

Copula θ̂ R̂ θβ,n Rθ,n AIC

AMH 0.8190 0.9879 0.9735 0.8764 98.4182

GH 7.2842 0.9902 5.2218 0.9822 -175.3329
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