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This paper investigates the use of different priors to improve the
inflation forecasting performance of BVAR models with
Litterman’s prior. A Quasi-Bayesian method, with several
different priors, is applied to a VAR model of the Iranian
economy from 1981:Q2 to 2007:Q1. A novel feature with this
paper is the use of g-prior in the BVAR models to alleviate poor
estimation of drift parameters of Traditional BVAR models. Some
results are as follows: (1) our results show that in the Quasi-
Bayesian framework, BVAR models with Normal-Wishart prior
provides the most accurate forecasts of Iranian inflation; (2) The
results also show that generally in the parsimonious models, the
BVAR with g-prior performs better than BVAR with Litterman’s
prior.1
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1. Introduction
This paper focuses on the investigation of the use of different priors in
Quasi-Bayesian vector autoregressive (BVAR) models to improve the
inflation forecasting performance of Traditional BVAR models2. In
this regard it follows Heidari (2011) and Heidari and Parvin (2008)
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among others1. Forecasting of prices, under inflation targeting
strategy, has become more important from the standpoint of the
monetary policy makers and private agents. Svensson (1997) points
out that a problem of implementing an inflation targeting strategy is
the central bank’s imperfect control of inflation. Svensson (1997)
documented that a conditional inflation forecast, as an intermediate
target variable, can alleviate this problem. Using this makes the
forecast the focal point in the monetary policy discussions. Apart from
its  role  as  an  input  into  monetary  policy,  forecasts  of  inflation  have  a
significant role in fiscal policy and the wage bargaining process.
Additionally, they have a role in assessing likely trends in
competitiveness in the international capital markets and projections of
real economic activity.

There are a number of approaches to forecast inflation: Structural
models based on macroeconomic theories of the small open economy
(SOE); indicator analysis, including a composite leading indicator;
and time series methods such as autoregressive integrated moving
average (ARIMA), and vector autoregressive (VAR) models. Each of
these approaches has particular advantages and certain limitations.

This paper, however, uses VAR models. One of the most
successful applications of the VAR models in macroeconomics has
been the forecasting of macroeconomic variables. These models,
however, are not free of limitations (see, e.g., Canova, 1995; and Fry
and Pagan, 2005, for some critiques and issues in using VAR models).
A disadvantage of using Unrestricted VAR (UVAR) models based on
unrestricted ordinary least square (OLS) estimates of the coefficients
is the large number of parameters that need to be estimated. To restrict
the parameters of the UVAR models and improve the forecasting
performance of these models, Litterman (1984, 1986), and Doan, et al.
(1984) suggested that these parameters could be estimated using
Bayesian techniques. In pure Bayesian method, a Markov Chain
Monte Carlo (MCMC) or other methods of sampling are employed to
calculate posterior distribution. As Litterman (1984, 1986), and Doan,
et al. (1984) fix many parameters (such as variance-covariance of

1. Moshiri (2001) uses a structural (an augmented Phillips Curve), a time series (an AR(1)
model), and an Artificial Neural Networks (ANN) models to forecast Iranian inflation.
Structural and ANN models are out of the scope of this paper and VAR models are superior to
the class of ARMA models in various respects.
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innovations), the method that they used is referred to as the Quasi-
Bayesian method in comparison with pure Bayesian method1.

There is a lot of empirical evidence in the literature, which suggests
that the BVAR models with Litterman’s prior produce forecasts that
exhibit a high degree of accuracy when compared with alternative
methods such as univariate time series models, UVAR, and large scale
macro-models (see,e.g., Artis and Zhang, 1990; Ballabriga and Valles,
1999; Ballabriga et al., 2000; Doan et al., 1984; Felix and Nunes,
2003; Heidari, 2011; Heidari and Parvin, 2008; Kadiyala and
Karlsson, 1993 and 1997; Kenny et al., 1998; Litterman, 1984 and
1986; McNees, 1986; Robertson and Tallman, 1999; Sims, 1993; Sims
and Zha, 1998; Todd, 1984). Although Traditional BVAR models can
improve  UVAR model  forecasts  through the  use  of  extra  information
as priors, they cannot be used to get accurate forecasts in mixed drift
models. Mixed drift models are referred to as the macroeconomic
forecasting models which contain variables both with and without
drift. In these models, Traditional BVAR models treat all variables in
the model in the same way and use diffuse prior on the constant term
and  shrink  the  drift  terms  toward  zero.  This  would  create  bias  in  the
forecasts of those variables. This could be one of the possible reasons
behind the weak results of recent studies on forecasting
macroeconomic variables using a BVAR with Litterman’s prior2. In
the literature, the performance of the Traditional BVAR models has
been somewhat unimpressive in inflation forecasting, as a driftless
variable (see, e.g., Heidari, 2011; Kenny et al., 1998; Litterman, 1986;
McNees, 1986; Robertson and Tallman, 1999; Webb, 1995; Zarnowitz
and Braun, 1992).

This paper investigates the use of different priors to improve the
inflation forecasting performance of Traditional BVAR models. A
novel feature of this paper is the use of inexact prior restrictions of g-
prior to the BVAR models. To study whether using g-prior in the
Quasi-Bayesian VAR, improves the quality of the forecasts of

1. In pure Bayesian method, all these parameters can be estimated and also forecasts are
conditioned on expected values.
2. Heidari and Parvin (forthcoming) investigates the forecast accuracy of different BVAR
models with different sources of time variation for forecasting Iranian inflation. They show
that a modified time-varying BVAR model, where the autoregressive coefficients are held
constant and only the deterministic components are allowed to vary over time, performs much
better than other models regardless of the number of lags, hyperparameter that controls time
variation, and forecast horizons.
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inflation in the BVAR models, the present paper estimates and
compares four models: a BVAR model with Litterman’s prior, a
BVAR model with Normal-Wishart prior, a BVAR model with g-
prior, and a UVAR model.

The paper is organised as follows. Section 2 presents a discussion
of VAR forecasting models. In this section there is also a brief
introduction of the BVAR model with Litterman and Normal-Wishart
prior’s, and the g-prior. Section 3 describes the data. There are some
alternative representations of BVAR models, which is fitted to
quarterly data of the Iranian economy in section 4. Section 5 presents
empirical results. Finally, section 6 offers some conclusions.

2. The VAR Models and Forecasting
A VAR model can be represented as follows:
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where y  is an 1%n  vector of the endogenous variables. The subscript
t denotes time, a  is  an 1%n  vector of deterministic variables, and u

is an 1%n  vector of error terms. The parameters which describe this
model are a , lA , for pl ,...,1" , the variance-covariance matrix, u! ,

and the lag length, p . Since the model includes p lagged values of
each of the variables, it is referred to as a VAR ( p ) model. In this
model, each of the n  equations has the same set of explanatory
variables: p lagged values of the dependent variable and each of the
others. In a VAR model, each variable in the system is supposed to be
a linear function of previous values of the other endogenous variables.
An important disadvantage of using a VAR model for forecasting
based on unrestricted OLS estimates of the coefficients is the large
number of parameters that need to be estimated (danger of over-
parameterization)1. This problem is particularly acute in the small
sample sizes which are generally available to macroeconomic
forecasters. In any VAR model, the number of parameters to be

1. VAR models become overparameterized when T (the size of the sample) is small and
p (the number of lags) is large.
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estimated, increases by 1)12( ## pn  with each additional variable for

a given lag length and by 2n  with each additional lag. Forecasts made
using UVAR models which suffer from over parameterization, will
give good with-in-sample fit, but often have poor out-of-sample
forecasts (see, e.g., Doan, 1992).

Restricting the parameters of the UVAR models may improve out-
of-sample forecasts. Litterman (1984, 1986) and Doan, et al. (1984)
suggest that the parameters of the UVAR models could be estimated
using Bayesian techniques, which take into account prior information
available to the forecaster. In the VAR context, introducing prior
distributions over the parameters of the UVAR models can reduce the
tendency of the UVAR models to be over-parameterized. Litterman
(1986) suggested random walk prior mean for the coefficients with a
parsimonious set of hyperparameters which govern their variance1. As
many macroeconomic variables have stochastic trends, the best
guesses  of  the  Litterman  prior  are  random  walk  with  drift,  with  a
vague prior on the drift.

Applying the random walk hypothesis to equation (1) requires the
mean of the coefficient matrix on the first lag, 1A  to be equal to an

identity matrix and the mean of the elements of lA , for 1&l , to be

equal to zero. Of course, if the data suggests that there are strong
effects from lags other than the first own lag or from the lags of all the
other variables in the model, this will be reflected in the parameter
estimates. No prior information is assumed to be known about the
prior mean on the deterministic components in Traditional BVAR.
Furthermore, the prior distributions on all of the parameters
(coefficients) of the model are assumed to be independent normal.

The standard deviations of the prior distributions are forced to
decrease as the lag length increases, tightening the distribution around
the prior mean of zero at larger lags.  Therefore, BVAR models
estimated  under  Litterman’s  prior  may show coefficients  on  first  own
lag close to one and most other coefficients close to zero, depending
on  the  imposed  tightness  of  the  prior.  This  method  isolates  the

1. Since this particular system of Bayesian priors has been developed by Litterman and others
at the University of Minnesota and the Federal Reserve Bank of Minneapolis, it is known as
the Minnesota system of prior beliefs or, more briefly, the Minnesota prior or Litterman’s
prior. It has also been referred as Traditional BVAR in recent years’ studies.
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systematic components of variation in the series, reduces the effect of
over-parameterization, and often generates more accurate forecasts
than UVAR models.

In more detail, Litterman (1986) pointed out that the standard
deviation of prior distribution of the thij  element of the thl  lag

coefficient matrix lA  can be nonzero, with the following specification

3
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where hyperparameters 1' , 2' , and 3'  determine  the  tightness  or

weight attaching to the prior in random walk. The parameter 1'  is the
overall tightness (or weight) parameter and reflects how closely the
random walk approximation is to be imposed. In general, this
hyperparameter determines the relative weight of prior information.
Decreasing 1'  toward  zero  has  the  effect  of  shrinking  the  diagonal

elements of lA  toward one and all other coefficients to zero. 2'  is the

hyperparameter that controls the cross variable relationship. Lowering

2'  toward zero shrinks the off-diagonal elements of lA  toward zero.

Setting 12 "'  means that there is no difference between the lags of

the dependent variable and the lags of other variables. The 3'  is  a

parameter to indicate the extent to which the lags closer in time have
greater informative content than those more distant in time. As 3'
increases, the coefficients on high-order lags are being shrunk toward
zero more tightly and when 3'  is  set  to  one,  the  rate  of  decay  in  the

weight is harmonic. i(  is the thi diagonal element of matrix u!  and in

practice usually is set equal to the residual standard error from an OLS
regression of each dependent variable on p  lagged values. The ratio

ji ((  is included in the prior standard deviations to account for the

differences in the units of measurement of different variables. If the
variability of liy ,  is  much  lower  than  that  of ljy , , then the coefficient

on 1, $ljy  in the thi  equation is shrunk toward zero.
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The usual OLS estimator of the coefficients of the thi  equation of the
VAR model in equation (1) is

i
OLS
i yXXXb **" $1)(ˆ ,,...,1 mi "

where iy  is  a 1%T  vector and X  is  a )1( #% mpT  matrix (T is

number of observations). By using Theil’s (1963) mixed estimation
technique, the coefficient estimator or the mean of the posterior
distribution under the Litterman prior, is (see, e.g., Lutkepohl, 1993):
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where iG  is the prior covariance matrix of ib , ib  is its prior mean, iy

is the thi row of y , and 2
i( is the thi diagonal element of the

covariance matrix of residual.
Although there is a lot of empirical evidence to suggest that this

kind of BVAR model produces forecasts (especially for real variables)
that exhibit a high degree of accuracy when compared with UVAR
model, they do have some limitations.

In using Litterman’s prior, researchers assume a fixed and diagonal
residual variance-covariance matrix and at the same time claim less
than perfect information about the regression parameters in the VAR.
This is strange; because generally it is easier to form beliefs about the
regression parameters than about the residual variance-covariance
matrix. The residual variance-covariance matrix, u! , is taken to be

fixed and diagonal and the likelihood function is the product of
independent normal densities for lA . The prior and posterior are

independent between equations in the Litterman prior and they can be
considered separately. This is a disadvantage of the Minnesota prior as
it imposes severe restrictions on the likelihood in the form of the fixed
and diagonal residual variance–covariance matrix. Kadiyala and
Karlsson (1993) suggested families of prior distributions that allow for
dependence between the equations. These prior are The Normal–
Wishart prior, the Diffuse (Jeffreys’) prior, the Normal–Diffuse prior
and the Extended Natural Conjugate (ENC) prior.1 They evaluate

1. The Normal – Diffuse and ENC priors have a disadvantage, in that, they do not have closed
form solutions for the posterior moments of the regression parameters and they must be
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these priors based on the forecast performance and find that several of
these methods give better forecasts than the Litterman prior.

When the assumption of a fixed and diagonal residual variance-
covariance matrix is relaxed, the natural conjugate prior for normal
data is the Normal-Wishart prior (see, e.g., Kadiyala and Karlsson,
1993 and 1997). Under a Normal-Wishart prior, the prior distribution
of coefficients conditional to the residual variance-covariance matrix,

u! , is normal while the prior distribution of u! is Inverse Wishart

(IW). In this situation, the random-walk aspect of the Minnesota prior
can be used without making independence across the equations of the
VAR as an exact restriction (see, e.g., Dreze and Richard, 1983).

Although the Normal-Wishart prior is convenient to understand and
implement, it has some shortcomings. With the Normal-Wishart, the
structure of variance-covariance matrix of the regression parameters
forces the researcher to treat all equations systematically in specifying
the prior. For example, if we are going to be uninformative about a
specific parameter in one equation by specifying a relatively big prior
variance, we are forced to be uninformative about the corresponding
parameter in the other equation as well (see, e.g., Kadiyala and
Karlsson, 1997). Hence, the BVAR model with Normal-Wishart prior
has the same limitation as the BVAR model with Litterman’s prior,
the precision in estimation of the drift parameters1. Bewley (2000)
argues that the Traditional BVAR models perform better than the
UVAR models mainly because they correct for the unit root, not
because they reduces the over-parameterization, and that their long-
run performance for driftless variables is poor.  This is an important
point. Traditional BVAR models, because of the vague prior on the
constant, will not perform well in the long-run forecasting of I(1)
variables either if they have no drift (See, e.g., Bewley, 2000 and
2001).

evaluated numerically. Even when the posterior expectation and variance of A are known,
numerical methods are often necessary in order to obtain forecasts, impulse response and
other non- linear functions of the regression parameters. This procedure will be expensive,
especially for large models, because it is quite time consuming. In order to overcome this
problem, Kadiyala and Karlsson (1997) suggested methods of importance sampling and Gibbs
sampling for evaluating the posterior distribution of functions of the regression parameters,
which is beyond of the scope of this paper.
1. Clements and Hendry (1996), and  Hendry and Clements, (2003), regardless of the kind of
model, believe that precision in estimation of the drift parameters is one of the main sources
of poor forecasting.
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 In practice, most of the macroeconomic forecasting models include
variables that demonstrate both drift and no drift (mixed drift models).
BVAR models with Litterman’s prior use diffuse prior on the constant
and shrink the drift term to zero. This would bias the forecasts of time
series with drift in the model and hence, lead to poor estimations of
the mean in mixed drift cases.

Heidari (2011) applies the Bewley (1979) transformation for
reparameterization of the VAR model to restrict the mean of the
change of inflation to zero in a four variable mixed drift model of the
Iranian  economy.  His  result  show  that  using  the  Bewley  (1979)
transformation to force the drift parameter of change of inflation to
zero in the VAR model improves forecast accuracy in comparison to
the Traditional BVAR model.

In the Bayesian approach, shrinking some of the drift parameters
toward zero, substantial improvements in forecast accuracy can be
expected. The Traditional BVAR model uses diffuse priors on the
constant and shrink the drift terms toward zero. This would bias the
forecasts of those variables with drift in the mixed drift case. Without
considering this nonlinear relationship, the forecaster has no constraint
on the constant terms. In other words, the forecaster either supposes
that none of the variables includes drift or imposes diffuse priors on
the regression constants in Bayesian approach. Bewley (2000) argued
that in this condition, the long-run forecast errors of time series
without drift in mixed-drift models are dominated by insignificant
drift parameter estimates.

As mentioned already, a novel feature of this paper is using g-prior
for BVAR models. In fact, a way of thinking about alleviation of poor
estimation of the mean in the Traditional BVAR models is using g-
prior. Zellner (1986) reported that the g-prior is a special form of a
Natural  Conjugate  prior  distribution  and  can  be  considered  as  a
reference for informative prior distributions. For the g-prior amounts,
Zellner (1986) proposed specifying a normal prior for the parameters,
conditional on u!  and a Jeffrey’s prior for u! :
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where Zellner (1986) sets .'0 XgXM "  The researcher chooses 0A

and g , where g  measures the amount of information in the prior

relative to the sample. In the VAR case, let )|( uAE !  be a random

walk and the prior variance conditional on u!  be

(3) 1))(()|var( $ *,!"! npTXXA uu

where np  is  the  number  of  prior  observations  and  is  the  only
hyperparameter to be specified. By using Theil and Goldberger (1961)
mixed estimator, the mean of the posterior distribution under the g-
prior is
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where Tnpg /" , OLSÂ  is OLS estimation of A , and 1A is the prior

mean.
In the case of random walk, the unconditional expected value of y ,

implied by the posterior mean of the parameters is ]ˆ)ˆ[( 1
olsols aAI $$ ,

which is the same as OLS. Although the prior mean of A  is the same
as the Litterman’s prior, this prior is a Conjugate prior, and cannot
treat lags of the dependent variable and the lags of other variables
differently (see, e.g., Karlsson, 2001). This is not the focus of this
paper. As mentioned earlier,  Kadiyala and Karlsson (1997) find that
the Natural Conjugate prior, which treats all variables equally and
allows for dependence between the equations, gives at least as
accurate a forecast as the Traditional BVAR model. The important
point here is that the combination of a random walk mean prior and
variance prior in equation (3) indicates that it does not matter how big
the hyperparameter, np ,  or how strong the prior is,  the unconditional
mean implied by the posterior coefficients of the BVAR
( ])[( 1 aAI $$ ) is exactly the same as the unconditional mean implied
by the VAR. Hence, the BVAR model with g-prior shrinks the
coefficients toward the random walk, without any effect on the long-
run forecast. Because of this, the BVAR with g-prior may do well for
variables without and with a small drift such as real GDP and
inflation. In other words, estimation of the mean, in the VAR models
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with g-prior are expected to be more accurate than the Traditional
BVAR in the long-run.

3. Data Description
The data used for the analysis are quarterly from 1981:Q2 to 2007:Q1
and for the Iranian economy. All of the data is seasonally adjusted
except for the exchange rate. Some of the variables show strong drift,
including the log of GDP (Y), and the log of money supply (M2). The
other variables do not contain drift; these include the change in the log
of the implicit GDP deflator (INF), and the change in the log of black
market exchange rate (Exc). Therefore, we have a mixed drift system
of equations.

4. Empirical Application
This section presents various BVAR specifications to forecast the
inflation  rate  for  the  first  and  the  second  quarters  ahead  and  the  first
and second calendar years ahead, over the period from 2001:Q2 to
2007:Q1. The model estimated in this paper is the same as that
presented in Heidari and Parvin (2008); in terms of the number of
included variables in the model, lag length, and the process of
choosing hyperparameters. The alternative specifications considered
are:

- A BVAR specification with Litterman prior as described
earlier. The hyperparameter that controls relative tightness on
lags of other variables is fixed at 0.2. This is the same value
that Sims and Zha (1998) used for quarterly data. We searched
for the hyperparameter that controls the tightness of the prior
distribution and automatically picked the values that maximize
the log of the marginal likelihood function. For estimation, we
used the original Litterman’s equation by equation estimation.
This specification is denoted as BVAR_Litt.

- A BVAR specification with Normal–Wishart prior. We fixed
the hyperparameter that controls the tightness of the prior
distribution at 0.2. Sims and Zha (1998) used this value for
quarterly data. We searched for the hyperparameter that
controls tightness of the constant. Our program automatically
sets this hyperparameter to the value which maximizes the
marginal likelihood function. For the parameters of the prior of
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variance-covariance matrix, 0S  is automatically set to be the

residuals from AR regressions and 0n  is set to be one which is

corresponding to a diffuse prior on the variance-covariance
matrix in practice. This specification is denoted as
BVAR_NW.

- A BVAR specification with g-prior. The same as BVAR
model with Normal-Wishart, for the parameters of the prior of
variance-covariance matrix, 0S  is automatically set to be the

residuals from AR regressions but 0n  is  set  to  be  one  plus

number of lags ( nlags#1 ). We search for “the number of prior
observations” ( np ). This specification is denoted as
BVAR_gp.

- A UVAR specification where the variables are only logged.
This specification is denoted as UVAR.

- In all of these representations, the sample period is divided
into two sub-samples. First the model was estimated for the
period from 1981:Q2 to 2001:Q1. Then we added the last 5
years of data (from 2001:Q2 to 2007:Q1) one quarter at a time.
In doing so, we re-estimated the models (with new optimal
hyperparameters), and forecast for different horizons carried
out when new data arrived. This process continued until all the
data has been used. The forecasts of inflation in each of these
models,  for  the  current  and  the  subsequent  quarter,  as  well  as
forecasts for the current and the subsequent calendar years, are
compared with the actual values.

5. Results
Since the final goal of this paper is to find a model to accurately
forecast inflation for the Iranian economy, the final criterion for
making specification choices is forecast accuracy. In most forecast
evaluations the accuracy measures are some form of average error,
typically RMSE, Theil statistic or mean absolute error (MAE). The
results reported below use the RMSE as the accuracy criterion, but it
is acknowledged that using other forecast accuracy criteria may yield
different model rankings.

Tables  1  present  RMSE  of  the  various  BVAR  and  UVAR
specifications for forecasting Iranian inflation. In the results presented
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in this table, the period from 2001:Q2 to 2007:Q1 is used to examine
the forecast performance of the models. The numbers in parentheses
are the ratio of the RMSE of the BVAR model with Litterman’s prior
to the RMSE of the associated model at each horizon. A value greater
than one means that the RMSE of the BVAR model with Litterman’s
prior is larger than the given model. This indicates that the given
model’s forecasts are more accurate than the Traditional BVAR
model’s forecasts.

In  Table  1,  the  BVAR  model  with  Normal-Wishart  prior  is  the
dominant model for forecasting Iranian inflation across forecast
horizons. Our results show that the BVAR model with g-prior
performs better than the BVAR with Litterman’s prior for the inflation
forecasts for all horizons when the number of lags is one. This model
gives accurate forecasts of inflation in the first and second quarter
horizons for lags numbering three.

Table 1. RMSE of Different VAR Specification Forecasts of Iranian Inflation
2001:Q2 - 2007:Q1

Models
specification

First
Quarter

Second
Quarter

First Year Second Year

Lag=1
BVAR_Litt 0.00787 0.00900 0.0101 0.0109

BVAR_NW
0.00660
(1.1925)

0.00588
(1.5290)

0.00697
(1.4595)

0.00705
(1.5541)

BVAR_gP
0.00766
(1.0282)

0.00873
(1.0309)

0.01006
(1.0115)

0.01080
(1.0150)

UVAR
0.00789
(0.9981)

0.00901
(0.9981)

0.01018
(0.9993)

0.01097
(0.9994)

Lags=3
BVAR_Litt 0.00669 0.00757 0.00941 0.01063

BVAR_NW
0.00584
(1.1467)

0.00602
(1.2584)

0.00768
(1.2247)

0.00729
(1.4572)

BVAR_gp
0.00600
(1.1150)

0.00711
(1.0646)

0.00920
(1.0228)

0.01047
(1.0152)

UVAR
0.00669
(1.0004)

0.00759
(0.9975)

0.00938
(1.0029)

0.01061
(1.0020)

Note: the numbers in parentheses are the ratio of the RMSE of the BVAR model
with Litterman’s prior to the RMSE of the associated model at each horizon. A
value greater than one means that the RMSE of the BVAR model with Litterman’s
prior is larger than the given model. This indicates that the given model’s forecasts
are more accurate than the BVAR model with Litterman’s prior forecasts.
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In practice a VAR model with four variables and three lags is more
common than a VAR model with four variables and one lag. On the
other hand, in results presented in Table 1, RMSE of different BVAR
and VAR specifications with three lags are generally smaller than
VAR models with one lag. Hence, it makes sense to conclude that the
BVAR model with Normal-Wishart prior performs better than others
in forecasting Iranian inflation for a five year period of forecast
comparison, from 2001:Q2 to 2007:Q1. Our results, however, show
that using g-prior instead of Litterman’s prior in BVAR model, can
improve forecasts of Iranian inflation.

In summary, our results show that, generally the BVAR model with
Normal-Wishart prior is the dominant model in forecasting Iranian
inflation. In parsimonious models, using g-prior in the BVAR model,
however, improves forecast of inflation in the Traditional BVAR
models.

6. Conclusion
This paper shows a comparison of forecast accuracy between different
specifications of VAR and BVARs with several different priors. The
paper discusses the precision in estimation of the drift parameters as a
main source of weak forecasts in the Traditional BVAR models. The
novelty of the paper is applying g-prior in the BVAR model. We
provide empirical evidence from the performance of various
specifications of a four-variable BVAR in forecasting Iranian
inflation. The results show that the performance of a model and its
superiority  depends  on  the  number  of  lags  and  the  forecast  horizons.
Moreover, our results show that in parsimonious models, the BVAR
models with g-prior produce much more accurate forecasts of inflation
than the BVAR models with the Litterman’s prior using real data from
Iranian economy.
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