تعداد نشریات | 56 |
تعداد شمارهها | 1,642 |
تعداد مقالات | 13,019 |
تعداد مشاهده مقاله | 24,576,354 |
تعداد دریافت فایل اصل مقاله | 16,082,632 |
Finite difference method for basket option pricing under Merton model | ||
Journal of Mathematics and Modeling in Finance | ||
دوره 1، شماره 1، خرداد 2021، صفحه 59-64 اصل مقاله (2.35 MB) | ||
نوع مقاله: Research Article | ||
شناسه دیجیتال (DOI): 10.22054/jmmf.2021.56261.1018 | ||
نویسندگان | ||
Parisa Karami ![]() ![]() | ||
1Department of Matematics, Allameh Tabataba`i University,Tehran, Iran | ||
2Department of Mathematics, Allameh Tabataba'i University | ||
چکیده | ||
In financial markets , dynamics of underlying assets are often specified via stochastic differential equations of jump - diffusion type . In this paper , we suppose that two financial assets evolved by correlated Brownian motion . The value of a contingent claim written on two underlying assets under jump diffusion model is given by two - dimensional parabolic partial integro - differential equation ( P I D E ) , which is an extension of the Black - Scholes equation with a new integral term . We show how basket option prices in the jump - diffusion models , mainly on the Merton model , can be approximated using finite difference method . To avoid a dense linear system solution , we compute the integral term by using the Trapezoidal method . The numerical results show the efficiency of proposed method . Keywords: basket option pricing, jump-diffusion models, finite difference method. | ||
کلیدواژهها | ||
Merton model؛ stochastic differential equations؛ Black-Scholes equation؛ Brownian motion | ||
آمار تعداد مشاهده مقاله: 158 تعداد دریافت فایل اصل مقاله: 162 |