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Abstract: Interval-valued data are observed as ranges instead of single values and

contain richer information than single-valued data. Meanwhile, interval-valued

data are used for interval-valued characteristics, for instance, daily temperature,

daily stock price, censoring times, grouped data, etc. Recent years have witnessed

an increasing interest in interval-valued data analysis. Therefore, interval-valued

variables have attracted unprecedented attention in the last decade. Recently, dif-

ferent linear regression approaches have been introduced to analyze interval-valued

data. If distributions of response variables belong to the exponential family of

distributions, the generalized linear models framework is used for modeling the re-

lationships between interval-valued variables. An interval generalized linear model

is proposed for the first time in this research. Then a suitable model is presented

to estimate the parameters of the interval generalized linear model. The two mod-

els are provided based on interval arithmetic. The estimation procedure of the

parameters of the suitable model is as the estimation procedure of the parameters

of the interval generalized linear model. The least-squares (LS) estimation of the

suitable model is developed according to a nice distance in the interval space. The

LS estimation is resolved analytically through a constrained minimization prob-

lem. Then some desirable properties of the estimators are checked. Finally, both

the theoretical and the empirical performance of the estimators are investigated.
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1. Introduction

Over the past decade, interval-valued data have been considered as an attempt

to overcome different sources of imprecision in generating and modeling single-

valued (imprecise) data (see, for instance, Jahanshahloo et al., 2008). Based on the

previous explanation, interval-valued data have been effectively used to represent

imprecise data in recent industrial, economic and scientific studies. Censored and

grouped data are also usually represented using intervals in general (see Calle

and Gomez, 2001; Rivero and Valdes, 2008; Huber et al., 2009). In addition to

these, intervals have to use as the values of interval-valued attributes, like ranges

of a specific variable, fluctuations, physical measurements, subjective valuations,

interval time sequences, and so on (see, for instance, Diamond, 1990; Gil et al.,

2002, 2007).

Linear regression models have been most recently used for modeling the rela-

tionships between interval-valued random variables. Some of the regression analy-

sis and modeling methods for interval-valued data have been deeply studied in the

literature; see, for instance, Chesher and Irish (1987), Billard and Diday (2000),

Gil et al. (2001), Manski and Tamer (2002), Hong and Tamer (2003), Neto et al.

(2004), de Carvalho et al. (2004), Neto et al. (2005), Zhao et al. (2005), Billard

(2006), Gonzalez-Rodriguez et al. (2007), Neto and de Carvalho (2008), Neto et

al. (2009), Neto and de Carvalho (2010), and Wang et al. (2012). Bertrand and

Goupil (2000) introduced the sample mean and the sample variance for interval-

valued data. Also, Billard (2008, 2011) proposed the sample covariance between

interval-valued data.

The relationships are modeled in the framework of generalized linear models if

response variables have any statistical distributions belonging to the exponential

family of distributions. For the first time in this paper, an interval generalized

linear model is introduced and estimated based on interval arithmetic.

The rest of the paper consists of four sections. In Section 2, some introductory

concepts are provided about the interval framework. In the rest of the section, the

interval generalized linear model is introduced. Then a suitable model is defined

to estimate the parameters of the interval generalized linear model, so that the

estimation of the parameters of the suitable model is as the estimation of the

parameters of the interval generalized linear model. In Section 3, the estimation of

the parameters of the suitable model is obtained using a constrained minimization

problem. In Section 4, some theoretical properties of the estimators are provided,

and also the empirical performance of the obtained estimators is tested through

some simulation studies. Finally, Section 5 states some conclusions.
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2. Introductory concepts and an interval general-

ized linear model

2.1 Introductory concepts of the interval framework

The set of all closed real intervals is denoted as I (R) = {[a, b] : a, b ∈ R, a≤b}.
Each intervalN∈I (R) can be written asN = [inf N, sup N ], where inf N, sup N ∈
R and inf N≤sup N . The intervalN can also be written asN = [mid N±spr N ] =[
inf N+ sup N

2 ± sup N−inf N
2

]
, where mid N ∈ R and spr N ∈ R+ denote the cen-

ter (or midpoint or location) and the radius (or spread or imprecision) of N ,

respectively. spr N denotes the difference with a precise quantity ofR. In this

paper, the (mid, spr)-parametrization for interval-valued data is used.

The natural interval arithmetic

Q1+λQ2= [(mid Q1+λ mid Q2)± (spr Q1+ |λ| spr Q2)]

for any Q1, Q2 ∈ I (R) and λ ∈ R is used to manage intervals. The space

(I (R) ,+, •) is semi-linear due to the lack of symmetric element with respect to

the addition; Q3 + (−1)Q4 can sometimes (not always) be equal to Q3 − Q4.

For instance, [0, 2] + (−1) [1, 2] = [−2, 1] and [0, 2] − [1, 2] = [−1, 0] such

that [−2, 1] 6= [−1, 0]. On the other hand, sometimes, Hukuhara difference

Q5 = Q3 − Q4 does not exists. For example, Q3 = [2, 5] and Q4 = [0, 6],

so Q5 = Q3 − Q4 = [2,−1] /∈ I (R). Thus, statistical techniques in this space

must always be developed by guaranteeing the coherency of the results with the

semi-linear structure of (I (R) ,+, •).
The expression E([mid B±spr B])= [E(mid B)± E(spr B)] denotes the expected

value of any random interval B in terms of the Aumann expectation, whenever

mid B, spr B ∈ L1. Each B ∈ I (R) can be written based on the canonical decom-

position of intervals as B= mid B [1± 0] +B[0±1]. Hence, we can apply mid B

and spr B separately, but keeping the interval arithmetic connection.

In order to measure the distance between two intervals, an L2-type metric has

been exhaustively used and shown to be suitable on the space I (R). For every

A, Q ∈ I (R), the d-distance is presented as

d (A, Q) =

√
(mid A−mid Q)

2
+ (spr A− spr Q)

2
. (2.1)

Let Bd be the σ-field generated by the topology induced by d on I (R). Let

(Ω ,A, P ) be a probability space. An interval-valued random variable X is a Bd| A-

measurable function X : Ω−→I (R). Equivalently, inf X, sup X, mid X, spr X :
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Ω → R, being real-valued random variables and spr X≥0 almost surely with

respect to probability P . The interval-valued variable X can not be a single-

valued (or a real-valued) variable with respect to the non-degenerated variable

spr X. The variance of X with respect to E (X) = [E(mid X) ± E(spr X)]

in the metric space (I (R) , d) is expressed as σ2 (X) = E
(
d2 (X,E (X))

)
=

σ2 (mid X) +σ2 (spr X), whenever 0 < σ2 (mid X) , σ2 (spr X) <∞. The expres-

sions σ2
(
XM

)
= σ2 (mid X [1± 0]) = σ2 (mid X) and σ2

(
XS
)

= σ2 (spr X [0± 1]) =

σ2 ([−spr X, spr X]) = σ2 (spr X) can be easily proven. Thus, σ (X, Y ) is often

defined as the corresponding d-covariance in R2 through the (mid, spr)-parametrization

of the intervals, leading to the expression

σ (X, Y ) = E [(mid X − E (mid X)) (mid Y − E (mid Y ))] (2.2)

+ E [(spr X − E (spr X)) (spr Y − E (spr Y ))] = σ (mid X, mid Y ) + σ (spr X, spr Y ) ,

(2.3)

whenever σ (mid X, mid Y ) , σ (spr X, spr Y ) <∞.

2.2 An interval generalized linear model for interval-valued

data

The ordinary linear regression model uses linearity to describe the relationship

between the mean of the response variable and a set of explanatory variables,

with inference assuming that the response distribution is normal. Generalized

linear models extend standard linear regression models to encompass non-normal

response distributions and possibly nonlinear functions of the mean. The choice

of distribution for a response variable determines the relation between the vari-

ance and the mean of the response variable, since the relation is known for many

distributions. We now introduce an interval generalized linear model, for the first

time in this section. The model is characterized as follows:

(i) We suppose that the observed realization yji of the independent random

response variable Yj , j = 1, 2 and i = 1, . . . , n, comes from a distribution that

belongs to the exponential family of distributions with the density function

π (yji; θj , φj) = exp [ψj (φj) {yjiθj − bj (θj) +Kj (yji)}+ ωj(φj , yji)] ,

where ψj (φj) > 0 so that φj is constant (see Nelder and Wedderburn, 1972).

The parameter φj , j = 1, 2, can be used as a nuisance parameter such as the

variance σ2 of a normal distribution. Hence, we will have E (Y1) = b′1 (θ1) = µ,

V ar (Y1) = 1
ψ1(φ1)

(
∂µ
∂θ1

)
= b′′1(θ1)

ψ1(φ1)
= v,
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(ii) For i = 1, . . . , n, mid xi and spr xi are defined as real-valued random inde-

pendent observations of mid X and spr X, respectively, where mid X and spr X

are real-valued independent variables. For i = 1, . . . , n, mid xi [1± 0] is defined

as xMi , which is an observation of the variable XM = mid X [1± 0]. We can

prove xSi = −xSi , i = 1, . . . , n, where xSi = [−spr xi, spr xi] is an interval-valued

random independent observation of the interval variable XS = [−spr X, spr X].

Also, xi = mid xi [1± 0] +spr xi [0± 1], i = 1, . . . , n, is an interval-valued ran-

dom independent observation of the interval-valued independent variable X =

mid X [1± 0] +spr X [0± 1], whenever 0 < σ2 (mid X) , σ2 (spr X) , σ2 (X) <

∞. For i = 1, . . . , n, the predicted part of the interval generalized linear model is

presented based on the canonical decomposition as follows:

bi=β0mid xi [1± 0] +β1spr xi [0± 1] +β2 [1± 0] +β3 [0± 1] (2.4)

=β0x
M
i +β1x

S
i + [β2−β3, β2+β3] , (2.5)

where β0 ∈ R and β1 ≥ 0 are the model coefficients, and also β2 ∈ R and

β3 ≥ 0 are intercepts. Given xSi = −xSi and β3 [0± 1] = −β3 [0± 1], the predicted

part can be written as

bi = β0x
M
i +β1x

S
i +β2 [1± 0]+β3 [0± 1] = β0x

M
i +(−β1)xSi +β2 [1± 0]+ (−β3) [0± 1] ,

for all i.

(iii) In this research, z−1 (z (µ)) = µ and h−1 (h ($)) = $, where z(.) and

h(.) are two monotone and differentiable functions, and are called link functions.

The choice of link function is made based on the type of data. The link functions

are called two canonical links so that z (µ) = θ1 and h ($) = θ2. In this paper,

z (µ) = θ1 = η and |h ($)| = |θ2| = o. The interval generalized linear model is

proposed as follows:

η [1± 0]+o [0± 1] = ηi [1± 0]+oi [0± 1] = β0x
M
i +β1x

S
i + [β2−β3, β2+β3] , i = 1, . . . , n,

where ηi = η, oi = o, and o [0± 1] = −o [0± 1]. In this paper, the interval

generalized linear model is called model SIM. To be more precise, model SIM can

be written as the sum of the separate models

η = ηi = β0 mid xi+β2,

and

o = oi = β1 spr xi+β3, i = 1, . . . , n.
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Given that xSi = −xSi , oi [0± 1] = −oi [0± 1], and β3 [0± 1] = −β3 [0± 1], for all

i,

[ηi − oi, ηi + oi] = ηi [1± 0] + oi [0± 1] = ηi [1± 0] + (−oi) [0± 1]

= β0x
M
i + β1x

S
i + [β2−β3, β2+β3]

=β0x
M
i + (−β1) xSi +β2 [1± 0] + (−β3) [0± 1]

is proven, and the existence of the non-negative estimates of the parameters β1

and β3 of model SIM is guaranteed.

2.3 Model SIGL

If we use η̂i = z (µ̂i) = η̂ = z (µ̂) and ôi = |h ($̂i)| = ô = |h ($̂)| instead

of ηi and oi, respectively, in model SIM defined in Section 2.2, we will have

ai = mid ai [1± 0] + spr ai [0± 1] = η̂i [1± 0] + ôi [0± 1], for i = 1, . . . , n. The

real-valued independent variables mid G and spr G will be introduced by replac-

ing the real-valued dependent variables Y1 and Y2 instead of each of y1i’s and

y2i’s in the expressions η̂i = η̂ = z (y1) = z
(
y11+···+y1n

n

)
and ôi = ô = |h (y2)| =∣∣h (y21+···+y2nn

)∣∣, respectively. For instance, for independent Poisson observations,

η̂i = η̂ = loge (µ̂) = loge (y1) and ôi = ô = |loge ($̂)| = |loge (y2)|, i = 1, . . . , n,

so mid G = loge (Y1), GM = loge (Y1) [1± 0], spr G = |loge (Y2)|, and GS =

|loge (Y2)| [0± 1]. Therefore, when the single observations y1i and y2i are used in-

stead of the variables Y1 and Y2 in the expressions mid G and spr G, then mid gi

and spr gi will be produced as independent random observations of the variables

mid G and spr G, respectively, i = 1, . . . , n. For instance, for independent Pois-

son observations, mid gi = loge (y1i), g
M
i = loge (y1i) [1± 0], spr gi = |loge (y2i)|,

and gSi = |loge (y2i)| [0± 1], whenever y1i, y2i > 0, i = 1, . . . , n, are, respectively,

observations of the variables mid G = loge (Y1), GM = loge (Y1) [1± 0], spr G =

|loge (Y2)|, and GS = |loge (Y2)| [0± 1]. Hence, gi = mid gi [1± 0] +spr gi [0± 1],

i = 1, . . . , n, is defined as an interval-valued random independent observa-

tion of the interval-valued variable G = mid G [1± 0] +spr G [0± 1], whenever

0 < σ2 (mid G), σ2 (spr G), σ2 (G) <∞.

To estimate the parameters of model SIM, we propose the following model:

gi=β0 x
M
i +β1 x

S
i +β2 [1± 0] + ei, i = 1, . . . , n, (2.6)

where ei = mid ei [1± 0] +spr ei [0± 1] is an unobserved interval-valued error

of the interval-valued random error variable ε = mid ε [1± 0] +spr ε [0± 1]. On
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the other hand, E
(
εM

∣∣ XM
)

=, and also E
(
εS
∣∣ XS

)
= [−β3, β3]∈I (R) with

β3 ≥ 0. In model (2), the intercept β2 is also associated with mid G.

Remark 2.3.1. Model (2) is used to estimate the parameters of model SIM

proposed in Section 2.2. Hence, the estimation of the parameters of model (2) is

provided as the estimation of the parameters of model SIM.

The linear function associated with the model provided in (2) is expressed

based on the canonical decomposition as follows:

E
(
GM

∣∣ XM
)

+ E
(
GS

∣∣ XS
)

= β0 X
M+β1 X

S + β4

where the interval-valued independent parameter β4 is defined as β4= [β2 −
β3, β2 + β3]∈I (R). Based on the expression xSi = −xSi , we can write gi =

β0 x
M
i +β1 x

S
i +β2 [1± 0]+ei=β0 x

M
i +(−β1) xSi +β2 [1± 0]+ei, for all i = 1, . . . , n.

Hence, the existence of the non-negative estimate of the parameterβ1 is guaranteed

by the existence of a double model in all the cases. It is straightforward to show

that the following linear relationships for the mid and spr components of the

intervals gi and xi are transferred from (2):

mid gi = β0 mid xi+β2 + mid ei, and

spr gi = β1 spr xi+spr ei, i = 1, . . . , n. (2.7)

In the second model given in (3), the relationship between the spr observations

sometimes (not always) coincides with the model of spr gi on spr xi, i = 1, . . . , n.

The linear model of mid gi on mid xi, i = 1, . . . , n, always coincides with the

relationship of the mid observations in the first model given in (3).

The transpose of a matrix Aof order p, q is expressed by the notation (Ap×q)′ =
A′q×p. Let our notation for the inverse of an n × n square matrix A1 be A−11 .

The weight matrices are defined as follows:

wM
n×n = diag

(
wM , · · · , wM

)
(2.8)

wS
n×n = diag

(
wS , · · · , wS

)
(2.9)

where wM and wS are weights associated with the real-valued independent

random response variables Y1 and Y2, respectively, so that

wM =

(
(
∂µ

∂θ1
)
2

(v)
−1
)

=ψ1 (φ1)

(
∂µ

∂θ1

)
and wS =

(
( ∂$∂θ2 )

2
(Ψ)
−1
)

=ψ2 (φ2)
(
∂$
∂θ2

)
.
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Meanwhile, the variance matrices are provided as vn×n = diag (v, . . . , v), and

Ψn×n = diag (Ψ, . . . , Ψ).
The vectors are introduced as follows:

(mid g)n×1 =


mid g1

...

mid gn

 =
(
gM
)
n×1

=


gM1
...

gMn

 =


mid g1 [1± 0]

...

mid gn [1± 0]

 , (spr g)n×1 =


spr g1

...

spr gn


(2.10)

(
gS
)
n×1

=


g1S

...

gnS

 =


spr g1 [0± 1]

...

spr gn [0± 1]

 =


[−spr g1, spr g1]

...

[−spr gn, spr gn]

 (2.11)

xM
n×1 =


xM1
...

xMn

 =


mid x1 [1± 0]

...

mid xn [1± 0]

 = (mid x)n×1 =


mid x1

...

mid xn

 , (spr x)n×1 =


spr x1

...

spr xn


(2.12)

(
xS
)
n×1

=


xS1
...

xSn

 =


spr x1 [0± 1]

...

spr xn [0± 1]

 =


[−spr x1, spr x1]

...

[−spr xn, spr xn]

 (2.13)

gn×1 =


gM1 + gS1

...

gMn + gSn

 =


mid g1 [1± 0] + spr g1 [0± 1]

...

mid gn [1± 0] + spr gn [0± 1]

 = gM + gS (2.14)

xn×1 =


xM1 + xS1

...

xMn + xSn

 =


mid x1 [1± 0] + spr x1 [0± 1]

...

mid xn [1± 0] + spr xn [0± 1]

 = xM + xS (2.15)

(e)n×1 =


e1
...

en

 =


eM1 + eS1

...

eMn + eSn

 =


mid e1 [1± 0] + spr e1 [0± 1]

...

mid en [1± 0] + spr en [0± 1]

 =


eM1
...

eMn

+


eS1
...

eSn


= [1± 0] (mid e)n×1 + [0± 1] (spr e)n×1 =

(
eM
)
n×1

+
(
eS
)
n×1

(2.16)

where the vectors spr e , eM, mid e, and eS are introduced as follows

(spr e)n×1 =


spr e1

...

spr en

 ,
(
eM
)
n×1 =


eM1
...

eMn

 = (mid e)n×1 =


mid e1

...

mid en



and
(
eS
)
n×1 =


spr e1 [0± 1]

...

spr en [0± 1]

 =


eS1
...

eSn

 (2.17)
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The model (2) can be expressed in matrix form as follows:

g=β0 xM+β1 xS+β2[1± 0] 1n+e, (2.18)

where 1n is an n × 1 vector of ones, and g, xM, xS, and e are the n × 1

vectors defined in (10), (8), (9), and (12), respectively. In this paper, the model

(14) is called model SIGL, which is used to estimate the parameters of model SIM

provided in Section 2.2. To be more precise, model SIGL can be expressed based

on (3) as the sum of the following separate models:

mid g = β0 mid x+β2 1n+mid e,

and

spr g = β1 spr x+spr e, (2.19)

where mid g, spr g, mid x, spr x, mid e, and spr e are the n × 1 vectors

given in (6), (7), (8), (9), (13), and (13), respectively.

3. Estimation of model SIGL

According to Remark 2.3.1, the estimation procedure of the parameters of model

SIGL is applied as the estimation procedure of the parameters of model SIM given

in Section 2.2.

In this paper, the notations E (mid X), E
(
XM

)
, E (mid G), E

(
GM

)
, E (spr X),

E (spr G), E
(
XS
)
, and E

(
GS
)

are used to denote the arithmetic means of the

variables mid X, XM , mid G, GM , spr X, spr G, XS , and GS , respectively. The

notations σ2 (mid X), σ2
(
XM

)
, σ2 (mid G), σ2

(
GM

)
, σ2 (spr X), σ2 (spr G),

σ2
(
XS
)
, and σ2

(
GS
)

are used to denote the arithmetic variances of the vari-

ables mid X, XM , mid G, GM , spr X, spr G, XS , and GS , respectively, defined in

terms of the metric d given in (1). We use the notation σ (spr X, spr G) to denote

the arithmetic covariance between the variables spr X and spr G (analogously

σ
(
XS , GS

)
, σ
(
XM , GM

)
, and σ (mid X,mid G)).

Let the ith diagonal element of wM in (4) be the corresponding non-negative
frequency weight of the ith element of the vectors xM (or mid x) and gM (or
mid g) given in (8) and (6), respectively. The matrices wM in (4) and wS in (5)
are two scalar matrices, so their diagonal elements do not effect the calculation of

weighted arithmetic means and variances. We use the notations XM (or mid X)
and S2

(
XM

)
(or S2 (mid X)) to denote the arithmetic mean and variance of the

sample elements given in xM, respectively. Given E
(
XM

)
(or E (mid X)) and
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σ2
(
XM

)
(or σ2 (mid X)), respectively, XM and S2

(
XM

)
are provided using the

diagonal elements of wM as follows:

Ê
(
XM

)
= Ê (mid X) = XM = mid X =

∑n
i=1 w

M (mid xi)∑n
i=1 w

M
=

∑n
i=1 x

M
i

n
=
xM1 + · · ·+ xMn

n
(3.20)

and

σ̂2
(
XM

)
= σ̂2 (mid X) = S2

(
XM

)
= S2 (mid X)

=

∑n
i=1 w

Md2
(
xMi , X

M
)

∑n
i=1 w

M
=

∑n
i=1

(
xMi − XM

)2
n

(3.21)

(XS , spr X, GM = mid G, GS , spr G, S2
(
XS
)

= S2 (spr X), S2
(
GM

)
=

S2 (mid G), S2
(
GS
)

= S2 (spr G) are expressed analogously based on the matrices
and vectors given in (4) to (9)). The expression (17) is provided based on the
metric (1). The notation S

(
XM , GM

)
(or S (mid X,mid G)) is used to denote

the covariance between the sample elements given in xM (or mid x) and gM

(or mid g). Given σ
(
XM , GM

)
(or σ (mid X,mid G)), S

(
XM , GM

)
is presented

using the diagonal elements of wM as follows:

σ̂
(
XM , GM

)
= σ̂ (mid X,mid G) = S

(
XM , GM

)
= S (mid X,mid G)

=

∑n
i=1 w

M
(
xMi −XM

)(
gMi −GM

)
∑n
i=1 w

M
=

∑n
i=1

(
xMi −XM

)(
gMi −GM

)
n

(3.22)

(σ̂
(
XS , GS

)
= S

(
XS , GS

)
or σ̂ (spr X, spr G) = S (spr X, spr G) is written anal-

ogously based on the vectors given in (7) and (9) and the scalar matrix wS given

in (5)).

The matrices and vectors given in (4) to (11) are used to find the weighted LS
(WLS) estimation of model SIGL. The objective function is provided with respect
to (15) and the metric (1) as follows:∑n

i=1 w
Md2

(
gMi , axMi + CM

)∑n
i=1 w

M
+

∑n
i=1 w

Sd
2 (
gSi , bx

S
i + CS

)∑n
i=1 w

S
(3.23)

=

∑n
i=1 d

2
(
gMi , axMi + CM

)
n

+

∑n
i=1 d

2
(
gSi , bx

S
i + CS

)
n

.

We see that the diagonal elements of the two matrices wM and wS have no effect

on the calculation of the WLS estimation of model SIGL. The LS estimation of

the parameters (β0, β1, β4) is obtained by minimizing the objective function (19)

over (a, b, C). The expression (19) can be written in terms of (a, b, C) and the

random intervals gi’s and xi’s with the finite second-order moments involved in

model SIGL as follows:
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∑n
i=1 ( mid gi − a mid xi − mid C)

2

n
+

∑n
i=1 ( spr gi − b spr xi − spr C)

2

n

= f (a,mid C) + l(b, spr C). (3.24)

The of (20) over (a, b, C) is calculated as follows:


∂f(a, mid C)

∂a = − 2
n

∑n
i=1 (mid gi − a mid xi −mid C) (mid xi) = 0

∂f(a, mid C)
∂mid C = − 2

n

∑n
i=1 (mid gi − a mid xi −mid C) = 0

∂l(b, spr C)
∂b = − 2

n

∑n
i=1 (spr gi − b spr xi − spr C) (spr xi) = 0

∂l(b, spr C)
∂spr C = − 2

n

∑n
i=1 (spr gi − b spr xi − spr C) = 0

(3.25)

For the solution of the equations given in (21), using matrix algebra, the following

matrix forms are provided:






1 mid x1
...

...

1 mid xn


′ 

1 mid x1
...

...

1 mid xn




−1
1 mid x1
...

...

1 mid xn


′ 

mid g1
...

mid gn


=
(
mid C
a

)
=
(

mid β̂4,LS

β̂0, LS

)
=
(
β̂2,LS

β̂0, LS

)



1 spr x1
...

...

1 spr xn


′ 

1 spr x1
...

...

1 spr xn




−1
1 spr x1
...

...

1 spr xn


′ 

spr g1
...

spr gn


=
(
spr C
b

)
=
(

spr β̂4,LS

β̂1,LS

)
=
(
β̂3,LS

β̂1,LS

)

(3.26)

The LS estimators of the model SIGL (or model SIM) parameters are immediately

obtained from (22) as follows:



β̂2,LS =
(
∑n

i=1 (mid xi)
2)(
∑n

i=1 (mid gi))−(
∑n

i=1 (mid xi))(
∑n

i=1 (mid xi)(mid gi))
n(
∑n

i=1 (mid xi)
2)−(

∑n
i=1 (mid xi))

2

β̂0, LS =
n(
∑n

i=1 (mid xi)(mid gi))−(
∑n

i=1 (mid xi))(
∑n

i=1 (mid gi))
n(
∑n

i=1 (mid xi)
2)−(

∑n
i=1 (mid xi))

2

β̂3,LS =
(
∑n

i=1 (spr xi)
2)(
∑n

i=1 (spr gi))−(
∑n

i=1 (spr xi))(
∑n

i=1 (spr xi)(spr gi))
n(
∑n

i=1 (spr xi)
2)−(

∑n
i=1 (spr xi))

2

β̂1,LS =
n(
∑n

i=1 (spr xi)(spr gi))−(
∑n

i=1 (spr xi))(
∑n

i=1 (spr gi))
n(
∑n

i=1 (spr xi)
2)−(

∑n
i=1 (spr xi))

2

(3.27)
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β̂2,LS =
(
∑n

i=1 (mid xi)
2)(
∑n

i=1 (mid gi))−(
∑n

i=1 (mid xi))(
∑n

i=1 (mid xi)(mid gi))
n(
∑n

i=1 (mid xi)
2)−(

∑n
i=1 (mid xi))

2

β̂0, LS =
n(
∑n

i=1 (mid xi)(mid gi))−(
∑n

i=1 (mid xi))(
∑n

i=1 (mid gi))
n(
∑n

i=1 (mid xi)
2)−(

∑n
i=1 (mid xi))

2

β̂3,LS =
(
∑n

i=1 (spr xi)
2)(
∑n

i=1 (spr gi))−(
∑n

i=1 (spr xi))(
∑n

i=1 (spr xi)(spr gi))
n(
∑n

i=1 (spr xi)
2)−(

∑n
i=1 (spr xi))

2

β̂1,LS =
n(
∑n

i=1 (spr xi)(spr gi))−(
∑n

i=1 (spr xi))(
∑n

i=1 (spr gi))
n(
∑n

i=1 (spr xi)
2)−(

∑n
i=1 (spr xi))

2

(3.28)

The LS estimators β̂0, LS , β̂1,LS , β̂2,LS , and β̂3,LS given in (23) can be presented

simplicity as follows:

β̂2, LS = mid G− σ̂(mid X, mid G)
σ̂2(mid X) mid X

β̂0, LS = σ̂(mid X, mid G)
σ̂2(mid X)

β̂3,LS = spr G− σ̂(spr X, spr G)
σ̂2(spr X) spr X

β̂1,LS = σ̂(spr X, spr G)
σ̂2(spr X)

(3.29)

The LS estimators given in (23) and (24) are proven in the Appendix.

Using the LS estimation of the first model given in (15), the minimization of

the problem (20) can always be obtained over a and mid C. The LS estimates can

sometimes (not always) be suitable for estimating the model SIGL with respect to

the semi-linearity of the interval space. Because, the minimization of the problem

can sometimes (not always) be solved over b and spr C using the LS estimation of

the second model given in (15). The LS estimator of β4 is presented as follows:

β̂4, LS = C = CM + CS =
[
β̂2,LS − β̂3,LS , β̂2,LS + β̂3,LS

]
=
(
GM +GS

)
−
(
β̂0, LS

(
XM

)
+ β̂1,LS

(
XS
))

(3.30)

β̂4, LS given in (25) is not sometimes well defined as a real interval because of the

semi-linearity of I (R) (see Section 2.1).

In the minimization of the problem (19), the existence of a well-defined interval

estimation of the parameter β4 = [β2 − β3, β2 + β3], and an appropriate estima-

tion of the parameters (β0, β1, β2, β3) have to be guaranteed via the existence of

the Hukuhara differences (see Section 2.1). Hence, the existence of all the valid in-

tervals
(
gMi − β̂0 x

M
i

)
+
(
gSi − β̂1 x

S
i

)
with respect to the random observations

given in (6) to (11) has to be verified by the estimators of the parameters of model

SIGL (or model SIM). Given the necessity of the existence of the valid (or real or

well-known) intervals (residuals), the minimization of the objective function (19)
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is written as follows:

min

(∑n
i=1 d

2( gMi , a xM
i +CM)

n +
∑n

i=1 d
2(gSi , b x

S
i + CS)

n

)
subject to (

gMi + gSi
)
−
(
a xMi + b xSi

)
exists, for all i = 1, . . . , n


(3.31)

where C and b are unknown independent parameters (or quantities). The estimator

of β4 is obtained by solving (26) for C as follows:

β̂4 =
(
GM +GS

)
−
(
β̂0

(
XM

)
+ β̂1

(
XS

))
,

where the expressions β̂4 and β̂4, LS are similar phrases. Based on the constraints

of (26), in the expression β̂4, the search for β̂0 and β̂1 has to be done in such

a way that β̂4 is a real interval. Problem (26) can be expressed considering the

expression β̂4 as

min 1
n

∑n
i=1 d2

(
gMi − axMi , G

M − a XM
)

+

min 1
n

∑n
i=1 d2

(
gSi − bxSi , G

S − b XS
)

subject to (
gMi + gSi

)
−
(
a xMi + b xSi

)
exists, for all i = 1, . . . , n


(3.32)

The constraints can be written based on the quantity b, gSi ’s, and xSi ’s as follows:

gMi + gSi −
(
a xMi + b xSi

)
exists

⇐⇒ b ≤ spr gi
spr xi

for all i = 1, . . . , n such that spr xi 6= 0.

Therefore, the constraints of (26) are written as the set (a, b) ∈ U = R × [0, û0],

where

û0 = min

{
spr gi
spr xi

: spr xi 6= 0

}
(3.33)

The re-solution of (27) over the set U leads to obtain the estimators for the pa-

rameters of model SIGL (or model SIM) as follows:

β̂0 =
σ̂ (mid X, mid G)

σ̂2 (mid X)
=
σ̂
(
XM , GM

)
σ̂2 (XM )

(3.34)

β̂1 = min

{
û0, max

{
0,
σ̂ (spr X, spr G)

σ̂2 (spr X)

}}
= min

{
û0, max

{
0,

σ̂
(
XS , GS

)
σ̂2 (XS)

}}
(3.35)

β̂2 = mid β̂4 = mid G− σ̂ (mid X, mid G)

σ̂2 (mid X)

(
mid X

)
(3.36)
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and

β̂3 = spr β̂4 (3.37)

where

β̂4 =
[(

mid G− β̂0 mid X
)
±
(

spr G− β̂1 spr X
)]

=
[(

GM − β̂0 XM
)
±
(
GS − β̂1 XS

)]
(3.38)

The expressions (29) to (31) are provided with regard to 0<σ̂2 (mid X)<∞
(or equivalently 0 < σ̂2

(
XM

)
< ∞) and 0 < σ̂2 (spr X) < ∞ (or equivalently

0 < σ̂2
(
XS
)
<∞). β̂1 in (30) and β̂3 in (32) are obtained with respect to the set

U . So, β̂3, β̂4 in (33), and β̂1 are sometimes different from β̂3,LS in (24), β̂4,LS in

(25), and β̂1,LS in (24) for the parameters β3, β4, and β1 of model SIGL (or model

SIM), respectively. However, β̂0 and β̂2 in (29) and (31), respectively, coincide

with β̂0, LS in (24) and β̂2, LS in (24) for the first model given in (15) (or the

model ηi = β0 mid xi+β2, i = 1, . . . , n).

4. Statistical properties of the estimators

This section investigates two main properties of β̂0, β̂1, β̂2, β̂3, and β̂4 of model

SIGL (or model SIM).

4.1 Strong consistency results

The asymptotic unbiasedness and the strong consistency of the estimators given

in (29) to (33) are demonstrated both theoretically and empirically in this sec-

tion. The estimators given in (30), (32), and (33), which depend on min and

max operators, are asymptotically unbiased estimators with respect to simula-

tion results of the estimation process in Section 4.2. The estimators β̂0 in (29)

or β̂0, LS in (24) and β̂2 in (31) or β̂2, LS in (24) are, respectively, unbiased es-

timators for the parameters β0 and β2 of the first model given in (15) (or the

model ηi = β0 mid xi+β2, i = 1, . . . , n), so that E
(
β̂0

)
= E

(
β̂0, LS

)
= β0 and

E
(
β̂2

)
= E

(
β̂2,LS

)
= β2.

In this research, the number of simulations is denoted as NS. Let {xik, gik}ni=1

be defined as the kth, k = 1, . . . , NS, simulated random sample of n observations

{xi, gi}ni=1 of (X,G). So, xi and gi can be each of xik’s and gik’s, respectively,
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i = 1, . . . , n. The strong consistency of the estimators (29) to (33) of model SIGL

(or model SIM) is demonstrated using the following result.

Lemma 4.1. Let the elements given in the vectors (11) and (10) be two random

samples from the interval-valued variables X and G, respectively, verifying a model

with the structure of model SIGL such that 0 <σ2 (spr X) , σ2 (spr G)<∞. Then,

P
(

lim
n→∞

û0 (n) = u0

)
= 1,

where u0=min
i ≤ k

NS →∞

{
spr gik
spr xik

: spr xik 6= 0
}

.

It is clear that the expression P (limn→∞ û0 (n) = u0 ) = 1 is easily proven.

Theorem 4.1 presents the strong consistency of the estimators given in (29) to

(33) based on the result obtained in Lemma 4.1.

Theorem 4.1. Let the elements given in the vectors (11) and (10) be two

random samples from the interval-valued variables X and G, respectively, verifying

a model SIGL, such that

0 < σ2 (spr X) , σ2 (spr G) , σ2 (mid X) , σ2 (mid G) <∞,

and σ (spr X, spr G) , σ (mid X, mid G) <∞.

The estimators (29) to (33) of model SIGL (or model SIM) are strongly con-

sistent such that

β̂0
n→∞−→ β0, β̂1

n→∞−→ β1, β̂2
n→∞−→ β2, β̂3

n→∞−→ β3, and β̂4
n→∞−→ β4 a.s.- [P].

The estimators given in (30), (32), and (33) are provided based on the con-

straints of (26). Therefore, the results provided in Lemma 4.1 and Theorem 4.1

can sometimes (not always) be obtained based on the estimators given in (24) and

(25). The Appendix presents the proof of Theorem 4.1.

4.2 Simulation results of the estimation process

By considering the estimation procedure of the parameters of model SIGL as the

estimation procedure of the parameters of model SIM, the empirical behavior of

the estimation method presented in Section 3 is investigated through the Monte

Carlo method when the parameters of model SIGL have known quantities. In this

paper, the number of simulations or NS is 10000. The estimates β̂0k, β̂1k, β̂2k and

β̂3k (with β̂4k =
[
β̂2k−β̂3k, β̂2k+β̂3k

]
), k = 1, . . . , 10000, of the parameters

β0, β1, β2 and β3 (with β4 = [β2−β3, β2+β3]), respectively, are computed for

{(xik, gik)}ni=1, which is the kth simulated random sample of n, n = 5, 50, 500,

observations {(xi, gi)}ni=1 of (X,G).
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Table 1: Experiential validation of the estimators with respect to the parameters of model SIM (or model SIGL).

Model n Ê
(
β̂0

)
M̂SE

(
β̂0

)
Ê
(
β̂1

)
M̂SE

(
β̂1

)
Ê
(
β̂2

)
M̂SE

(
β̂2

)
Ê
(
β̂3

)
M̂SE

(
β̂3

)
SIGL1 5 3.002602 0.03343147 1.922313 0.12642170 4.998227 0.0580907 0.358235 0.01638056

50 3.000827 0.00142998 1.987898 0.00103649 4.999478 0.0041022 0.357237 0.00132912

500 2.999866 0.00013390 1.995829 0.00007203 5.000068 0.0003966 0.356818 0.00013728

SIGL2 5 4.999084 0.02304776 0.989408 0.00213924 -3.00047 0.0064673 0.119120 0.00174733

50 5.000142 0.00092868 0.997508 0.00003760 -2.99998 0.0004601 0.119046 0.00015107

500 4.999900 0.00008851 0.999132 0.00000281 -3.00001 0.0000443 0.118962 0.00001461

SIGL3 5 1.002748 0.02184236 3.995723 0.00032320 -0.02140 1.4287950 0.071117 0.00064383

50 1.000307 0.00087458 3.998966 0.00000651 -0.00205 0.0630781 0.071335 0.00005371

500 0.999951 0.00008441 3.999608 0.00000057 0.00024 0.0060651 0.071363 0.00000528
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The vector of 10000 values for each estimate will be defined as an empirical

distribution of the corresponding estimator close to the theoretical one. Based on

10000 iterations, Ê (Υ̂) = (
∑10000
k=1 Υ̂k)/10000 and

M̂SE(Υ̂) =

(
10000∑
k=1

(
Υ̂k −Υ

)2)
/10000

are calculated, respectively, as the estimated mean value, and the estimated mean

squared error of an estimator Υ̂ from the empirical distribution, as empirical ap-

proximations of the theoretical ones.

Three models with the structure of model SIM are studied in this section.

Different parameters are investigated in the models. To estimate the parameters

of each model, a corresponding model SIGL is introduced. In the models with

the structure of model SIGL, mid xi’s, mid gi’s, spr xi’s, and spr gi’s come from

different distributions. On the other hand, for i = 1, . . . , n, {mid gik}
10000
k=1 ,

{spr gik}10000k=1 , {mid xik}10000k=1 , {spr xik}10000k=1 , {mid eik}10000k=1 , and {spr eik}10000k=1

are simulated random samples of mid G, spr G, mid X, spr X, mid ε, and spr ε,

respectively. The models, taking into account that observed values of the spr

variables have to be non-negative, will be employed.

1. Model SIM1: Let the independent observed responses y1i’s and y2i’s come

from Poisson(5), so ηi = loge (5), oi = |loge (5)|, and wMi = wSi = 5, i =

1, . . . , n. Based on the delta method, mid ε ∼ N(0, 15 ) and spr ε = |KK|
such that KK ∼ N(0, 15 ), hence, E

(
εS
∣∣ XS

)
= [−β3, β3] = [−0.357, 0.357]

and E
(
εM

∣∣ XM
)

= 0. Assume that the independent observations mid xi’s

and spr xi’s come from N(0, ) and χ2
1, respectively. We consider the model

SIM1 as

ηi [1± 0]+oi [0± 1] = β0 mid xi [1± 0] +β1 spr xi [0± 1] +β2 [1± 0] +β3 [0± 1]

i = 1, . . . , n, where β0 = 3, β1 = 2, β2 = 5, and β3 = 0.35679. To estimate

the parameters of model SIM1, let gi be a random interval determined by

using the following model:

gi = 3xMi − 2xSi + 5 [1± 0] + ei = 3xMi + 2xSi + 5 [1± 0] + ei i = 1, . . . , n

The model SIGL1 is as

g=3 xM−2 xS+5 [1± 0] 1n+e=3 xM+2 xS+5 [1± 0] 1n+e (4.39)
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Table 2: Generated interval-valued data set.

g x g x g x

[0.9555, 5.5606] [15, 35] [1.9459, 3.3322] [10, 20] [1.9459, 4.7184] [2, 26]

[1.7917, 3.9889] [12, 30] [0.6931, 4.8520] [6, 30] [1.3350, 4.5538] [6, 24]

[1.6582, 4.4308] [6, 22] [1.5260, 4.7449] [7, 27] [0.3101, 5.1059] [13, 33]

[1.4663, 5.0498] [8, 32] [0.4418, 4.8362] [11, 19] [1.0116, 5.1704] [17, 25]

[1.2992, 4.8828] [12, 22] [0.8472, 4.4308] [9, 23] [0.9382, 5.3327] [6, 26]

[1.8718, 3.2580] [6, 26] [1.5260, 4.7449] [5, 29] [0.8109, 4.9698] [15, 31]

[0.9444, 4.8362] [17, 29] [1.6094, 4.8283] [7, 27] [1.9459, 3.3322] [9, 29]

[0.1335, 4.0253] [16, 32] [1.1451, 5.0369] [6, 18] [1.4350, 4.6539] [10, 22]

[0.7472, 5.1416] [3, 21] [1.1786, 3.9512] [3, 23] [1.0414, 4.6249] [8, 26]

[0.8754, 4.0943] [3, 21] [0.8209, 5.6167] [9, 25] [1.7917, 3.1780] [15, 31]

[1.3437, 4.9272] [12, 28] [1.0986, 4.6821] [5, 11] [1.1786, 3.9512] [15, 35]

[0.9808, 4.5643] [13, 39] [1.6582, 4.4308] [19, 29] [1.1786, 3.9512] [12, 24]

[1.3862, 4.9698] [10, 22] [1.7227, 4.9416] [18, 26] [0.3677, 4.7621] [22, 32]

[1.5581, 4.3307] [13, 19] [1.5686, 4.7874] [11, 29] [1.3862, 4.6051] [2, 22]

[1.4350, 4.6539] [8, 26] [1.6094, 2.9957] [3, 25] [0.9808, 4.5643] [13, 31]

[1.7047, 4.4773] [8, 22] [1.7917, 3.9889] [15, 31] [1.7047, 4.4773] [0, 30]

[0.8472, 5.2417] [5, 25] [1.3121, 5.2040] [7, 19] [0.7375, 5.5333] [1, 27]

[1.7917, 3.9889] [11, 19] [1.6094, 4.8283] [1, 19] [2.0794, 3.4657] [7, 31]

[0.9162, 5.0751] [14, 26] [1.2527, 4.8362] [11, 29] [1.4350, 4.6539] [9, 29]

[0.7731, 4.3567] [2, 24] [1.1631, 4.3820] [2, 18] [2.0794, 4.2766] [10, 24]

[1.3862, 4.1588] [12, 30] [0.7472, 5.1416] [9, 21] [0.9162, 4.4998] [11, 17]

[1.2992, 4.8828] [7, 23] [1.3862, 4.1588] [5, 21] [2.3025, 3.6888] [1, 19]

[0.6286, 4.7874] [11, 27] [1.6094, 4.8283] [8, 26] [1.2163, 5.3752] [8, 24]

[1.7491, 4.5217] [3, 25] [1.5040, 4.2766] [5, 21] [0.6359, 5.0304] [3, 15]
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2. Model SIM2: Assume that mid xi’s and spr xi’s are independent random

observations from N(0, 0.5) and χ2
2, respectively. Suppose that the indepen-

dent observed responses y1i’s and y2i’s come from b(500, 0.9), hence, for all

i = 1, . . . , n, ηi = loge (9), oi = |loge (9)|, and wMi = wSi = 45. Therefore,

based on the delta method, mid ε ∼ N(0, 1
45 ) and spr ε = |TT | such that

TT ∼ N(0, 1
45 ), hence, E

(
εM

∣∣ XM
)

= 0 and E
(
εS
∣∣ XS

)
= [−β3, β3] =

[−0.11893, 0.11893]. For i = 1, . . . , n, suppose that the model SIM2 is

defined as

ηi [1± 0]+oi [0± 1] = β0 mid xi [1± 0] +β1 spr xi [0± 1] +β2 [1± 0] +β3 [0± 1]

where β0 = 5, β1 = 1, β2 = −3, and β3 = 0.11893. Then suppose that gi

is a random interval determined by using the following model for estimating

the parameters of model SIM2:

gi = 5xMi − xSi − 3 [1± 0] + ei = 5xMi + xSi − 3 [1± 0] + ei i = 1, . . . , n.

The model SIGL2 is presented as follow:

g=5 xM− xS−3 [1± 0] 1n+e= 5 xM+ xS−3 [1± 0] 1n+e (4.40)

3. Model SIM3: Suppose that the independent observed responses y1i’s and

y2i’s come from Poisson(3) and b(500, .5), respectively, so ηi = loge (3),

oi = |loge (1)|, wMi = 3, and wSi = 125 for all i = 1, . . . , n. So, based on the

delta method, mid ε ∼ N(0, 13 ) and spr ε = |JJ | such that JJ ∼ N(0, 1
125 ),

so E
(
εM

∣∣ XM
)

= 0 and E
(
εS
∣∣ XS

)
= [−β3, β3] = [−0.07136, 0.07136].

Meanwhile, suppose that mid xi’s and spr xi’s are independent random

observations which come from Poisson(8) and χ2
3, respectively. For i =

1, . . . , n, the model SIM3 is considered as

ηi [1± 0] + oi [0± 1] = β0 mid xi [1± 0] +β1 spr xi [0± 1] +β2 [1± 0] +β3 [0± 1]

where β0 = 1, β1 = 4, β2 = 0, and β3 = 0.07136. To estimate the parameters of

model SIM3, the random interval gi is defined as

gi = xMi − 4xSi + ei = xMi + 4xSi + ei i = 1, . . . , n.

Hence, the model SIGL3 is written as

g=xM−4 xS+e=xM+4 xS+e (4.41)
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Figure 1: Box plot for β̂0 (left) and β̂1 (right) for model SIGL1 (or model SIM1)

Figure 2: Box plot for β̂0 (left) and β̂1 (right) for model SIGL2 (or model SIM2).

In Table 1, based on the reported experimental results for 10, 000 random samples

of different size n from models SIGL1, SIGL2, and SIGL3, the following conclusions

can be expressed: First, the asymptotic unbiasedness of the estimators of the

parameters of models SIGL1 (or SIM1), SIGL2 (or SIM2), and SIGL3 (or SIM3)

are manifest when n increases. Second, as n increases, M̂SE
(
β̂0

)
, M̂SE

(
β̂1

)
,

M̂SE
(
β̂2

)
, and M̂SE

(
β̂3

)
go to 0. Based on 10, 000 simulated samples of n

observations of (X, G), the asymptotic unbiasedness and the strong consistency

of β̂0 and β̂1 for models SIGL1, SIGL2, and SIGL3 are illustrated as n increases

by Figs. 1, 2, and 3, respectively.

Table 1 and Figs. 1, 2, and 3 show the proximity of the estimates to the param-
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Figure 3: Box plot for β̂0 (left) and β̂1 (right) for model SIGL3 (or model SIM3).

eters of models SIM1, SIM2, and SIM3 as n increases. The empirical performance

of the estimation process for models SIM1, SIM2, and SIM3 is illustrated graph-

ically by Fig. 1, Fig. 2, and Fig. 3, respectively. It is also confirmed for all the

models in Table 1.

4.3 A numerical case study

In this section, an attempt is made to estimate the parameters of a model SIM by

analyzing a corresponding model with the structure of model SIGL between gi’s

and xi’s in Table 2. We know, the observed responses y1i and y2i, i = 1, . . . , 72,

provided in Table 3 came from Poisson(19) and Poisson(6), respectively, hence,

ηi = loge (19) and oi = |loge (6)|. In Table 2 or Table 3, mid xi’s and spr xi’s, re-

spectively, came from Poisson (18) and Poisson(8). Hence, the aim is to estimate

the model

ηi [1± 0] + oi [0± 1] = β0 mid xi [1± 0] +β1 spr xi [0± 1] +β2 [1± 0] +β3 [0± 1] ,

i = 1, . . . , 72, when β0, β1, β2, and β3 are unknown values.

In Table 2, gi = [ loge (y1i)− |loge (y2i)| , loge (y1i) + |loge (y2i)| ] is defined

as an initial estimate of ηi [1± 0] + oi [0± 1] = [ηi − oi, ηi + oi], i = 1, . . . , 72.

Based on the data set provided in Table 2, using the proposed estimation process

in Section 3, will obtain a suitable estimation of the model

g=β0 xM+β1 xS+β2 [1± 0] 1n+e

(or the above model SIM). Hence, a good estimation of the model is provided

based on the set (β̂0, β̂1) ∈ U = R× [0, û0]. Hence, the estimates β̂0 = 0.1605577,
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Table 3: Observed data set for model building.

y2 y1 x y2 y1 x y2 y1 x

10 26 [15, 35] 2 14 [10, 20] 4 28 [2, 26]

3 18 [12, 30] 8 16 [6, 30] 5 19 [6, 24]

4 21 [6, 22] 5 23 [7, 27] 11 15 [13, 33]

6 26 [8, 32] 9 14 [11, 19] 8 22 [17, 25]

6 22 [12, 22] 6 14 [9, 23] 9 23 [6, 26]

2 13 [6, 26] 5 23 [5, 29] 8 18 [15, 31]

7 18 [17, 29] 5 25 [7, 27] 2 14 [9, 29]

7 8 [16, 32] 7 22 [6, 18] 5 21 [10, 22]

9 19 [3, 21] 4 13 [3, 23] 6 17 [8, 26]

5 12 [3, 21] 11 25 [9, 25] 2 12 [15, 31]

6 23 [12, 28] 6 18 [5, 11] 4 13 [15, 35]

6 16 [13, 39] 4 21 [19, 29] 4 13 [12, 24]

6 24 [10, 22] 5 28 [18, 26] 9 13 [22, 32]

4 19 [13, 19] 5 24 [11, 29] 5 20 [2, 22]

5 21 [8, 26] 2 10 [3, 25] 6 16 [13, 31]

4 22 [8, 22] 3 18 [15, 31] 4 22 [0, 30]

9 21 [5, 25] 7 26 [7, 19] 11 23 [1, 27]

3 18 [11, 19] 5 25 [1, 19] 2 16 [7, 31]

8 20 [14, 26] 6 21 [11, 29] 5 21 [9, 29]

6 13 [2, 24] 5 16 [2, 18] 3 24 [10, 24]

4 16 [12, 30] 9 19 [9, 21] 6 15 [11, 17]

6 22 [7, 23] 4 16 [5, 21] 2 20 [1, 19]

8 15 [11, 27] 5 25 [8, 26] 8 27 [8, 24]

4 23 [3, 25] 4 18 [5, 21] 9 17 [3, 15]
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β̂1 = 0.05776227, β̂2 = 0.1803286, and β̂3 = 1.164749 are obtained. The final

estimate of ηi [1± 0] + oi [0± 1], i = 1, . . . , 72, is a random interval determined

by using the following model:

[η̂i − ôi, η̂i + ôi] = 0.1605577 xMi +0.05776227 xSi +0.1803286 [1± 0]+ 1.164749 [0± 1] .

Also, the estimated interval model between g and x is as follows:

ĝ = 0.1605577 xM + 0.05776227 xS + [−0.9844204, 1.345078] 1n. (4.42)

For instance, the predicted intervals

ĝ9 = [1.225, 4.594], ĝ52 = [1.534, 5.249], and ĝ63 = [1.225, 4.594],

respectively, are obtained for the units (x9, g9), (x52, g52), and (x63, g63) given

in Table 2 based on (37).

5. Conclusion

Based on the interval arithmetic, for the first time, an interval generalized linear

model was introduced for interval-valued data in this paper. This model was called

model SIM. Then a model was proposed to estimate the parameters of model SIM

based on the interval arithmetic. The model was called model SIGL. The esti-

mation procedure of the parameters of model SIGL was applied as the estimation

procedure of the parameters of model SIM. In model SIGL, observations of the

interval-valued variables were defined as intervals. The estimators of the param-

eters of model SIGL (or model SIM) were obtained with respect to some good

properties of the space of intervals, which are provided by the arithmetic and the

metric described in this research. Due to the semi-linearity of the interval space,

the estimates of the parameters of model SIGL (or model SIM) were considered in

a set of possible values associated with the interval nature of the variables. The

theoretical adequacy of the estimators of model SIGL (or model SIM) was studied

and demonstrated. The empirical validation of the estimation procedure for model

SIM was investigated by studying the proximity of the estimates to the parameters

of model SIM (or model SIGL) using a Monte Carlo simulation.

In this paper, the distributions of the independent random response variables

were members of the exponential family of distributions; for instance, the normal,

binomial, Poisson, geometric, negative binomial, exponential, gamma, and inverse

normal.
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Model SIM can be used when the research is associated with different facts

(grouping, censoring, uncertainty in the measure, and so on), or when the study

is focused just on interval-valued characteristics (fluctuations, ranges of variation,

etc.).
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Appendix

Proofs of the LS estimators given in (23) and (24). Using the first matrix

form in (22), we can provide


1 xM1
...

...

1 xMn


′ 

1 xM1
...

...

1 xMn



−1

1 xM1
...

...

1 xMn


′ 

gM1
...

gMn

 =

(
β̂2, LS

β̂0, LS

)

=


(
∑n

i=1 (mid xi)
2)(
∑n

i=1 (mid gi)) − (
∑n

i=1 (mid xi))(
∑n

i=1 (mid xi)(mid gi))
n(
∑n

i=1 (mid xi)
2)−(

∑n
i=1 (mid xi))

2

n(
∑n

i=1 (mid xi)(mid gi)) − (
∑n

i=1 (mid xi))(
∑n

i=1 (mid gi))
n(
∑n

i=1 (mid xi)
2)−(

∑n
i=1 (mid xi))

2

 .

Therefore, β̂2, LS and β̂0, LS in (23) are obtained. Using the second matrix form in

(22), β̂3, LS and β̂1, LS given in (23) are concluded analogously. Based on β̂0, LS
given in (23), β̂0, LS given in (24) is obtained as follows:

β̂0, LS =

(
n
(∑n

i=1 (mid xi) (mid gi)
)
−
(∑n

i=1 (mid xi)
) (∑n

i=1 (mid gi)
))
/n(

n
(∑n

i=1 (mid xi)
2
)
−
(∑n

i=1 (mid xi)
)2)/n

=

(∑n
i=1 (mid xi) (mid gi)

)
− 2

(
∑n

i=1 (mid xi))(
∑n

i=1 (mid gi))
n +

(
∑n

i=1 (mid xi))(
∑n

i=1 (mid gi))
n(∑n

i=1 (mid xi)
2
)
− 2

(
∑n

i=1 (mid xi))
2

n +
(
∑n

i=1 (mid xi))
2

n

=

∑n
i=1

(
(mid xi) (mid gi)− (mid xi)

(
mid G

)
− (mid gi)

(
mid X

)
+
(
mid G

)(
mid X

))
∑n

i=1

(
(mid xi)

2 − 2 (mid xi)
(
mid XWM

)
+
(
mid XWM

)2
)

=

(∑n
i=1

(
mid xi −mid X

)(
mid gi −mid G

))
/n(∑n

i=1

(
mid xi −mid X

)2
)
/n

=
σ̂ (mid X, mid G)

σ̂2 (mid X)

=
σ̂
(
XM , GM

)
σ̂2 (XM )

.
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Based on β̂1, LS , β̂2, LS , and β̂3, LS provided in (23), respectively, the estimators

β̂1, LS , β̂2, LS , and β̂3, LS provided in (24) are obtained analogously.

Proof of Theorem 4.1. The strong consistency of β̂0, LS given in (24) for

the parameter β0 = σ(mid X, mid G)
σ2(mid X) of the first model given in (15) (or the model

ηi = β0 mid xi+β2, i = 1, . . . , n) will result the strong consistency of β̂0 given in

(29) with respect to the parameter β0.

We are going to prove the strong consistency of β̂1 given in (30) with respect

to β1, when the sample size n tends to infinity. First, we will demonstrate that

Tn = max

{
0,
σ̂ (spr X, spr G)

σ̂2 (spr X)

}
= max

{
0,
σ̂
(
XS , GS

)
σ̂2 (XS)

}
n→∞−→ β1 a.s.− [P].

When n tends to infinity, based on the strong consistency of σ̂ (spr X, spr G),
σ̂
(
XS , GS

)
, σ̂2 (spr X), and σ̂2

(
XS
)

with respect to σ (spr X, spr G), σ
(
XS , GS

)
,

σ2 (spr X), and σ2
(
XS
)
, respectively, the following expression is provided:

β̂1, LS =
σ̂ (spr X, spr G)

σ̂2 (spr X)
=
σ̂
(
XS , GS

)
σ̂2 (XS)

n→∞−→ β1 =
σ (spr X, spr G)

σ2 (spr X)
=
σ
(
XS , GS

)
σ2 (XS)

a.s.− [P].

By considering the real continuous mapping max {0, •}, the following expression

can be obtained:

Tn = max
{

0, β̂1,LS

}
n→∞−→ max {0, β1} a.s. (5.43)

By considering the values of β1, the expression (A.1) can also be checked as

follows:

The expression max {0, β1} = β1 can be concluded when β1 > 0 or equivalently

σ (spr X, spr G) > 0.

The conclusion max {0, β1} = 0 can be obtained when β1 = 0 or equivalently

σ (spr X, spr G) = 0.

The convergence in (38) is concluded based on the two cases as follows:

Tn
n→∞−→ β1 a.s. [P]. (5.44)

We prove β̂1 = min {û0, Tn}
n→∞−→ β1 = min {u0, β1} (see below).

The result min {u0, Tn} ≤ min {û0, Tn} = β̂1 can be obtained based on β̂1 ≤
Tn, and also u0 ≤ û0, where û0 is as the sample of u0. Thus,

min {u0, Tn} ≤ β̂1 ≤ Tn. (5.45)

By considering spr xi, spr ei ≥ 0 for i = 1, . . . , n, and β1 ≥ 0 in the

second model given in (15), the conclusion min {u0, β1} = β1 can be expressed.
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The convergence min {u0, Tn}
n→∞−→ min {u0, β1} = β1 a.s.- [P] can be concluded

using the real continuous mapping min {u0, •} . So the convergence β̂1
n→∞−→ β1 a.s.-

[P] is proven with respect to the convergence min {u0, Tn}
n→∞−→min {u0, β1} =

β1 a.s.- [P], the conclusion given in (39), and using the sandwich rule in (40).

Finally, the strong consistency of the estimator

β̂4 =
(
GM +GS

)
−
(
β̂0 XM + β̂1XS

)
with respect to the parameter β4 =

(
E
(
GM

)
+ E

(
GS
))
−
(
β0 E

(
XM

)
+ β1 E(XS)

)
follows from the corresponding convergences of β̂0 and β̂1, together with the strong

law of large numbers for the sample mean of an interval random set (see Artstein

and Vitale, 1975).
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