تعداد نشریات | 55 |
تعداد شمارهها | 1,780 |
تعداد مقالات | 14,130 |
تعداد مشاهده مقاله | 29,845,405 |
تعداد دریافت فایل اصل مقاله | 18,760,325 |
تعیین مسیرهای بحرانی پروژه با یک رویکرد جدید ترکیبی مبتنی بر MULTI-MOORA و SWARA توسعه یافته و با تمرکز بر معیارهای زمان، هزینه، کیفیت، ریسک و ایمنی در محیط فازی نوع-2 بازهای | ||
مطالعات مدیریت صنعتی | ||
مقاله 3، دوره 20، شماره 67، دی 1401، صفحه 85-119 اصل مقاله (619.49 K) | ||
نوع مقاله: مقاله پژوهشی | ||
شناسه دیجیتال (DOI): 10.22054/jims.2022.25775.1887 | ||
نویسندگان | ||
یحیا درفشان1؛ سید میثم موسوی2؛ بهنام وحدانی ![]() | ||
1کارشناس ارشد مهندسی صنایع، دانشکده فنی و مهندسی، دانشگاه شاهد، تهران، ایران | ||
2دانشیار گروه مهندسی صنایع، دانشکده فنی و مهندسی، دانشگاه شاهد، تهران، ایران | ||
3دانشیار، گروه مهندسی صنایع، واحد قزوین، دانشگاه آزاد اسلامی، قزوین، ایران | ||
چکیده | ||
روش مسیر بحرانی یکی از پرکاربردترین روشها در برنامهریزی و کنترل پروژه است. در این روش زمان بهعنوان معیار تعیین کننده مسیر بحرانی در نظر گرفته میشود؛ اما در نظر گرفتن معیارهای دیگری علاوه بر زمان، ضروری به نظر میرسد. به همین منظور در این مقاله، علاوهبر معیار زمان، معیارهای تاثیرگذاری همانند هزینه، ریسک، کیفیت و ایمنی در نظر گرفته میشود. این مساله به صورت یک مساله تصمیمگیری چند شاخصه فازی مدل میشود و با ارائه یک توسعه جدید از روش مولتی مورا (MULTIMOORA) حل میشود. روش مولتی مورا در محیط فازی بازهای نوع-2 توسعه داده میشود. از مجموعههای فازی نوع-2 نیز برای در نظر گرفتن عدم قطعیت استفاده میگردد. مجموعههای فازی نوع-2 انعطاف پذیری و توانایی بیشتری در انعکاس عدمقطعیتها نسبت به مجموعه های فازی نوع-1 دارند. در نهایت، روش SWARA در محیط فازی نوع-2 بازهای جهت وزندهی به معیارهای تاثیرگذار زمان، هزینه، کیفیت، ریسک و ایمنی توسعه داده میشود. در انتها یک مثال کاربردی برای نشان دادن محاسبات و همچنین توانایی رویکرد پیشنهادی حل میشود. براساس مثال ارائه شده، به وضوح دیده میشود که طولانیترین مسیر از نظر معیار زمانی، مسیر بحرانی نیست و معیارهای تاثیرگذار دیگر نیز در تعیین مسیر بحرانی دخیل هستند. | ||
کلیدواژهها | ||
مسیرهای بحرانی پروژه؛ توسعه روش مولتی مورا؛ مجموعه&rlm؛ های فازی نوع-2 بازه &rlm؛ ای؛ مسیر بحرانی فازی؛ روش SWARA | ||
مراجع | ||
فضلی، مسعود، جعفرزاده افشاری، احمد و حاجی آقائی کشتلی، مصطفی. (a2020). شناسایی و رتبهبندی ریسکهای پروژههای ساختمانی سبز با استفاده از رویکرد ترکیبی SWARA-COPRAS: (مطالعه موردی: شهرستان آمل). مطالعات مدیریت صنعتی، 18(58)، 139-192.
فضلی، مسعود، فلاح، علی و خاکباز، امیر. (b2020). مدیریت ریسک در پروژههای ساختمانی با در نظر گرفتن روابط متقابل ریسک پروژه: بیشینه نمودن مطلوبیت. مطالعات مدیریت صنعتی، 18(56)، 337-374.
گل پیرا، هیرش، بابایی تیرکلایی، عرفان، تقوی فرد، محمد تقی، ظاهری، فائق. (2021). زمان بندی چند پروژهای بهینه با در نظر گرفتن قابلیت اطمینان و کیفیت در زنجیره تأمین ساخت و ساز: الگوریتم ژنتیک ترکیبی. مطالعات مدیریت صنعتی، 19(61).
Alimardani, M., Hashemkhani Zolfani, S., Aghdaie, M. H., & Tamošaitienė, J. (2013). A novel hybrid SWARA and VIKOR methodology for supplier selection in an agile environment. Technological and Economic Development of Economy, 19(3), 533-548.
Amiri, M., & Golozari, F. (2011). Application of fuzzy multi-attribute decision making in determining the critical path by using time, cost, risk, and quality criteria. The International Journal of Advanced Manufacturing Technology, 54(1-4), 393-401.
Aras, A. C., & Kaynak, O. (2014). Interval type-2 fuzzy neural system based control with recursive fuzzy C-means clustering. Int. J. Fuzzy Syst, 16(3), 317-326.
Baležentis, A., Baležentis, T., & Brauers, W. K. (2012). Personnel selection based on computing with words and fuzzy MULTIMOORA. Expert Systems with applications, 39(9), 7961-7967.
Baležentis, T., & Zeng, S. (2013). Group multi-criteria decision making based upon interval-valued fuzzy numbers: an extension of the MULTIMOORA method. Expert Systems with Applications, 40(2), 543-550.
Bezdek, J. C. (2013). Pattern recognition with fuzzy objective function algorithms. Springer Science & Business Media.
Brauers, W. K. M., & Zavadskas, E. K. (2006). The MOORA method and its application to privatization in a transition economy. Control and Cybernetics, 35(2), 445.
Brauers, W. K. M., & Zavadskas, E. K. (2010). Project management by MULTIMOORA as an instrument for transition economies. Technological and Economic Development of Economy, (1), 5-24.
Brauers, W. K., Baležentis, A., & Baležentis, T. (2011). MULTIMOORA for the EU Member States updated with fuzzy number theory. Technological and Economic Development of Economy, 17(2), 259-290.
Cao, J., Ji, X., Li, P., & Liu, H. (2011). Design of adaptive interval type-2 fuzzy control system and its stability analysis. International Journal of Fuzzy Systems, 13(4), 334-343.
Cao, Q., Esangbedo, M. O., Bai, S., & Esangbedo, C. O. (2019). Grey SWARA-FUCOM weighting method for contractor selection MCDM problem: A case study of floating solar panel energy system installation. Energies, 12(13), 2481.
Celikyilmaz, A., & Turksen, I. B. (2009). Modeling uncertainty with fuzzy logic. Studies in fuzziness and soft computing, 240.
Chanas, S., & Zieliński, P. (2001). Critical path analysis in the network with fuzzy activity times. Fuzzy sets and systems, 122(2), 195-204.
Chen, C. T., & Huang, S. F. (2007). Applying fuzzy method for measuring criticality in project network. Information sciences, 177(12), 2448-2458.
Chen, S. M., & Lee, L. W. (2010). Fuzzy multiple attributes group decision-making based on the interval type-2 TOPSIS method. Expert systems with applications, 37(4), 2790-2798.
Chen, S. P. (2007). Analysis of critical paths in a project network with fuzzy activity times. European Journal of Operational Research, 183(1), 442-459.
Chiao, K. P. (2021). Multi-criteria decision making with interval type 2 fuzzy Bonferroni mean. Expert systems with applications, 176, 114789.
Deveci, M., Cali, U., Kucuksari, S., & Erdogan, N. (2020). Interval type-2 fuzzy sets based multi-criteria decision-making model for offshore wind farm development in Ireland. Energy, 198, 117317.
Dorfeshan, Y., Mousavi, S. M., Vahdani, B., & Siadat, A. (2018). Determining project characteristics and critical path by a new approach based on modified NWRT method and risk assessment under an interval type-2 fuzzy environment.
Fazli, M., Fallah, M., Khakbaz. (2020b). Risk management in construction projects by considering project risk interrelationships: Maximizing utility. Industrial Management Studies, 18(56), 337-374[In
Persian]
Fazli, M., Jafarzadeh Afshari, A., Haji Aghaei, k. (2020). Identification and ranking of green construction project risks by using a hybrid COPRAS-SWARA (Case study: Amol city). Industrial Management Studies, 18(58), 139-192[In Persian]
Gitinavard, H., Mousavi, S. M., & Vahdani, B. (2016a). A new multi-criteria weighting and ranking model for group decision-making analysis based on interval-valued hesitant fuzzy sets to selection problems. Neural Computing and Applications, 27(6), 1593-1605.
Gitinavard, H., Mousavi, S. M., Vahdani, B., & Siadat, A. (2016b). A new distance-based decision model in interval-valued hesitant fuzzy setting for industrial selection problems. Scientia Iranica, 23(4), 1928-1940.
Gol Pera, H., Babaei Tirkalaei, E., Taghavi Fard, Zaheri, Faegh. (2021). Optimal Multi-Project Scheduling Considering Reliability and Quality in the Construction Supply Chain: A Combined Genetic Algorithm. Industrial Management Studies, 19(61). [In Persian]
Hoseini, S. A., Hashemkhani Zolfani, S., Skačkauskas, P., Fallahpour, A., & Saberi, S. (2021). A combined interval type-2 fuzzy MCDM framework for the resilient supplier selection problem. Mathematics, 10(1), 44.
Karabasevic, D., Zavadskas, E. K., Turskis, Z., & Stanujkic, D. (2016). The framework for the selection of personnel based on the SWARA and ARAS methods under uncertainties. Informatica, 27(1), 49-65.
Karande, P., & Chakraborty, S. (2012). A Fuzzy-MOORA approach for ERP system selection. Decision Science Letters, 1(1), 11-21.
Karnik, N. N., & Mendel, J. M. (2001). Centroid of a type-2 fuzzy set. Information Sciences, 132(1), 195-220.
Kaur, P., & Kumar, A. (2014). Linear programming approach for solving fuzzy critical path problems with fuzzy parameters. Applied Soft Computing, 21, 309-319.
Kelley Jr, J. E. (1961). Critical-path planning and scheduling: Mathematical basis. Operations research, 9(3), 296-320.
Keršulienė, V., & Turskis, Z. (2011). Integrated fuzzy multiple criteria decision making model for architect selection. Technological and Economic Development of Economy, 17(4), 645-666.
Lee, L. W., & Chen, S. M. (2008, July). Fuzzy multiple attributes group decision-making based on the extension of TOPSIS method and interval type-2 fuzzy sets. In 2008 International Conference on Machine Learning and Cybernetics (Vol. 6, pp. 3260-3265). IEEE.
Liang, S. K., Yang, K. L., & Chu, P. (2004). Analysis of fuzzy multiobjective programming to CPM in project management. Journal of Statistics and Management Systems, 7(3), 597-609.
Liu, D., & Hu, C. (2021). A dynamic critical path method for project scheduling based on a generalised fuzzy similarity. Journal of the Operational Research Society, 72(2), 458-470.
Liu, H. C., Fan, X. J., Li, P., & Chen, Y. Z. (2014). Evaluating the risk of failure modes with extended MULTIMOORA method under fuzzy environment. Engineering Applications of Artificial Intelligence, 34, 168-177.
Liu, P., Gao, H., & Fujita, H. (2021). The new extension of the MULTIMOORA method for sustainable supplier selection with intuitionistic linguistic rough numbers. Applied Soft Computing, 99, 106893.
Madhuri, K. U., Siresha, S., & Shankar, N. R. (2012). A new approach for solving fuzzy critical path problem using LL fuzzy numbers. Applied Mathematical Sciences, 6(27), 1303-1324.
Mehlawat, M. K., & Gupta, P. (2016). A new fuzzy group multi-criteria decision making method with an application to the critical path selection. The International Journal of Advanced Manufacturing Technology, 83(5-8), 1281-1296.
Mendel, J. M., John, R. I., & Liu, F. (2006). Interval type-2 fuzzy logic systems made simple. IEEE Transactions on Fuzzy Systems, 14(6), 808-821.
Mohagheghi, V., Mousavi, S. M., & Vahdani, B. (2015). A new optimization model for project portfolio selection under interval-valued fuzzy environment. Arabian Journal for Science and Engineering, 40(11), 3351-3361.
Mohagheghi, V., Mousavi, S. M., & Vahdani, B. (2016). A new multi-objective optimization approach for sustainable project portfolio selection: a realworld application under interval-valued fuzzy environment. Iranian Journal of Fuzzy Systems, 13(6), 41-68.
Mousavi, S. M., & Vahdani, B. (2016). Cross-docking location selection in distribution systems: a new intuitionistic fuzzy hierarchical decision model. International Journal of computational intelligence Systems, 9(1), 91-109.
Mousavi, S. M., Vahdani, B., & Behzadi, S. S. (2016). Designing a model of intuitionistic fuzzy VIKOR in multi-attribute group decision-making problems. Iranian Journal of Fuzzy Systems, 13(1), 45-65.
Negoita, C., Zadeh, L., & Zimmermann, H. (1978). Fuzzy sets as a basis for a theory of possibility. Fuzzy sets and systems, 1(3-28), 61-72.
Pour, N. S., Zeynali, S., & Kheradmand, M. (2012). Calculating the fuzzy project network critical path. International Journal of Engineering & Technology, 1(2), 58-66.
Rani, P., & Mishra, A. R. (2021). Fermatean fuzzy Einstein aggregation operators-based MULTIMOORA method for electric vehicle charging station selection. Expert Systems with Applications, 182, 115267.
Samayan, N., & Sengottaiyan, M. (2017). Fuzzy critical path method based on ranking methods using hexagonal fuzzy numbers for decision making. Journal of intelligent & fuzzy systems, 32(1), 157-164.
San Cristobal, J. R. (2012). Critical path definition using multicriteria decision making: PROMETHEE method. Journal of Management in Engineering, 29(2), 158-163.
Stanujkic, D. (2016). An extension of the ratio system approach of MOORA method for group decision-making based on interval-valued triangular fuzzy numbers. Technological and Economic Development of Economy, 22(1), 122-141.
Stanujkic, D., Karabasevic, D., & Zavadskas, E. K. (2015). A framework for the selection of a packaging design based on the SWARA method. Inzinerine Ekonomika-Engineering Economics, 26(2), 181-187.
Stanujkic, D., Magdalinovic, N., Jovanovic, R., & Stojanovic, S. (2012). An objective multi-criteria approach to optimization using MOORA method and interval grey numbers. Technological and Economic Development of Economy, 18(2), 331-363.
Ulutaş, A., Karakuş, C. B., & Topal, A. (2020). Location selection for logistics center with fuzzy SWARA and CoCoSo methods. Journal of Intelligent & Fuzzy Systems, 38(4), 4693-4709.
Vahdani, B., Mousavi, S. M., Tavakkoli-Moghaddam, R., Ghodratnama, A., & Mohammadi, M. (2014a). Robot selection by a multiple criteria complex proportional assessment method under an interval-valued fuzzy environment. The International Journal of Advanced Manufacturing Technology, 73(5), 687-697.
Vahdani, B., Salimi, M., & Mousavi, S. M. (2015). A compromise decision-making model based on VIKOR for multi-objective large-scale nonlinear programming problems with a block angular structure under uncertainty. Scientia Iranica, 22(6), 22571-2584.
Vahdani, B., Salimi, M., and S.M. Mousavi. (2014b). A new compromise decision-making model based on TOPSIS and VIKOR for solving multi-objective large-scale programming problems with a block angular structure under uncertainty, International Journal of Engineering Transactions B: Applications, 27(11), 1673-1680.
Zadeh, L. A. (1974, August). Fuzzy Logic and Its Application to Approximate Reasoning. In IFIP Congress (Vol. 591).
Zammori, F. A., Braglia, M., & Frosolini, M. (2009). A fuzzy multi-criteria approach for critical path definition. International Journal of Project Management, 27(3), 278-291.
Zhang, Z., & Zhang, S. (2013). A novel approach to multi attribute group decision making based on trapezoidal interval type-2 fuzzy soft sets. Applied Mathematical Modelling, 37(7), 4948-4971.
Zolfani, S. H., Salimi, J., Maknoon, R., & Kildiene, S. (2015). Technology foresight about R&D projects selection; Application of SWARA method at the policy making level. Engineering Economics, 26(5), 571-580.
| ||
آمار تعداد مشاهده مقاله: 253 تعداد دریافت فایل اصل مقاله: 80 |